Mass density, sound velocity and Debye temperature of CaTe semiconductor under high compression

  • Authors

    • Salah Daoud Bordj Bou Arreridj University, Algeria
    2023-10-04
    https://doi.org/10.14419/ijsw.v9i1.32363
  • Using the structural parameters and the elastic stiffness constants reported in the literature (by Guo et al. in Solid State Commun., 340, 114488 (2021)) as well as different appropriate analytical and semi-empirical expressions, we reported the high compression effect up to pressure of 27.8 GPa on the average sound velocity and Debye temperature θD of cubic rocksalt calcium telluride (CaTe) semiconducting compound. The pressure dependence of the Debye temperature θD for CaTe compound was obtained using two different approaches. We found that both the average sound velocity and Debye temperature of CaTe compound increase monotonously and non-linearly with enhanced pressure up to 27.8 GPa. We note that similar behavior on the average sound velocity and Debye temperature θD was also observed in the literature for the same compound and for other materials with different crystallographic structures. The deviations on θD between the two different approaches and to those of the literature are quite large at high pressures.

     

  • References

    1. Y. Guo, D. Xia, Q. Liu, X. Zhao and J. Li, "Phase transition of CaTe induced by high-pressure: Structural and elastic DFT study of five structures", Solid State Communications, Vol. 340, No.12, (2021), pp. 114488 (6 pages). https://doi.org/10.1016/j.ssc.2021.114488.
    2. H. Luo, R. G. Greene, K. G. Handehari, T. Li and A. L. Ruoff, "Structural phase transformations and the equations of state of calcium chalcogenides at high pressure", Physical Review B, Vol. 50, No.22, (1994), pp.16232–16237. https://doi.org/10.1103/PhysRevB.50.16232.
    3. F. Okba and R. Mezouar, " Some physical parameters of calcium chalcogenides at high pressures: Semi-empirical approach", Journal of Nano- and Electronic Physics, Vol. 14, No 4, (2022) pp. 04004 (4 pages). https://doi.org/10.21272/jnep.14(4).04004.
    4. D. Varshney, V. Rathore, R. Kinge and R.K. Singh, "High-pressure induced structural phase transition in alkaline earth CaX (X = S, Se and Te) semiconductors: NaCl-type (B1) to CsCl-type (B2)", Journal of Alloys and Compounds, Vol. 484, No 1-2, (2009), pp. 239–245.https://doi.org/10.1016/j.jallcom.2009.04.022.
    5. A. Khaldi, N. Bouarissa and L. Tabourot, "The pressure influence on structural parameters and elastic properties of rock-salt CaX (X=S, Se and Te) materials", Chemical Physics Impact, Vol. 6, No 1 (2023), pp. 100237 (9 pages). https://doi.org/10.1016/j.chphi.2023.100237.
    6. S. Labidi, M. Boudjendlia, M. Labidi, and R. Bensalem, "First principles calculations of the structural, elastic, and thermal properties of the rocksalt CaX (X = S, Se, Te) ", Chinese Journal of Physics, Vol. 52, No 3, (2014), pp. 1081 –1090.
    7. R. Maizi, A. Boudjahem and M. Boulbazine, "First-principles investigations on structural, elastic, and thermodynamic properties of CaX (X = S, Se, and Te) under pressure", Russian Journal of Physical Chemistry A, Vol. 93, No 13, (2019), pp. 2726–2734. https://doi.org/10.1134/S0036024419130181.
    8. S. Daoud, "Comment on the effect of pressure on the physical properties of Cu3N ", Physica Scripta, Vol. 91, No. 5, (2016), pp. 057001 (2 pages). https://doi.org/10.1088/0031-8949/91/5/057001.
    9. S. Daoud," Comment on Ab initio calculations of B2 type RHg (R = Ce, Pr, Eu and Gd) intermetallic compounds", The European Physical Journal B, Vol. 89,(2016), pp. 47 (2 pages). https://doi.org/10.1140/epjb/e2016-60844-9.
    10. K.B. Modi, "Elastic moduli determination through IR spectroscopy for zinc substituted copper ferri chromates", Journal of Materials Science, Vol. 39, No 4, (2004), pp. 2887–2890.https://doi.org/10.1023/B:JMSC.0000021472.00590.9b.
    11. S. Daoud, "Comment on ab initio study of the structural, elastic, electronic and optical properties of Cu3N ", Materials Research, Vol. 19, No. 2, (2016) pp. 314-315. https://doi.org/10.1590/1980-5373-MR-2015-0602.
    12. S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors, John Wiley & Sons Ltd, USA, (2005)https://doi.org/10.1002/0470090340.
    13. S. Daoud and N. Bioud, "Anisotropy and pressure effect on the elastic and mechanical properties of (B3) BN", Ukrainian Journal of Physics, Vol. 59, No. 4, (2014), pp. 418 – 425. https://doi.org/10.15407/ujpe59.04.0418.
    14. S. Daoud, "Sound velocities and Debye temperature of BeSe under high pressure up to 50 GPa", International Journal of Physical Research, Vol. 5, No. 1, (2017), pp. 7-10. https://doi.org/10.14419/ijpr.v5i1.7013.
    15. O.L. Anderson, "A simplified method for calculating the Debye temperature from elastic constants", Journal of Physics and Chemistry of Solids, Vol. 24, No. 7, (1963), pp. 909-917. https://doi.org/10.1016/0022-3697(63)90067-2.
    16. S. Daoud, K. Loucif, N. Bioud and N. Lebga, "First-principles study of structural, elastic and mechanical properties of zinc-blende boron nitride (B3-BN) ", Acta Physica Polonica A, Vol. 122, No. 1, (2012), pp.109-115. https://doi.org/10.12693/APhysPolA.122.109.
    17. A. Benamrani, S. Daoud and P. K. Saini, " Structural, elastic and thermodynamic properties of ScP compound: DFT study ", Journal of Nano- and Electronic Physics, Vol. 13, No 1, (2021), pp. 01008 (5pp). https://doi.org/10.21272/jnep.13(1).01008.
    18. S. Narain, "Analysis of the Debye temperature for ANB8-N type crystals", Physica Status Solidi B, Vol. 182, No. 2, (1994), pp. 273–278. https://doi.org/10.1002/pssb.2221820203.
    19. S. Daoud and A. Latreche, "Comment on density functional investigation on electronic structure and elastic properties of BeX at high pressure ", Indian Journal of Physics, Vol. 90, No 11, (2016), pp. 1243-1244. https://doi.org/10.1007/s12648-016-0863-4.
    20. M. Blackman, "On the relation of Debye theory and the lattice theory of specific heats", Proceedings of the Royal Society of London. Series A, Vol. 181, No. 984, (1942), pp. 58-67. https://doi.org/10.1098/rspa.1942.0058.
    21. S. Daoud, "Thermal properties of cubic zincblende thallium-phosphide from quasi-harmonic Debye model approximation", International Journal of Physical Research: Vol. 5, No. 1, (2017), pp. 14-16. https://doi.org/10.14419/ijpr.v5i1.7093.
    22. S. Amari, H. Rekab-Djabri and S. Daoud, "Mechanical, thermal, electronic, and magnetic properties of Ca0.75Er0.25S alloy from a DFT approach: a promising material for spintronic applications", Materials Today Communications, Vol. 33, (2022), pp. 104237 (9 pages). https://doi.org/10.1016/j.mtcomm.2022.104237.
    23. H. Rekab-Djabri, M. Drief, Manel. M. Abdus Salam, S. Daoud, F. El Haj Hassan and S. Louhibi-Fasla, " Full-potential linear muffin-tin orbital investigation of the structural, electronic, elastic and optical properties of semiconducting AgBr1−xIx (0 ≤ x ≤ 1) ternary alloys", Canadian Journal of Physics, Vol. 98, No. 9, (2020), pp. 834-848.https://doi.org/10.1139/cjp-2019-0357.
    24. S. Benyettou, S. Saib and N. Bouarissa,"Materials properties, lattice dynamics and polaron characteristics in InSbxP1-x ternary alloys", Materials Science in Semiconductor Processing, Vol. 125, No. 4, (2021), pp. 105640 (9 pages).https://doi.org/10.1016/j.mssp.2020.105640.
    25. S. Daoud and H. Rekab-Djabri, "Bulk modulus of CaO under high pressure up to 65 GPa ", International Journal of Advanced Chemistry, Vol. 10, No. 2, (2022), pp. 135-137. https://doi.org/10.14419/ijac.v10i2.32191.
    26. N. Bioud, X-W. Sun, N. Bouarissa and S. Daoud,"Elastic constants and related properties of compressed rocksalt CuX (X =Cl, Br): Ab initio study", Zeitschrift Für Naturforschung A, Vol. 73, No. 8, (2018), pp.767–773. https://doi.org/10.1515/zna-2018-0120.
    27. H. Siethoff, "Debye temperature, self-diffusion and elastic constants of intermetallic compounds", Intermetallics, Vol. 5, No. 8, (1997), pp. 625-632. https://doi.org/10.1016/S0966-9795(97)00037-X.
  • Downloads

  • How to Cite

    Daoud, S. (2023). Mass density, sound velocity and Debye temperature of CaTe semiconductor under high compression. International Journal of Scientific World, 9(1), 8-11. https://doi.org/10.14419/ijsw.v9i1.32363