Bat algorithm (BA): review, applications and modifications

  • Authors

    • Amar Yahya Zebari computer science
    • Saman M. Almufti Statistics
    • Chyavan Mohammed Abdulrahman Physical Education and Sport Sciences,
  • Swarm Intelligence (SI), Bat Algorithm (BA), Literature Review, Metaheuristic Algorithm.
  • Generally, Metaheuristic algorithms such as ant colony optimization, Elephant herding algorithm, particle swarm optimization, bat algorithms becomes a powerful methods for solving optimization problems. This paper provides a timely review of the bat algorithm and its new variants.

    Bat algorithm (BA) is a Swarm based metaheuristic algorithm developed in 2010 by Xin-She Yang, BA has been inspired by the foraging behavior of micro bats, algorithm carries out the search process using artiï¬cial bats as search agents mimicking the natural pulse loudness and emission rate of real bats. It has become a powerful swarm intelligence method for solving optimization prob-lems over continuous and discrete spaces. Nowadays, it has been successfully applied to solve problems in almost all areas of opti-mization, and it found to be very efficient. As a result, the literature has expanded significantly, a wide range of diverse applications and case studies has been made base on the bat algorithm.


  • References

    1. [1] Almufti, S. (2017). Using Swarm Intelligence for solving NPHard Problems. Academic Journal of Nawroz University, 6(3), pp. 46-50.

      [2] Almufti, S., Marqas, R., &Ashqi V., (2019). Taxonomy of bio-inspired optimization algorithms. Journal Of Advanced Computer Science & Technology, 8(2), 23.

      [3] Almufti, S. (2015). U-Turning Ant Colony Algorithm powered by Great Deluge Algorithm for the solution of TSP Problem. [online] Available at: [Accessed 5 Aug. 2018].

      [4] Agarwal, P., & Mehta, S. (2014). Nature-Inspired Algorithms: State-of-Art, Problems and Prospects. International Journal of Computer Applications, 100(14), 14-21.

      [5] Li, Y.: (2010), Solving TSP by an ACO- and -BOA-based Hybrid Algorithm. In: 2010 International Conference on Computer Application and System Modeling, pp. 189–192. IEEE Press,New York.

      [6] Yang, X.-S. (2010), A new metaheuristic bat-inspired algorithm. In Natureinspired cooperative strategies for optimization (pp. 65{74). Springer.

      [7] Almufti S., & Shaban A., (2018), U-Turning Ant Colony Algorithm for Solving Symmetric Traveling Salesman Problem, Academic Journal of Nawroz University, vol. 7, no. 4, pp. 45-49, Available: 10.25007/ajnu. v6n4a270.

      [8] Almufti, S., R. Asaad, R., & B. Salim, (2019). Review on Elephant Herding Optimization Algorithm Performance in Solving Optimization Problems. International Journal of Engineering & Technology, 7(4), 6109-6114.

      [9] Almufti, S., Marqas, R., & Asaad, R. (2019). Comparative study between elephant herding optimization (EHO) and U-turning ant colony optimization (U-TACO) in solving symmetric traveling salesman problem (STSP). Journal Of Advanced Computer Science & Technology, 8(2), 32.

      [10] Asaad, R., Abdulnabi, N. (2018). Using Local Searches Algorithms with Ant Colony Optimization for the Solution of TSP Problems. Academic Journal ofNawroz University, 7(3), 1-6.

      [11] Shi YH, Eberhart RC, (1998), A modified particle swarm optimizer[A],IEEE IntConf on Evalutionary Computation [C], pp. 63-73

      [12] Almufti, S. (2019). Historical survey on metaheuristics algorithms. International Journal Of Scientific World, 7(1), 1.

      [13] Cui, Z., Sun, B., Wang, G., Xue, Y., Chen, J. (2017) A novel oriented cuckoo search algorithm to improve DV-Hop performance for cyber-physical systems. J. Parallel Distrib. Comput, 103, 42–52.

      [14] Yang, X.S., Gandomi, A.H. (2012) Bat Algorithm: A Novel Approach for Global Engineering Optimization. Eng. Comput. 2012, 29, 464–483.

      [15] Bora, T.C., Coelho, L.D.S., Lebensztajn, L. (2012) Bat-Inspired Optimization Approach for the Brushless DC Wheel Motor Problem. IEEE Trans. Magn., 48, 947–950.

      [16] Sambariya, D.K., Prasad, R. (2014) Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm. Int. J. Electr. Power Energy Syst., 61, 229–238.

      [17] Sathya, M.R., Ansari, M.M.T. (2015) Load frequency control using Bat inspired algorithm based dual mode gain scheduling of PI controllers for interconnected power system. Int. J. Electr. Power Energy Syst., 64, 365–374.

      [18] Sun, S., Xu, B. (2015) Node localization of wireless sensor networks based on hybrid bat-quasi-Newton algorithm. J. Comput. Appl., 11, 38–42.

      [19] Cao, Y., Cui, Z., Li, F., Dai, C., Chen, W. (2014) Improved Low Energy Adaptive Clustering Hierarchy Protocol Based on Local Centroid Bat Algorithm. Sens. Lett., 12, 1372–1377.

      [20] Cui, Z., Cao, Y., Cai, X., Cai, J., Chen, J. (2017) Optimal LEACH protocol with modiï¬ed bat algorithm for big data sensing systems in Internet of Things. J. Parallel Distrib. Comput.

      [21] Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G.G., Chen, J. (2018) Detectin of malicious code variants based on deep learning. IEEE Trans. Ind. Inform., 14, 3187–3196.

      [22] Hamidzadeh, J., Sadeghi, R., Namaei, N. (2017) Weighted Support Vector Data Description based on Chaotic Bat Algorithm. Appl. Soft Comput., 60, 540–551.

      [23] Alsalibi, B., Venkat, I.,Al-Betar,M.A. (2017)Amembrane-inspiredbatalgorithmtorecognizefacesinunconstrained scenarios. Eng. Appl. Artif. Intell., 64, 242–260.

      [24] Cui, Z., Zhang, J., Wang, Y., Cao, Y., Cai, X., Zhang, W., Chen, J. (2019) A pigeon-inspired optimization algorithm for many-objective optimization problems. Sci. China Inf. Sci.

      [25] Tharwat, A., Hassanien, A.E., Elnaghi, B.E. (2016), A BA-based algorithm for parameter optimization of Support Vector Machine. Pattern Recognit. Lett., 93, 13–22.

      [26] Kashi S., Minuchehr A., Poursalehi N., & Zolfaghari A., (2014). Bat algorithm for the fuel arrangement optimization of reactor core. Annals of Nuclear Energy, 64:144–151.

      [27] Alihodzic A. & Tuba M., (2014). Improved bat algorithm applied to multilevel image thresholding. The Scientiï¬c World Journal, 2014, 2014.

      [28] A. Latif and P. Palensky. Economic dispatch using modiï¬ed bat algorithm. Algorithms, 7(3):328–338.

      [29] Taha A. M., Mustapha A., & Chen S.-D., (2013). Naive bayes-guided bat algorithm for feature selection. The Scientiï¬c World Journal.

      [30] Fister I., Rauter S., Yang X.-S., & Ljubiˇc K., (2014). Planning the sports training sessions with the bat algorithm. Neurocomputing.

      [31] Li Y. G. & Peng J. P. (2014). An improved bat algorithm and its application in multiple ucavs. Applied Mechanics and Materials, 442:282–286.

      [32] Sambariya D. & Prasad R., (2014). Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm. International Journal of Electrical Power & Energy Systems, 61:229– 238.

      [33] Cai X., Wang L.,Kang Q., & Wu Q.,(2014). Bat algorithm with gaussian walk. International Journal of Bio-Inspired Computation, 6(3):166–174.

      [34] Kaveh A. & Zakian P., (2014), Enhanced bat algorithm for optimal design of skeletal structures. Asian J Civial Eng, 15(2):179–212.

      [35] Alsalibi, B., Venkat, I., & Al-Betar, M. (2017). A membrane-inspired bat algorithm to recognize faces in unconstrained scenarios. Engineering Applications of Artificial Intelligence, 64, 242-260.

      [36] Nikov K., Nikov A. & Sahai A., (2011), “A Fuzzy Bat Clustering Method for Ergonomic Screening of Office Workplacesâ€, Proceedings of Third International Conference on Software, Services and Semantic Technologies S3T, pp. 59-66.

      [37] Nakamura R., Pereira L., Costa K., Rodrigues D., Papa J. & Yang X., (2012), “BBA: A Binary Bat Algorithm for Feature Selectionâ€, Proceedings of XXV SIBGRAPI Conference on Graphics, Patterns and Images, pp. 291-297.

      [38] Sabba S. & Chikhi S., (2014), “A discrete binary version of bat algorithm for multidimensional knapsack problemâ€, Int. J. BioInspired Computation, vol. 6, Issue 2, pp. 140-152.

      [39] Zhang J. & Wang G., (2012), “Image Matching Using a Bat Algorithm with Mutationâ€, Applied Mechanics and Materials, vol. 203, Issue 2012, pp. 65-74.

      [40] Fister I., Fister D. & Yang X., (2013), “A hybrid bat algorithmâ€, Elektrotehniski vestnik.

      [41] Xie J., Zhou Y. & Chen H., (2013), “A Novel Bat Algorithm Based on Differential Operator and Lévy Flights Trajectoryâ€, Computational Intelligence and Neuroscience, pp. 1-13.

      [42] Afrabandpey H., Ghaffari M., Mirzaei A. & Safayani M., (2014), “A novel bat algorithm based on chaos for optimization tasksâ€, Proceedings of Intelligent Systems (ICIS), Iranian Conference, pp. 1-6.

      [43] Gandomi A. & Yang X., (2014), “Chaotic bat algorithmâ€, Journal of Computational Science, vol. 5, Issue 2, pp. 224-232.

      [44] Yilmaz S., Kucuksille E. & Cengiz Y., (2014), “Modified Bat Algorithmâ€, Elektronika IR Elektrotechnika, vol. 20, Issue 2, pp. 71-78.

      [45] Li L. & Zhou Y., (2014), “A novel complex-valued bat algorithmâ€, Neural Computing and Applications, vol. 25, Issue 6, pp. 13691381.

      [46] Cai X., Wang L., Kang Q. & Wu Q., (2014), “Bat algorithm with Gaussian walkâ€, International Journal of Bio-Inspired Computation, vol. 6, Issue 3, pp. 166-174.

      [47] Zhou Y., Xie J., Li L., & Ma M., (2014), “Cloud Model Bat Algorithmâ€, The Scientific World Journal, pp. 1-11.

      [48] Li D., Liu C. & Gan W., (2011), “Proof of the heavy-tailed property of normal cloud modelâ€, Engineer and Science of China, vol. 13, Issue 4, pp. 20-23.

      [49] Dao T., Pan J., Nguyen T., Chu S. & Shieh C., (2014), “Compact Bat Algorithmâ€, In: Intelligent Data analysis and its Applications. Volume II, Springer International Publishing: Cham, pp. 57-68.

      [50] Fister I., Fong S., Brest J. & Fister I., (2014), “Towards the SelfAdaption of the Bat Algorithmâ€, Proceddings of the IASTED International Conference Artificial Intelligence and Applications (AIA 2014), pp. 400-406.

      [51] Fister I., Fong S., Brest J. & Fister I. (2014), “A Novel Hybrid SelfAdaptive Bat Algorithmâ€, The Scientific World Journal, pp. 112,2014.

      [52] Yilmaz S. & Küçüksille E., (2015), “A new modification approach on bat algorithm for solving optimization problemsâ€, Applied Soft Computing, vol. 28, pp. 259-275.

      [53] Jun L, Liheng L, & Xianyi W., (2015), “A double-subpopulation variant of the bat algorithm. Applied Mathematics and Computationâ€. 263:361-377.

      [54] Meng X., Gao X., Liu Y. & Zhang H., (2015), “A novel bat algorithm with habitat selection and Doppler effect in echoes for optimizationâ€, Expert Systems with Applications, vol. 42, Issue 17-18, pp. 6350-6364.

      [55] Wang G., Chu H. & Mirjalili S., (2016), “Three-dimensional path planning for UCAV using an improved bat algorithmâ€, Aerospace Science and Technology, vol. 49, pp. 231-238.

      [56] Zhou Y., Luo Q., Xie J. & Zheng H., (2016), “A Hybrid Bat Algorithm with Path Relinking for the Capacitated Vehicle Routing Problemâ€, In: Metaheuristics and Optimization in Civil Engineering, Vol. 7, pp. 255-276.

      [57] Cai X., Gao X. & Xue Y., (2016), “Improved bat algorithm with optimal forage strategy and random disturbance strategyâ€, International Journal of Bio-Inspired Computation, vol. 8, Issue 4, pp. 205214.

      [58] Zhu B., Zhu W., Liu Z., Duan Q., & Cao L., (2016), “A Novel QuantumBehaved Bat Algorithm with Mean Best Position Directed for Numerical Optimizationâ€, Computational Intelligence and Neuroscience, pp. 1-17.

      [59] Yammani C., Maheswarapu S., & Matam S., (2016), “A Multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load modelsâ€, International Journal of Electrical Power & Energy Systems, vol. 79, pp. 120131.

  • Downloads

  • How to Cite

    Yahya Zebari, A., M. Almufti, S., & Mohammed Abdulrahman, C. (2020). Bat algorithm (BA): review, applications and modifications. International Journal of Scientific World, 8(1), 1-7.