Expected benefits of administration of tannins extracted from Acacia seyal plants; a biochemical and traditional medicine overview

  • Authors

    • Abdelgadir M. I Department of chemistry, Faculty of Education, University of Bakht Alruda
    2023-10-25
    https://doi.org/10.14419/5ksxnn82
  • Abstract

    This study was focused on expected benefits of administration of tannins extracted from Acacia seyal pants. Tannins have been used throughout history for their pharmacological properties as part of plants and herbs in traditional medicine. Tannins are a heterogeneous group of polyphenols, secondary metabolites in plants synthesized in response to biotic and abiotic stress inducers. The phenolic rings and hydroxyl groups present in their chemical structures confer them antioxidant and protein-binding properties. Study results clearly showed the presence of tannins significantly (p≤0.05) in Acacia seyal plants, compared to control. There are many sources of tannins. Tannins, which are of great importance in traditional medicine can be extracted from numerous trees and small bushes rich in tannins.

  • References

    1. A. Aqeel, A.K. Kursheed, Q. Sabiha, Antibacterial activity of Juliflra (1989) 652-655.
    2. A.E. Hagerman, Extraction of tannin from fresh and preserved leaves. Journal of Chemical Ecology 14 (1988) 453-462. https://doi.org/10.1007/BF01013897.
    3. A. Pizzi, Tannins medical / pharmacological and related applications: A critical review, Sustainable Chemistry and Pharmacy 22 (2021) 100481, ISSN 2352-5541, https://doi.org/10.1016/j.scp.2021.100481.
    4. A.R. Prihadi, A. Maimulyanti, B. Mellisani, et al. Antioxidant activity, tannin content and dietary fier from coffe husk extract and po-tential for nutraceutical [J]. Rasayan J Chem13 (2) (2020) 955-959. https://doi.org/10.31788/RJC.2020.1325613.
    5. B.R. Min, T.N. Barry, G.T. Attwood, et al. The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Animal Feed Science and Technology 106 (2003) 3-19. https://doi.org/10.1016/S0377-8401(03)00041-5.
    6. C.S. McSweeney, B. Palmer, D. McNeil, et al. Microbial interactions with tannins: nutritional consequences for ruminants. Animal Feed Science and Technology 91 (2001) 83-93. https://doi.org/10.1016/S0377-8401(01)00232-2.
    7. D.M. Anderson, M.M. Bridgeman, Studies of uronic-acid materials .76. the composition of the proteinaceous polysaccharides exuded by astragalus-microcephalus, astragalus-gummifer and astragalus-kurdicus - the sources of turkish gum tragacanth, Phytochemistry 24 (1985) 2301-2304. https://doi.org/10.1016/S0031-9422(00)83031-9.
    8. E. Sieniawska, Activities of tannins-From in vitro studies to clinical trials. Nat. Prod. Commun 10 (2015)1877–1884. https://doi.org/10.1177/1934578X1501001118.
    9. G. Luciano, V. Vasta, F.J. Monahan, et al. Antioxidant status, colour stability and myoglobin resistance to oxidation of longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem 124 (2011) 1036–42. https://doi.org/10.1016/j.foodchem.2010.07.070.
    10. H.E. Isam Eldin, Y.I. Christina, "Determination of Tannins of Three Common Acacia Species of Sudan", Advances in Chemistry Arti-cle ID 192708, 5 (2014) https://doi.org/10.1155/2014/192708.
    11. H.S. Liu, J.X. Hu, S. Mahfuz, et al. Effcts of hydrolysable tannins as zinc oxide substitutes on antioxidant status, immune function, intestinal morphology, and digestive enzyme activities in weaned piglets [J]. Animals: An Open Access Journal from MDPI 10 (5) (2020) 757-770. https://doi.org/10.3390/ani10050757.
    12. J.E. Raitanen, E. Järvenpää, R. Korpinen, et al. Tannins of conifer bark as Nordic Piquancyâ sustainable preservative and aroma? [J]. Molecules 25 (3) (2020) 567-585. https://doi.org/10.3390/molecules25030567.
    13. J.G. Melo, E.L. Amorim, U.P. Albuquerque, Native medicinal plants commercialized in Brazil – priorities for conservation. Environ-mental Monitoring and Assessment 156 (2009) 567-580. https://doi.org/10.1007/s10661-008-0506-0.
    14. J.P. Salminen, M. Karonen, Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol 25 (2011) 325–338. https://doi.org/10.1111/j.1365-2435.2010.01826.x.
    15. K. Peng, G.X. Wang, Y.X. Wang, et al. Condensed tannins enhanced antioxidant capacity and hypoxic stress survivability but not growth performance and fatty acid profile of juvenile Japanese seabass ( Lateolabrax japonicus ) [J]. Animal Feed Science and Tech-nology 269 (2020) 1-13. https://doi.org/10.1016/j.anifeedsci.2020.114671.
    16. K. Peng, Z. Xu, J. Nair, et al. Conserving purple prairie clover (Dalea purpurea Vent.) as hay and silage had little effect on the efficacy of condensed tannins in modulating ruminal fermentation in vitro. J Sci Food Agric 101 (2021) 1247–54. https://doi.org/10.1002/jsfa.10913.
    17. L. Falcão, M.E. Araújo, Vegetable tannins used in the manufacture of historic leathers. Molecules 23 (2018) 1081. doi: 10.3390/molecules23051081. https://doi.org/10.3390/molecules23051081.
    18. O. Takuo, I. Hideyuki, Tannins of Constant Structure in Medicinal and Food Plants Hydrolyzable Tannins and Polyphenols Related to Tannins. Molecules 16 (2011) 2191-2217. https://doi.org/10.3390/molecules16032191.
    19. P.T. Tuyen, T.D. Xuan, D.T. Khang et al. Phenolic compositions and antioxidant properties in bark, flower, inner skin, kernel and leaf extracts of castanea crenata sieb. et Zucc. Antioxidants (Basel) 6 (31) (2017) https://doi.org/10.3390/antiox6020031.
    20. [R.K. Lall, D.N. Syed, V.M. Adhami, et al. Dietary polyphenols in prevention and treatment of prostate cancer Int J Mol Sci 16 (2015) 3350 https://doi.org/10.3390/ijms16023350.
    21. S. Chen, Y. Liu, Y. Zhi, et al. Effects of tannic acid on fur quality, immune organ development and antioxidant capacity of growing rex rabbits. Chin J Anim Nutr 31(2019) 5151–56. 10.3969/j.issn.1006-267x.2019.11.030
    22. S. Molino, N.A. Casanova, J.Á. Rufián Henares, et al. Natural Tannin Wood Extracts as a Potential Food Ingredient in the Food Indus-try. J. Agric. Food Chem 68 (2) (2020) 836–2848. https://doi.org/10.3390/molecules16032191.
    23. S.M. Souza, L.C. Aquino, A.C. Milach Jr., et al. Antiinflammatory and antiulcer properties of tannins from Myracrodruon urundeuva Allemão (Anacardiaceae) in Rodents. Phytotherapy Research 21 (2006) 220-225. https://doi.org/10.1002/ptr.2011.
    24. T. Andel, R. Havinga, Sustainability aspects of commercial medicinal plant harvesting in Suriname. Forest Ecology and Management 256 (2008) 1540-1545. https://doi.org/10.1016/j.foreco.2008.06.031.
    25. T.N. Barry, W.C. Mcnabb, the implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. A review. The British Journal of Nutrition 81 (1999) 263-272. https://doi.org/10.1017/S0007114599000501.
    26. T. Okuda, Structure-activity relationship of antioxidant and antitumor polyphenols. In Food Factors for Cancer Prevention; Ohigashi, H., Osawa, T., Terao, J., Watanabe, S., Yoshikawa, T., Eds.; Springer-Verlag: Vienna, Austria (1997) 280-285. https://doi.org/10.1007/978-4-431-67017-9_56.
    27. T. Okuda, T. Yoshida, T. Hatano, et al. Ellagitannins renewed the concept of tannins. In Chemistry and Biology of Ellagitannins; Quideau, S., Ed.; World Scientific: Singapore (2009) 1-54. https://doi.org/10.1142/9789812797414_0001.
    28. T. Squillaro, A. Cimini, G. Peluso, et al. Nano-delivery systems for encapsulation of dietary polyphenols: an experimental approach for neurodegenerative diseases and brain tumors. Biochem Pharmacol 154 (2018) 303–17. https://doi.org/10.1016/j.bcp.2018.05.016.
    29. T. Yoshida, T. Hatano, H. Ito, et al. Structure diversity and antimicrobial activities of ellagitannins. In Chemistry and Biology of Ellag-itannins; Quideau, S., Ed.; World Scientific: Singapore (2009) 55-93. https://doi.org/10.1142/9789812797414_0002.
    30. V.B. Nguyen, T.Q. Ton, D.N. Nguyen, et al. Reclamation of beneficial bioactivities of herbal antioxidant condensed tannin extracted from Euonymus laxiflorus [J]. Res ChemIntermed 46 (2020) 4751-4766. https://doi.org/10.1007/s11164-020-04251-3.
    31. W.M. Chai, Q.M. Wei, W.L. Deng, et al. Anti-melanogenesis properties of condensed tannins from Vigna angularis seeds with potent antioxidant and DNA damage protection activities [J]. Food & Function 10 (1) (2019) 99-111. https://doi.org/10.1039/C8FO01979G.
    32. W.T. Sun, X.H. Chen, X.J. Nan, et al. Inhibition of persimmon tannin extract on guinea pig skin pigmentation [J]. Journal of Cosmetic Dermatology 20 (8) (2021) 1-9. https://doi.org/10.1111/jocd.13915.
    33. Y.J. Zhang, R.Y. Gan, S. Li, et al. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20 (2015) 21138–21156. https://doi.org/10.3390/molecules201219753.
    34. Y. Nakayama, M. Takahashi, Y. Fukuyama, et al. An anti-plasmin inhibitor, eckol, isolated from the brown alga Echlonia kurome Okamura (biological chemistry). Agr. Biol. Chem 53 (1989) 3025-3030. https://doi.org/10.1271/bbb1961.53.3025.
    35. Y.T. Deng, G. Liang, Y. Shi, et al. Condensed tannins from Ficus altissima leaves: Structural, antioxidant, and antityrosinase proper-ties. Process Biochem 51 (2016) 1092–9. https://doi.org/10.1016/j.procbio.2016.04.022.
    36. Z. Tong, W. He, X. Fan, et al. Biological Function of Plant Tannin and Its Application in Animal Health. Front Vet Sci 10 (8) (2022) 803657. PMID: 35083309; PMCID: PMC8784788. https://doi.org/10.3389/fvets.2021.803657
  • Downloads

  • How to Cite

    M. I, A. (2023). Expected benefits of administration of tannins extracted from Acacia seyal plants; a biochemical and traditional medicine overview. International Journal of Scientific World, 9(1), 12-15. https://doi.org/10.14419/5ksxnn82