Role of quinolones and quinoxaline derivatives in the advancement of treatment of tuberculosis
-
2015-01-06 https://doi.org/10.14419/ijsw.v3i1.3432 -
Chemotherapeutic Agents, Multidrug-Resistant, Extensively Drug Resistant, Tuberculosis, Quinolones. -
Abstract
The need of new chemotherapeutic drugs to improve tuberculosis control and treatment particularly against multidrug-resistant (MDR) and extensively drug resistant (XDR) strains of Mycobacterium. The atitubercular drugs are used in current chemotherapy have different chemical moieties. In this review, we provide an overview of the quinolone drugs as an antitubercular drug. Generally quinolone drugs are mainly used against many gram-positive and gram-negative bacterial infections including resistance strains also. Various quinolones are being used to control and treatment of tubercular infections including MDR, XDR and atypical Mycobacterium strains. Fluoroquinolones are an important quinolones, especially for strains that are resistant to first-line agents.
-
References
[1] Andriole VT. The future of the quinolones. Drugs, 1993, 45(suppl 3), 1-7. http://dx.doi.org/10.2165/00003495-199300453-00003.
[2] Hooper DC. Quinolones. In, Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 5th ed. (Mandell, G.L, Bennett, J.E, and Dolin, R, Eds.) Churchill Livingstone, New York, 2000, pp. 404-423.
[3] Sheehan G, Chew NSY. The history of quinolones. In, Fluoroquinolone Antibiotics. (Ronald AR, Low DE, Eds.) Birkhauser, Basel, 2003, 1-10. http://dx.doi.org/10.1007/978-3-0348-8103-6_1.
[4] Stahlmann R, Lode H. Toxicity of quinolones. Drugs, 1999, 58(Suppl. 2):37-42. http://dx.doi.org/10.2165/00003495-199958002-00007.
[5] Sullivan EA, Kreiswirth BN, Palumbo L, Kapur V, Musser JM, Ebrahimzadeh A, Frieden TR. Emergence of fluoroquinolone-resistant tuberculosis in New York City. Lancet, 1995, 345, 1148-1150. http://dx.doi.org/10.1016/S0140-6736(95)90980-X.
[6] Alangaden GJ, Lerner SA. The clinical use of fluoroquinolones for the treatment of mycobacterial diseases. Clin Infect Dis., 1997, 25, 1213-1221. http://dx.doi.org/10.1086/516116.
[7] Flamm RK, Vojtko C, Chu DT, Li Q, Beyer J, Hensey D, Ramer N, Clement JJ, Tanaka SK. In vitro evaluation of ABT-719, a novel DNA gyrase inhibitor. Antimicrob Agents Chemother, 1995, 39, 964-970. http://dx.doi.org/10.1128/AAC.39.4.964.
[8] Garay SM. In Tuberculosis, W. N. a. G. Rom, S.M, ed. (Philadelphia: Lippincott Williams & Wilkins), 2004, 345-394.
[9] Hong Kong Chest Service/British Medica lResearch Council. A controlled study of rifabutin and an uncontrolled study of ofloxacin in the retreatment of patients with pulmonary tuberculosis resistant to isoniazid, streptomycin and rifampicin. . Tuber Lung Dis., 1992, 73, 59-67. http://dx.doi.org/10.1016/0962-8479(92)90081-T.
[10] Nikonenko BV, Samala R, Einck L, Nacy CA. Rapid, simple in vivo screen for new drugs active against Mycobacterium tuberculosis. Antimicrob Agents Chemother., 2004, 48, 4550-4555. http://dx.doi.org/10.1128/AAC.48.12.4550-4555.2004.
[11] Bagchi MC, Mills D, Basak SC. Quantitative structure-activity relationship (QSAR) studies of quinolone antibacterials against M. fortuitum and M. smegmatis using theoretical molecular descriptors. J. Mol. Model., 2007, 13, 111–120. http://dx.doi.org/10.1007/s00894-006-0133-z.
[12] Daffe M, Brennan PJ, Mcneil M. Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization. J Med Chem., 2007, 50, 2492.
[13] Flynn JL, Chan J. Tuberculosis: latency and reactivation. Infect Immun, 2001, 69, 4195 4201. http://dx.doi.org/10.1128/IAI.69.7.4195-4201.2001.
[14] Glickman SW, Rasiel EB, Hamilton CD, Kubataev A, Schulman KA. Medicine. A portfolio model of drug development for tuberculosis. Science, 2005, 311, 1246-1247. http://dx.doi.org/10.1126/science.1119299.
[15] Global Alliance for TBdrug development. Tuberculosis. Scientific blue print for tuberculosis drug development. Tuberculosis (Edinb), 2001, 81 Suppl 1, 1-52.
[16] Herbert D, Paramasivan CN, Venkatesan P, Kubendiran G, Prabhakar R, Mitchison DA. Bactericidal action of ofloxacin, sulbactamampicillin, rifampin, and isoniazid on logarithmicand stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob Agents Chemother., 1996, 40, 2296-2299.
[17] Drlica, K, and Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev., 1997, 61:377-392.
[18] Ginsburg AS, Grosset JH, Bishai WR. Fluoroquinolones, tuberculosis, and resistance. Lancet InfectDis, 2003, 3, 432-442. http://dx.doi.org/10.1016/S1473-3099(03)00671-6.
[19] Havlir DV, Ellner JJ. Mycobacterium avium complex. In, Mandell, Douglas and Bennett's Principles and Practice of Infectious Diseases, 5th ed. (Mandell, C.L, Dolin, R, and Bennett, J.E, Eds.) Churchill Livingstone, Philadelphia, 2000, pp. 2616-2630.
[20] Hooper DC, Wolfson JS. Fluoroquinolone antimicrobial agents. New Engl. J. Med., 1991, 324:384-394. http://dx.doi.org/10.1056/NEJM199102073240606.
[21] Alovero FL, Pan XS, Morris JE, Manzo RH, Fisher LM. Engineering the specificity of antibacterial fluoroquinolones: benzenesulfonamide modifications at C-7 of ciprofloxacin change its primary target in Streptococcus pneumoniae from topoisomerase IV to gyrase. Antimicrob. Agents Chemother. 2000, 44: 320-325. http://dx.doi.org/10.1128/AAC.44.2.320-325.2000.
[22] Mitscher LA, Ma Z. Structure-activity relationships of quinolones. In, Fluoroquinolone Antibiotics. (Ronald, A.R, and Low, D.E, eds.) Birkhauser, Basel, 2003, pp. 11-48. http://dx.doi.org/10.1007/978-3-0348-8103-6_2.
[23] Eliopoulos GM, Eliopoulos CT. Activity in vitro of the quinolones. In, Quinolone Antimicrobial Agents, 2d ed. (Hooper DC, Wolfson JS, Eds.) American Society for Microbiology, Washington, 1993, 161-193.
[24] Leysen DC, Haemers A, Pattyn SR. Mycobacteria and the new quinolones. Antimicrob. Agents Chemother, 1989, 33:1-5. http://dx.doi.org/10.1128/AAC.33.1.1.
[25] Medical Letter. Gatifloxacin and moxifloxacin: Two new fluoroquinolones. Med. Lett. Drugs Ther, 2000, 42:15-17.
[26] Gold HS, Moellering RC Jr. Antimicrobial-drug resistance. New Engl. J. Med, 1996, 335, 1445-1453. http://dx.doi.org/10.1056/NEJM199611073351907.
[27] Oethinger M, Kern WV, Jellen-Ritter AS, McMurry LM, Levy SB. Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob. Agents Chemother, 2000, 44:10-13. http://dx.doi.org/10.1128/AAC.44.1.10-13.2000.
[28] Pegues DA, Colby C, Hibberd PL, et al., The epidemiology of resistance to ofloxacin and oxacillin among clinical coagulase-negative staphylococcal isolates: Analysis of risk factors and strain types. Clin. Infect. Dis., 1998, 26:72-79. http://dx.doi.org/10.1086/516270.
[29] Peterson LR, Lissack LM, Canter K, et al., Therapy of lower extremity infections with ciprofloxacin in patients with diabetes mellitus, peripheral vascular disease, or both. Am. J. Med, 1989, 86, 801-808. http://dx.doi.org/10.1016/0002-9343(89)90476-2.
[30] Smith KE, Besser JM, Hedberg CW, et al., Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992-1998. Investigation team. New Engl. J. Med., 1999, 340: 1525-1532. http://dx.doi.org/10.1056/NEJM199905203402001.
[31] Thornsberry C, Ogilvie P, Kahn J, Mauriz Y. Surveillance of antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the United States in 1996-1997 respiratory season. Diagn. Microbiol. Infect. Dis., 1997, 29, 249-257. http://dx.doi.org/10.1016/S0732-8893(97)00195-8.
[32] Centers for Disease Control and Prevention. Decreased susceptibility of Neisseria gonorrhoeae to fluoroquinolones¾Ohio and Hawaii, 1992-1994. M.M.W.R, 1994, 43, 325-327.
[33] Molbak K, Baggesen D.L, Aarestrup FM, et al., (1999). An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype typhimurium DT104. New Engl. J. Med., 1999, 341, 1420-1425. http://dx.doi.org/10.1056/NEJM199911043411902.
[34] Warren JW, Abruytyn E, Hebel JR, et al., Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Clin. Infect. Dis., 1999, 29:745-758. http://dx.doi.org/10.1086/520427.
[35] Newman LM, Wang SA, Ohye RG, et al., The epidemiology of fluoroquinolone-resistant Neisseria gonorrhoeae in Hawaii, 2001. Clin. Infect. Dis., 2004, 38:649-654. http://dx.doi.org/10.1086/381546.
[36] Centers for Disease Control and Prevention. Guidelines for treatment of sexually transmitted diseases. M.M.W.R, 1998, 47, 1-111.
[37] DuPont HL, Ericsson CD. Prevention and treatment of traveler's diarrhea. New Engl. J. Med., 1993, 328, 1821-1827. http://dx.doi.org/10.1056/NEJM199306243282507.
[38] Bennish ML, Salam MA, Khan WA, Khan AM. Treatment of shigellosis: III. Comparison of one- or two-dose ciprofloxacin with standard 5-day therapy. A randomized, blinded trial. Ann. Intern. Med., 1992, 117:727-734. http://dx.doi.org/10.7326/0003-4819-117-9-727.
[39] Bhattacharya SK, Bhattacharya MK, Dutta P, et al., Double-blind, randomized, controlled clinical trial of norfloxacin for cholera. Antimicrob. Agents Chemother., 1990, 34, 939-940. http://dx.doi.org/10.1128/AAC.34.5.939.
[40] Khan WA, Seas C, Dhar U, Salam MA, Bennish ML. Treatment of shigellosis: V. Comparison of azithromycin and ciprofloxacin. A double-blind, randomized, controlled trial. Ann. Intern. Med., 1997, 126, 697-703. http://dx.doi.org/10.7326/0003-4819-126-9-199705010-00004.
[41] Miedouge M, Hacini J, Grimont F, Watine J. Shiga toxin-producing Escherichia coli urinary tract infection associated with hemolytic-uremic syndrome in an adult and possible adverse effect of ofloxacin therapy. Clin. Infect. Dis., 2000, 30, 395-396. http://dx.doi.org/10.1086/313668.
[42] Aubier M, Verster R, Reganney C, Geslin P, Vercken JB. Once-daily sparfloxacin versus high-dosage amoxicillin in the treatment of community-acquired suspected pneumococcal pneumonia in adults. Sparfloxacin European Study Group. Clin. Infect. Dis., 1998, 26, 1312-1320. http://dx.doi.org/10.1086/516366.
[43] File TM Jr, Segreti J, Dunbar L, et al., A multicenter, randomized study comparing the efficacy and safety of intravenous and/or oral levofloxacin versus ceftriaxone and/or cefuroxime axetil in treatment of adults with community-acquired pneumonia. Antimicrob. Agents Chemother, 1997, 41, 1965-1972.
[44] Yu VL. Legionella pneumophila (Legionnaires' disease). In, Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases, 5th ed. (Mandell GL, Bennett JE, Dolin R, Eds.) Churchill Livingstone, New York, 2000, 2424-2435.
[45] Chen DK, McGeer A, de Azavedo JC, Low DE. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. Canadian Bacterial Surveillance Network. New Engl. J. Med., 1999, 341, 233-239. http://dx.doi.org/10.1056/NEJM199907223410403.
[46] Wortmann GW, Bennett SP. Fatal meningitis due to levofloxacin-resistant Streptococcus pneumoniae. Clin. Infect. Dis., 1999, 29:1599-1600. http://dx.doi.org/10.1086/313557.
[47] Gentry LO, Rodriguez-Gomez G. Ofloxacin versus parenteral therapy for chronic osteomyelitis. Antimicrob. Agents Chemother, 1991, 35, 538-541. http://dx.doi.org/10.1128/AAC.35.3.538.
[48] Chocarro A, Gonzalez A, Garcia I. Treatment of tularemia with ciprofloxacin. Clin. Infect. Dis., 2000, 31, 623. http://dx.doi.org/10.1086/313946.
[49] Swartz MN. Recognition and management of anthrax: An update. New Engl. J. Med., 2001, 345, 1621-1626. http://dx.doi.org/10.1056/NEJMra012892.
[50] Mandell LA. Improved safety profile of newer fluoroquinolone. In, Fluoroquinolone Antibiotics. (Ronald, A.R, and Low, D.E, Eds.) Birkhauser, Basel, 2003, pp. 73-86. http://dx.doi.org/10.1007/978-3-0348-8103-6_4.
[51] Schwartz J, Jauregui L, Lettieri J, Bachmann K. Impact of ciprofloxacin on theophylline clearance and steady-state concentrations in serum. Antimicrob. Agents Chemother, 1998, 32, 75-77. http://dx.doi.org/10.1128/AAC.32.1.75.
[52] Halliwell RF, Davey PG, Lambert JJ. Antagonism of GABAA receptors by 4-quinolones. J. Antimicrob. Chemother. 1993, 31, 457-462. http://dx.doi.org/10.1093/jac/31.4.457.
[53] Burkhardt JE, Walterspeil JN, Schaad UB. Quinolone arthropathy in animals versus children. Clin. Infect. Dis., 1997, 25, 1196-1204. http://dx.doi.org/10.1086/516119.
[54] Kamal A, Azeeza S, Malik MS, Shaik AA, Rao MV. Efforts towards the development of new antitubercular agents: potential for thiolactomycin based compounds. J Pharm Pharmaceut Sci, 2008, 11 (2): 56s-80s.
[55] Center for Disease Control. Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs--worldwide, 2000-2004. MMWR Morb Mortal Wkly Rep, 2006, 55, 301-305.
[56] Gray MA. Tuberculosis Drugs. Orthopaedic Nursing, 1997, 16(4), 64-69. http://dx.doi.org/10.1097/00006416-199707000-00014.
[57] Gupta UD, Katoch VM. Animal models of tuberculosis. Tuberculosis (Edinb,) 2005, 85, 277-293. http://dx.doi.org/10.1016/j.tube.2005.08.008.
[58] Janin YL. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem., 2007, 15, 2479–2513. http://dx.doi.org/10.1016/j.bmc.2007.01.030.
[59] O'Brien RJ, Nunn PP. The need for new drugs against tuberculosis. Obstacles, opportunities, and next steps. Is J Respir Crit Care Med., 2001, 163, 1055-1058? http://dx.doi.org/10.1164/ajrccm.163.5.2007122.
[60] WHO report: The Stop TB Strategy, case reports, treatment outcomes and estimates of TB burden, 2008. http://www.who.int/tb/publications/global_report/2008 /annex_3/en/index.html.
[61] Ruiz-Serrano MJ, Alcala L, Martinez L, Diaz M, Marin M, Gonzalez-Abad MJ, Bouza E. In vitro activities of six fluoroquinolones against 250 clinical isolates of Mycobacterium tuberculosis susceptible or resistant to first-line antituberculosis drugs. Antimicrob Agents Chemother, 2000, 44, 2567-2568. http://dx.doi.org/10.1128/AAC.44.9.2567-2568.2000.
[62] Smith CV, Sharma V, Sacchettini JC. TB drug discovery: Addressing issues of persistence and resistance. Tuberculosis, 2004, 84, 45–55. http://dx.doi.org/10.1016/j.tube.2003.08.019.
[63] Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol., 2001, 2, 569-577. http://dx.doi.org/10.1038/35085034.
[64] Sunduru N, Sharma M, Chauhan PMS. Recent advances in the design and synthesis of Heterocycles as anti-tubercular agents. Future Med Chem., 2010, 2(9), 1469-1500. http://dx.doi.org/10.4155/fmc.10.227.
[65] Grosset JH. Treatment of tuberculosis in HIV infection. Tuber Lung Dis., 1992, 73, 378-383. http://dx.doi.org/10.1016/0962-8479(92)90044-K.
[66] Alangaden GJ, Manavathu EK, Vakulenko SB, Zvonok NM, Lerner SA. Characterization of fluoroquinolone-resistant mutant strains of Mycobacterium tuberculosis selected in the laboratory and isolated from patients. Antimicrob Agents Chemother, 1995, 39, 1700-1703. http://dx.doi.org/10.1128/AAC.39.8.1700.
[67] Ginsburg AS, Hooper N, Parrish N, Dooley KE, Dorman SE, Booth J, Diener-West M, Merz WG, Bishai WR, Sterling TR. Fluoroquinolone resistance in patients with newly diagnosed tuberculosis. Clin Infect Dis, 2003, 37, 1448-1452. http://dx.doi.org/10.1086/379328.
[68] Bozeman L, Burman W, Metchock B, Welch L, Weiner M. Fluoroquinolone Susceptibility among Mycobacterium tuberculosis Isolates from the United States and Canada. Clin Infect Dis., 2005, 40, 386-391. http://dx.doi.org/10.1086/427292.
[69] Lewin CS, Howard BM, Smith JT. 4-Quinolone interactions with gyrase subunit B inhibitors. J Med Microbiol, 1991, 35, 358-362. http://dx.doi.org/10.1099/00222615-35-6-358.
[70] Willmott CJ, Critchlow SE, Eperon IC, Maxwell A. The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J MolBiol, 1994, 242, 351-363. http://dx.doi.org/10.1006/jmbi.1994.1586.
[71] Aubry A, Pan XS, Fisher LM, Jarlier V, Cambau E. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob Agents Chemother., 2004, 48, 1281-1288. http://dx.doi.org/10.1128/AAC.48.4.1281-1288.2004.
[72] Onodera Y, Tanaka M, Sato K. Inhibitory activity of quinolones against DNA gyrase of Mycobacterium tuberculosis. JAntimicrobChemother., 2001, 47, 447-450. http://dx.doi.org/10.1093/jac/47.4.447.
[73] Kocagoz T, Hackbarth CJ, Unsal I, Rosenberg EY, Nikaido H, Chambers HF. Gyrase mutations in laboratory-selected, fluoroquinolone resistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother, 1996, 40, 1768-1774.
[74] Li XZ, Zhang L, Nikaido H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother., 2004, 48, 2415-2423. http://dx.doi.org/10.1128/AAC.48.7.2415-2423.2004.
[75] Zhanel GG, Hoban DJ, Schurek K, Karlowsky JA. Role of efflux mechanisms on fluoroquinolone resistance in Streptococcus pneumoniae and Pseudomonas aeruginosa. Int J Antimicrob Agents., 2004, 24, 529-535. http://dx.doi.org/10.1016/j.ijantimicag.2004.08.003.
[76] Brenwald NP, Gill MJ, Wise R. Prevalence of a putative efflux mechanism among fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother., 1998, 42, 2032-2035.
[77] Hu Y, Coates AR, Mitchison DA. Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. AntimicrobAgents Chemother., 2003, 47, 653-657. http://dx.doi.org/10.1128/AAC.47.2.653-657.2003.
[78] Paramasivan CN, Sulochana S, Kubendiran G, Venkatesan P, Mitchison DA. Bactericidal action of gatifloxacin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2005, 49, 627-631. http://dx.doi.org/10.1128/AAC.49.2.627-631.2005.
[79] Rodriguez JC, Ruiz M, Climent A, Royo G. In vitro activity of four fluoroquinolones against Mycobacterium tuberculosis. Int J Antimicrob Agents, 2001, 17, 229-231. http://dx.doi.org/10.1016/S0924-8579(00)00337-X.
[80] Sulochana S, Rahman F, Paramasivan CN. In vitro activity of fluoroquinolones against Mycobacterium tuberculosis. JChemother., 2005, 17, 169-173. http://dx.doi.org/10.1179/joc.2005.17.2.169.
[81] Biedenbach DJ, Sutton LD, Jones RN. Antimicrobial activity of CS-940, a new trifluorinated quinolone. Antimicrobial Agents and Chemother, 1995, 39(10): 2325-2330. http://dx.doi.org/10.1128/AAC.39.10.2325.
[82] Houston AK, Jones RN. Postantibiotic effect of DU-6859a and levofloxacin as compared with ofloxacin. Diagnostic Microbiol & Infec Dis, 1994, 18(1), 57-59. http://dx.doi.org/10.1016/0732-8893(94)90134-1.
[83] Moxifloxacin: A new antimicrobial agent. Presented at the 40th CAAC Meeting, Toronto, and September 17-20, 2000. Reported by Pireh D. ID Weekly Highlights, 2000, October, 32-33.
[84] Miyazaki E, Miyazaki M, Chen, JM, Chaisson RE, Bishai WR. Moxifloxacin (BAY12-8039), a new 8-methoxyquinolone, is active in a mouse model of tuberculosis. AntimicrobAgents Chemother., 1999, 43, 85-89.
[85] Daporta MT, Munoz Bellido JL, Guirao GY, Hernandez MS,Garcia-Rodriguez JA. In vitro activity of older and newer fluoroquinolones against efflux-mediated high level ciprofloxacinresistant Streptococcus pneumoniae. Int J Antimicrob Agents., 2004, 24, 185-187. http://dx.doi.org/10.1016/j.ijantimicag.2004.01.012.
[86] Coyle EA, Kaatz GW, Rybak MJ. Activities of newer fluoroquinolones against ciprofloxacin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother, 2001, 45, 1654-1659. http://dx.doi.org/10.1128/AAC.45.6.1654-1659.2001.
[87] Pestova E, Millichap JJ, Noskin GA, Peterson LR. Intracellular targets of moxifloxacin: a comparison with other fluoroquinolones. JAntimicrobChemother, 2000, 45, 583-590. http://dx.doi.org/10.1093/jac/45.5.583.
[88] Nuermberger EL, Yoshimatsu T, Tyagi S, O'Brien RJ, Vernon AN, Chaisson RE, Bishai WR, Grosset JH. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. AmJRespirCrit Care Med., 2004, 169, 421-426. http://dx.doi.org/10.1164/rccm.200310-1380OC.
[89] Nuermberger EL, Yoshimatsu T, Tyagi S, Williams K, Rosenthal I, O'Brien RJ, Vernon AA, Chaisson RE, Bishai WR, Grosset JH. Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. AmJRespirCrit Care Med., 2004, 170, 1131-1134. http://dx.doi.org/10.1164/rccm.200407-885OC.
[90] Grosset J, Truffot-Pernot C, Lacroix C, Ji B. Antagonism between isoniazid and the combination pyrazinamide-rifampin against tuberculosis infection in mice. Antimicrob Agents Chemother, 1992, 36, 548-551. http://dx.doi.org/10.1128/AAC.36.3.548.
[91] Ginsburg AS, Sun R, Calamita H, Scott CP, Bishai WR, Grosset JH. Emergence of fluoroquinolone resistance in Mycobacterium tuberculosis during continuously dosed moxifloxacin monotherapy in a mouse model. AntimicrobAgents Chemother., 2005, 49, 3977-3979. http://dx.doi.org/10.1128/AAC.49.9.3977-3979.2005.
[92] Burman WJ, Goldberg S, Johnson JL, Muzanye G, Engle M, Mosher AW, Choudhri S, Daley CL, Munsiff SS, Zhao Z, et al., Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis. Is J Respir Crit Care Med., 2006, 174, 331-338? http://dx.doi.org/10.1164/rccm.200603-360OC.
[93] Kunin CM, Ellis WY. Antimicrobial activities of mefloquine and a series of related compounds. Antimicrobial Agents & Chemother, 2000, 44(4):848-852. http://dx.doi.org/10.1128/AAC.44.4.848-852.2000.
[94] Jones, P. B, Parrish, N. M, Houston, T. A, Stapon, a, Bansal, N. P, Dick, J. D, and Townsend, C. A. A new class of antituberculosis agents. J Med Chem, 2000, 43, 3304-3314. http://dx.doi.org/10.1021/jm000149l.
[95] Petrella S, Cambau E, Chauffour A, Andries K, Jarlier V, Sougakoff W. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob Agents Chemother, 2006, 50, 2853-2856. http://dx.doi.org/10.1128/AAC.00244-06.
[96] Senthilkumar P, Dinakaran M, Yogeeswari P, China A, Nagaraja V, Sriram D. Antimycobacterial activities of novel fluoroquinolones. Biomedicine Pharmacother., 2009, 63(1), 27-35. http://dx.doi.org/10.1016/j.biopha.2007.10.004.
[97] Kawakami K, Namba K, Tanaka M, Matsuhashi N, Sato K, Takemura M. Antimycobacterial Activities of Novel Levofloxacin Analogues. Antimicrob. Agents Chemother, 2000, 44(8), 2126-2129. http://dx.doi.org/10.1128/AAC.44.8.2126-2129.2000.
[98] Sriram D, Yogeeswari P, Basha JS, Radha DR, Nagaraja V. Synthesis and antimycobacterial evaluation of various 7-substituted ciprofloxacin derivatives. Bioorg. Med. Chem., 2005, 13(20), 5774-5778. http://dx.doi.org/10.1016/j.bmc.2005.05.063.
[99] Sriram D, Yogeeswari P, Madhu K. Synthesis and in vitro and in vivo antimycobacterial activity of isonicotinoyl hydrazones. Bioorg. Med. Chem. Lett., 2005, 15(20), 4502-4505. http://dx.doi.org/10.1016/j.bmcl.2005.07.011.
[100] Sriram D, Aubry A, Yogeeswari P, Fisher LM. Gatifloxacin derivatives: Synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis DNA gyrase. Bioorg. Med. Chem. Lett., 2006, 16(11), 2982-2985. http://dx.doi.org/10.1016/j.bmcl.2006.02.065.
[101] Sriram D, Yogeeswari P, Thirumurugan R, Pavana RK. Discovery of New Antitubercular Oxazolyl Thiosemicarbazones. J. Med. Chem., 2006, 49(12), 3448-3450. http://dx.doi.org/10.1021/jm060339h.
[102] Talatha S, Gadad AK. Synthesis, antibacterial and antitubercular activities of some 7-[4-(5-amino-[1, 3, 4] thiadiazole-2-sulfonyl)-piperazin-1-yl] fluoroquinolonic derivatives. Eur. J. Med. Chem., 2006, 41(8), 918-924. http://dx.doi.org/10.1016/j.ejmech.2006.03.027.
[103] Arya K, Agarwal M. Microwave prompted multigram synthesis, structural determination, and photo-antiproliferative activity of fluorinated 4-hydroxyquinolinones. Bioorg. Med. Chem. Lett., 2007, 17(1), 86-93. http://dx.doi.org/10.1016/j.bmcl.2006.09.082.
[104] Ukrainets IV, Mospanova EV, Sidorenko LV. 4-hydroxy-2-quinolones. 1- hydroxy-3-oxo-5, 6-dihydro-3h-pyrrolo [3, 2, 1-ij]-Quinoline-2-carboxylic acid hetarylamides as potential antitubercular agents. Chem. Heterocycl. Comp., 2007, 43(7), 863-870. http://dx.doi.org/10.1007/s10593-007-0137-3.
[105] Dinakaran M, Senthilkumar P, Yogeeswari P, China A, Nagaraja V, Sriram D. Antimycobacterial and phototoxic evaluation of novel 6-fluoro/nitro-4-oxo-7-(sub)-4H-[1, 3] thiazeto [3, 2-a] quinoline-3-carboxylic acid. Int. J. Antimicrob. Agents. 2008, 31(4), 337-344. http://dx.doi.org/10.1016/j.ijantimicag.2007.12.007.
[106] Dinakaran M, Senthilkumar P, Yogeeswari P, China A, Nagaraja V, Sriram D. Antimycobacterial activities of novel 2-(sub)-3-fluoro/nitro-5, 12-dihydro-5- oxobenzothiazolo[3,2-a]quinoline-6-carboxylic acid. Bioorg. Med. Chem., 2008, 16(6), 3408-3418. http://dx.doi.org/10.1016/j.bmc.2007.11.016.
[107] Dinakaran M, Senthilkumar P, Yogeeswari P, and China a, Nagaraja V, Sriram D. Novel ofloxacin derivatives: Synthesis, antimycobacterial and toxicological evaluation. Bioorg. Med. Chem. Lett., 2008, 18(3), 1229-1236. http://dx.doi.org/10.1016/j.bmcl.2007.11.110.
[108] Senthilkumar P, Dinakaran M, Yogeeswari P, Sriram D, China A, Nagaraja V. Synthesis and antimycobacterial activities of novel 6-nitroquinolone-3-carboxylic acids. Eur. J. Med. Chem., 2009, 44(1), 345-358. http://dx.doi.org/10.1016/j.ejmech.2008.02.031.
[109] Carta A, Palomba M, Paglietti G, Molicotti P, Paglietti B, Cannas S, Zanetti S. [1, 2, 3] Triazolo [4, 5-h] quinolones. A new class of potent antitubercular agents against multidrug resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. Lett., 2007, 17(17), 4791-4794. http://dx.doi.org/10.1016/j.bmcl.2007.06.064.
[110] Carta A, Piras S, Palomba M, Jabes D, Molicotti P, Zanetti S. Anti- Mycobacterial Activity of Quinolones. Triazoloquinolones a New Class of Potent Anti-Mycobacterial Agents. Anti-Infective Agents in Med. Chem., 2008, 7(2), 134-147.
[111] Senthilkumar P, Dinakaran M, Banerjee D, Devakaram RV, Yogeeswari P, China A, Nagaraja V, Sriram D. Synthesis and antimycobacterial evaluation of newer 1-cyclopropyl-1,4-dihydro-6-fluoro-7-(substituted secondary amino)-8-methoxy-5-(sub)-4-oxoquinoline-3-carboxylic acids. Bioorg. Med. Chem., 2008, 16(5), 2558-2569. http://dx.doi.org/10.1016/j.bmc.2007.11.050.
[112] Senthilkumar P, Dinakaran M, Chandraseakaran Y, Yogeeswari P, Sriram D. Synthesis and in-vitro Antimycobacterial Evaluation of 1-(Cyclopropyl/2,4-difluorophenyl/tert-butyl)-1,4-dihydro-8-methyl-6-nitro-4-oxo-7-(substituted secondary amino)quinoline-3-carboxylic acids. Arch. Pharm. Chem. Life Sci., 2008, 342(2), 100-112. http://dx.doi.org/10.1002/ardp.200800015.
[113] de Almeida MV, Saraiva MF, de Souza MVN, da Costa CF, Vicente FRC, Lourenco MCS. Synthesis and antitubercular activity of lipophilic moxifloxacin and gatifloxacin derivatives. Bioorg. Med. Chem. Lett., 2007, 17 (20), 5661-5664. http://dx.doi.org/10.1016/j.bmcl.2007.07.073.
[114] Jain R, Vaitilingam B, Nayyar A, Palde PB. Substituted 4-Methylquinolines as a New Class of Anti-Tuberculosis Agents. Bioorg. Med. Chem. Lett., 2003, 13(6), 1051- 1054. http://dx.doi.org/10.1016/S0960-894X(03)00074-X.
[115] Gaurrand S, Desjardins S, Meyer C et al., Conformational Analysis of R207910, a New Drug Candidate for the Treatment of Tuberculosis, by a Combined NMR and Molecular Modeling Approach. Chem. Biol. Drug Des., 2006, 68(2), 77-84. http://dx.doi.org/10.1111/j.1747-0285.2006.00410.x.
[116] Drews SJ, Hung F, Av-Gay Y. A protein kinase inhibitor as an antimycobacterial agent. FEMS Microbiol. Lett., 2001, 205(2), 369-374. http://dx.doi.org/10.1111/j.1574-6968.2001.tb10974.x.
[117] Savini L, Chiasserini L, Gaeta A, Pellerano C. Synthesis and Anti-tubercular Evaluation of 4-Quinolylhydrazones. Bioorg. Med. Chem., 2002, 10(7), 2193-2198. http://dx.doi.org/10.1016/S0968-0896(02)00071-8.
[118] Monga V, Nayyar A, Vaitilingam B, et al., Ring-substituted quinolines. Part 2: Synthesis and antimycobacterial activities of ring-substituted quinolinecarbohydrazide and ring-substituted quinolinecarboxamide analogues. Bioorg. Med. Chem., 2004, 12(24), 6465-6472. http://dx.doi.org/10.1016/j.bmc.2004.09.017.
[119] de Souza MVN, Pais KC, Kaiser CR, Peralta MA, Ferreira ML, Lourenço MCS. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorg. Med. Chem., 2009, 17(4), 1474-1480. http://dx.doi.org/10.1016/j.bmc.2009.01.013.
[120] Upadhayaya RS, Kulkarni GM, Vasireddy NR et al., Design, synthesis and biological evaluation of novel triazole, urea and thiourea derivatives of quinoline against Mycobacterium tuberculosis. Bioorg. Med. Chem., 2009, 17(13), 4681-4692. http://dx.doi.org/10.1016/j.bmc.2009.04.069.
[121] Sharma M, Chaturvedi V, Manju YK et al., Substituted quinolinyl chalcones and quinolinyl pyrimidines as a new class of anti-infective agents. Eur. J. Med. Chem., 2009, 44(5), 2081-2091. http://dx.doi.org/10.1016/j.ejmech.2008.10.011.
[122] Gratraud P, Surolia N, Besra GS, Surolia A, Kremer L. Antimycobacterial Activity and Mechanism of Action of NAS-91. Antimicrob. Agents Chemother., 2008, 52(3), 1162-1166. http://dx.doi.org/10.1128/AAC.00968-07.
[123] Eswaran S, Adhikari AV, Pal NK, Chowdhury IH. Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett., 2010, 20(3), 1040-1044. http://dx.doi.org/10.1016/j.bmcl.2009.12.045.
[124] Gemma S, Savini L, Altarelli M et al., Development of antitubercular compounds based on a 4-quinolylhydrazone scaffold. Further structure–activity relationship studies. Bioorg. Med. Chem., 2009, 17(16), 6063-6072. http://dx.doi.org/10.1016/j.bmc.2009.06.051.
[125] Candéa ALP, Ferreira ML, Pais KC et al., Synthesis and antitubercular activity of 7-chloro-4-quinolinylhydrazones derivatives. Bioorg. Med. Chem. Lett., 2009, 19(22), 6272-6274. http://dx.doi.org/10.1016/j.bmcl.2009.09.098.
[126] Upadhayaya RS, Vandavasi JK, Vasireddy NR, Sharma V, Dixit SS, Chattopadhyaya J. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem., 2009, 17(11), 2830-2841. http://dx.doi.org/10.1016/j.bmc.2009.02.026.
[127] Nayyar A, Patel SR, Shaikh M, Coutinho E, Jain R. Synthesis, anti-tuberculosis activity and 3D-QSAR study of amino acid conjugates of 4-(adamantan-1-yl) group containing quinolines. Eur. J. Med. Chem., 2009, 44(5), 2017-2029. http://dx.doi.org/10.1016/j.ejmech.2008.10.004.
[128] Lilienkampf A, Mao J, Wan B, Wang Y, Franzblau SG, Kozikowski AP. Structure-Activity Relationships for a Series of Quinoline-Based Compounds Active against Replicating and Nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2009, 52(7), 2109-2118. http://dx.doi.org/10.1021/jm900003c.
[129] Mao J, Yuan H, Wang Y et al., From Serendipity to Rational Antituberculosis Drug Discovery of Mefloquine-Isoxazole Carboxylic Acid Esters. J. Med. Chem., 2009, 52(22), 6966-6978. http://dx.doi.org/10.1021/jm900340a.
[130] Carta A, Loriga M, Paglietti G et al., Synthesis, anti-mycobacterial, antitrichomonas and anti-candida in vitro activities of 2-substituted-6,7-difluoro-3- methylquinoxaline 1,4-dioxides. Eur. J. Med. Chem., 2004, 39(2), 195-203. http://dx.doi.org/10.1016/j.ejmech.2003.11.008.
[131] Seitz LE, Suling WJ, Reynolds RC. Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem., 2000, 45(25), 5604-5606. http://dx.doi.org/10.1021/jm020310n.
[132] Zarranz B, Jaso A, Aldana I, Monge A. Synthesis and Antimycobacterial Activity of New Quinoxaline-2-carboxamide 1, 4-di-N-Oxide Derivatives. Bioorg. Med. Chem., 2003, 11(10), 2149-2156. http://dx.doi.org/10.1016/S0968-0896(03)00119-6.
[133] Jaso A, Zarranz B, Aldana I, Monge A. Synthesis of new 2-acetyl and 2-benzoyl quinoxaline 1,4-di-N-oxide derivatives as anti-Mycobacterium tuberculosis agents. Eur. J. Med. Chem., 2003, 38(9), 791-800. http://dx.doi.org/10.1016/S0223-5234(03)00137-5.
[134] Villar R, Vicente E, Solano B et al.,In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide. J. Antimicrob. Chemother. 2008, 62(3), 547-554. http://dx.doi.org/10.1093/jac/dkn214.
[135] Jaso A, Zarranz B, Aldana I, Monge A. Synthesis of New Quinoxaline-2- carboxylate 1,4-Dioxide Derivatives as Anti-Mycobacterium tuberculosis Agents. J. Med. Chem., 2005, 48(6), 2019-2025. http://dx.doi.org/10.1021/jm049952w.
[136] Vicente E, Perez-Silanes S, Lima LM et al., Selective activity against Mycobacterium tuberculosis of new quinoxaline 1,4-di-N-oxides. Bioorg. Med. Chem., 2009, 17(1), 385-389 http://dx.doi.org/10.1016/j.bmc.2008.10.086.
[137] Bertino J Jr, Fish D. The safety profile of the fluoroquinolones. Clinical Therapeutics, 2000, 22(7):798-817. http://dx.doi.org/10.1016/S0149-2918(00)80053-3.
[138] Pasqualoto KFM, Ferreira EI. An approach for the rational design of new antituberculosis agents. Curr. Drug Targets, 2001, 2, 427–437. http://dx.doi.org/10.2174/1389450013348227.
[139] Teodori E, Dei S, Scapecchi S, Gualtieri F. The medicinal chemistry of multidrug resistance (MDR) reversing drugs. IL Farmaco, 2002, 57, 385–415. http://dx.doi.org/10.1016/S0014-827X(02)01229-6.
[140] Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C. Tuberculosis. Lancet, 2003, 362, 887–899. http://dx.doi.org/10.1016/S0140-6736(03)14333-4.
[141] Smith PG, Moss AR. Epidemiology of Tuberculosis. In: Tuberculosis: Pathogenesis, Protection, and Control. Barry Bloom (Ed.), ASM Press, Washington, D.C, 1994, 47-59. http://dx.doi.org/10.1128/9781555818357.ch4.
[142] Smith CV, Huang CC, Miczak A, Russell DG, Sacchettini JC, Honer zu Bentrup, K. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J Biol Chem., 2003, 278, 1735-1743. http://dx.doi.org/10.1074/jbc.M209248200.
[143] Murugasu-Oei B, Dick T. Bactericidal activity of nitrofurans against growing and dormant Mycobacterium bovis BCG. J Antimicrob Chemother, 2000, 46, 917-919. http://dx.doi.org/10.1093/jac/46.6.917.
[144] Klemens SP, DeStefano MS, Cynamon MH. Therapy of multidrug-resistant tuberculosis: lessons from studies with mice. Antimicrob Agents Chemother, 1993, 37, 2344-2347. http://dx.doi.org/10.1128/AAC.37.11.2344.
[145] Koga T, Fukuoka T, Doi N, Harasaki T, Inoue H, Hotoda H, Kakuta M, Muramatsu Y, Yamamura N, Hoshi M, Hirota T. Activity of capuramycin analogues against Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium intracellulare in vitro and in vivo. J Antimicrob Chemother, 2004, 54, 755-760. http://dx.doi.org/10.1093/jac/dkh417.
[146] Manabe YC, Bishai WR. Latent Mycobacterium tuberculosis-persistence, patience, and winning by waiting. Nat Med., 2000, 6, 1327-1329. http://dx.doi.org/10.1038/82139.
[147] Khasnobis S, Escuyer VE, Chatterjee D. Emerging therapeutic targets in tuberculosis: Post genomic era. Expert Opin. Ther. Targets, 2002, 6, 21–40. http://dx.doi.org/10.1517/14728222.6.1.21.
[148] Somoskovi, A, Parsons, L. M, Salfinger, M. The molecular basis of resistance to Isoniazid, Rifampin, and Pyrazinamide in Mycobacterium tuberculosis. Respir. Res., 2001, 2, 164–168. http://dx.doi.org/10.1186/rr54.
[149] Sun Z, Zhang Y. Antituberculosis activity of certain antifungal and antihelmintic drugs. Tuber Lung Dis., 1999, 79, 319-320. http://dx.doi.org/10.1054/tuld.1999.0212.
[150] Zhang Y. The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol., 2005, 45, 529-564. http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100120.
-
Downloads
-
How to Cite
Asif, M. (2015). Role of quinolones and quinoxaline derivatives in the advancement of treatment of tuberculosis. International Journal of Scientific World, 3(1), 18-36. https://doi.org/10.14419/ijsw.v3i1.3432Received date: 2014-08-23
Accepted date: 2014-09-22
Published date: 2015-01-06