Use of microalgae for the removal of environmental pollutants

  • Authors

    • Mursaleen Usmani Institute of Environmental Studies, University of Karachi
    • Hafsa Sultana
    2014-12-21
    https://doi.org/10.14419/ijsw.v3i1.3795
  • Microalgae, Pollution, Heavy Metal, Azo-Dyes, Biosorption, Microbial Consortium.
  • In this mini review it is to focus that how can pollutants be removed from the environment by utilizing microalgae which are deliberately increasing and causing hazardous effects to our environment. Microalgae are sunlight-driven cell factories that convert carbon dioxide to potential biofuels, foods, feeds and high-value bioactives. Various types of pollutants continuously causing damage to the environment and after a long-term observation it is found that there is a best option of using microalgae in different techniques for reducing environmental pollutants. Since, versatile species of microalgae has been a part in reduction and removal of environmental pollutants as we observed in different bioremmedial techniques such as in waste water treatment plants, heavy metal removal techniques, bio-degradation of azo-dyes, phenol and other organic aromatic compounds which are dangerous to the environment. It is reappraised that one of microalgae specie which is named as chlorella vulgaris is found to be very effective in removing of heavy metals, waste water treatment and also in biodegradation of azo-dyes. This article basically explained the usefulness of using microalgae for the remediation of pollutants.

  • References

    1. [1] Acuner, A. and F.B. Dilek. (2004). Treatment of tectilon yellow2G by Chlorella vulgaris. Process Biochem. 39: 623–31. http://dx.doi.org/10.1016/S0032-9592(03)00138-9.

      [2] Aksu, Z. and S. Tezer (2005). Biosorption of reactive dyes on the green algae Chlorella vulgaris. Process Biochem. 40: 1347–61. http://dx.doi.org/10.1016/j.procbio.2004.06.007.

      [3] Allen, MM. (1968). Simple conditions for growth of unicellular blue-green algae on plates. J Phycol. 4: 1-4. http://dx.doi.org/10.1111/j.1529-8817.1968.tb04667.x.

      [4] Anjaneyulu, Y., Sreedhara Chary, N. and Raj, D. (2005). Decolourization of industrial effluents--available methods and emerging technologies--a review. Rev Environ Sci Biotechnol. 4: 245–273.

      [5] Ashraf, M.A., Maah, M.J., Yusoff, I. and Mehmood, K. (2010). Effects of Polluted Water Irrigation on Environment and Health of People in Jamber, District Kasur, Pakistan, International Journal of Basic & Applied Sciences. 10(3): 37-57.

      [6] Awasthi, M. and L.C. Rai. (2004). Adsorption of nickel, zinc and cadmium by immobilized green algae and cyanobacteria. A comparative study. Annals Microbiol. 54: 257-267.

      [7] Aziz, M. A. and Ng, W. J. (1992). Feasibility of wastewater treatment using the activated-algae process. Bioresource Technology. 40: 205–208. http://dx.doi.org/10.1016/0960-8524 (92)90143-L.

      [8] Becker, E. W. (1994). Microalgae. Cambridge University press. Biotechnology and microbiology. 293.

      [9] Cañizares-Villanueva, R.O. and Travieso, L. (1991). Inmovilización de microalgas para el tratamiento de residuales. Informe CONACyT, Proyecto. 8: 07-91.

      [10] Cañizares-Villanueva, R.O. and Travieso, L. (1992). Inmovilización de microalgas para el tratamiento de residuales. Informe CONACyT, Proyecto. 8: 18-92.

      [11] Cerniglia, C.E., van Baalen, C. and Gibson, D.T. (1980). Metabolism of naphthalene by the cyanobacterium Oscillatoria sp. strain JCM. J. Gen. Microbiol. 116: 485-494.

      [12] Chinnasamy, S., A. Bhatnagar, R. Claxton and K.C. Das. (2010). Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol. 101: 6751–6760. http://dx.doi.org/10.1016/j.biortech.2010.03.094.

      [13] Costa, A.C.A. and Leite, S.G.F. (1991). Metals biosoption by sodium alginate immobilized Chlorella homosphaera. Biotechnol Lett. 13: 559-562. http://dx.doi.org/10.1007/BF01033409.

      [14] Costa, A.C.A. and Leite, S.G.F. (1992). Cadmium and zinc biosoption by Chlorella homosphaera. Biotechnol Lett. 12: 941-944. http://dx.doi.org/10.1007/BF01022595.

      [15] Costa, Antonio Carlos, A. and Selma Gomes (1990). Cadmium and zinc biosorption by Chlorella homosphaera. Biotechnol Lett. 12: 941-944. http://dx.doi.org/10.1007/BF01022595.

      [16] Dagley, S. (1978). Microbial catabolism, the carbon cycle and environmental pollution. Naturwissenschaften. 65: 85-95. http://dx.doi.org/10.1007/BF00440546.

      [17] Davis, Thomas, A., Bohumil Volesky and Alfonso Mucci. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 37: 4311-4330. http://dx.doi.org/10.1016/S0043-1354(03)00293-8.

      [18] De la Noüe, J., Laliberté, G., and Proulx, D. (1992). Algae and waste water. J. Appl. Phycol. 4: 247–254. http://dx.doi.org/10.1007/BF02161210.

      [19] De-Godos, I., V.A. Vargas, S. Blanco, M.C. GarciaGonzalez, R. Soto, P.A. Garcia-Encina, E. Becares and R. Muioz. (2010). A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol. 101: 5150–5158. http://dx.doi.org/10.1016/j.biortech.2010.02.010.

      [20] Dilna Damodaran, Gummadi Suresh, and Raj Mohan, B. (2011). 2nd International Conference on Environmental Science and Technology. Ipcbee. 6: 9-18.

      [21] Doran, M.D. and Boyle, W.C. (1979). Phosphorus removal by activated algae. Water Res. 13: 805–812. http://dx.doi.org/10.1016/0043-1354 (79) 90246-X.

      [22] Dubey, S.K., Dubey, J., Viswas, A.J. and Tiwari, P. (2011). Studies on Cyanobacterial biodiversity in paper mill and pharmaceutical industrial effluents. Br Biotechnol. 1: 61–67. http://dx.doi.org/10.9734/BBJ/2011/395.

      [23] El-Sheekh, M.M., Gharieb, M.M. and Abou-El-Souod, G.W. (2009). Biodegradation of dyes by some green algae and cyanobacteria. Int Biodeter Biodegr. 63: 699–704. http://dx.doi.org/10.1016/j.ibiod.2009.04.010.

      [24] Ergene, A., Ada, K., Tan, S. and Katırcıo˘u, H. (2009). Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda. Equilibrium and kinetic modeling studies. Desalination. 249: 1308–1314. http://dx.doi.org/10.1016/j.desal.2009.06.027.

      [25] European Public Health Alliance, (2009). Air, Water Pollution and Health Effects.

      [26] Fukami, M. (1988). Effects of zinc on metal metabolism on the zinc tolerant chlorotic mutants of Euglena gracilis. Agric Biol Chem. 52: 2343-2344. http://dx.doi.org/10.1271/bbb1961.52.2343.

      [27] Guo, J., Kang, L., Wang, X. and Yang, J. (2010). Decolorization and degradation of azo dyes by redox mediator system with bacteria. Biodegradation of azo dyes. Handbook of Environmental Chemistry. Springer-Verlag. 9: 85–100.

      [28] Hall, K.R., L.C. Eagleton, A. Acrivos and T. Vermeulen. (1996). Pore and solid diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind. Eng. Chem. Fund. 5: 212-223.

      [29] Hammouda, O., Gaber, A. and Abdel­Raouf, N. (1994). Microalgae and wastewater treatment. Ecotoxicol. Environ. Saf. 31: 205–210. http://dx.doi.org/10.1006/eesa.1995.1064.

      [30] Hernandez, J.P., L.E. de-Bashan and Y. Badhan. (2006). Starvation enhances phosphorus removal from wastewater by the microalga Chlorella sp. co-immobilized with Azospirillum brasilense. Enzyme Microb. Technol. 38: 190–198. http://dx.doi.org/10.1016/j.enzmictec.2005.06.005.

      [31] Ilangovan, K. (1992). Interaction of cadmium, cooper and zinc in Chlorella pyrenoidosa. Chick Environ Technol. 13: 195-199. http://dx.doi.org/10.1080/09593339209385144.

      [32] Jinqi, I. and Houtian, O. (1992). Degradation of azo dyes by algae. Environ.Pollut. 75: 273-278. http://dx.doi.org/10.1016/0269-7491(92)90127-V.

      [33] Kobayashi, H. and Rittman, B.E. (1982). Microbial removal of hazardous organic compounds. Environ. Sci. Technol. 16: 170-183. http://dx.doi.org/10.1021/es00097a002.

      [34] Lim, S.L., Chu, W.L. and Phang, S.M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol. 101: 7314–22. http://dx.doi.org/10.1016/j.biortech.2010.04.092.

      [35] Mallick, N. (2002). Biotechnological potential of immobilized algae for wastewater N, P and metal removal. A review. BioMetals. 15: 377–390. http://dx.doi.org/10.1023/A:1020238520948.

      [36] Middlehoven, W.J. (1993). Catabolism of benzene compounds by ascomycetous and basidiomycetous and yeast-like fungi. Antonie van Leeuwenhoek. 63: 125-144. http://dx.doi.org/10.1007/BF00872388.

      [37] Mohan, SV. Ramanaiah, SV. And Sarma, PN. (2008). Biosorption of direct azo dye from aqueous phase onto Spirogyra sp evaluation of kinetics and mechanistic aspects. Biochem Eng J. 38: 61–69. http://dx.doi.org/10.1016/j.bej.2007.06.014.

      [38] Mostafa, M. El-Sheekh, Wagieh, A. El-Shouny, Mohamed E.H. Osman, Eman and W.E. El-Gammal. (2005). Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environ. Toxicol. Pharmacol. 19: 357-365. http://dx.doi.org/10.1016/j.etap.2004.09.005.

      [39] Mulbry, W., S. Kondrad and P. Pizarro. (2006). Biofertilizers from algal treatment of dairy and swine manure effluents. Characterization of algal biomass as slow release fertilizer. J. Vegetable Sci. 12: 107–125. http://dx.doi.org/10.1300/J484v12n04_08.

      [40] Mulbry, W., S. Kondrad, C. Pizarro and E. Kebede-Westhead. (2008). Treatment of dairymanure effluent using freshwater algae. Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour. Technol. 99: 8137–8142. http://dx.doi.org/10.1016/j.biortech.2008.03.073.

      [41] Nirmal Kumar, J.I., Cini Oommen and Rita N. Kumar. (2009). Biosorption of heavy metals from aqueous solution by green marine macroalgae from Okha Port, Gulf of Kutch, India. Am-Euras. J. Agric. Environ. Sci. 6: 317-323.

      [42] Nirmal Kumar, J.I., George Basil, Rita N. Kumar, Sajish, P.R. and Viyol Shailendra. (2010). Biosorption of mercury and lead by dried Aspergillus niger Tiegh. Isolated from estuarine sediments. Int. J. Environ. Stud. 67: 735-746. http://dx.doi.org/10.1080/00207233.2010.517644.

      [43] Nyholm, N. and Ka ëllquist, T. (1989). Methods for growth inhibition toxicity tests with freshwater algae. Environ. Toxicol. Chem. 8: 689-703. http://dx.doi.org/10.1002/etc.5620080807.

      [44] Omar, HH. (2008). Algal decolorization and degradation of monoazo and diazo dyes. Pak J Biol Sci. 11: 1310–16. http://dx.doi.org/10.3923/pjbs.2008.1310.1316.

      [45] Ozer, Ayla and Ozer Dursun. (20030. Comparative study of the biosorption of Pb (II), Ni (II) and Cr (II) ions onto S. cerevisiae. Determination of biosorption heats. J. Hazard. Mat. 100: 219-229. http://dx.doi.org/10.1016/S0304-3894(03)00109-2.

      [46] Pedroni, P., Davison, J., Beckert, H., Bergman, P. and Benemann, J. (2001). International network on biofixation of CO2 and greenhouse gas abatement with microalgae. Journal of energy and environmental research. 1: 136-150.

      [47] Priya, B., Uma, L., Ahamed, AK. Subramanian, G. and Prabaharan, D. (2011). Ability to use the diazo dye C. I. Acid Black 1 as a nitrogen source by the marine cyanobacterium Oscillatoria curviceps BDU92191. Bioresour Technol. 102: 7218–7223. http://dx.doi.org/10.1016/j.biortech.2011.02.117.

      [48] Rawat, I., R. Ranjith Kumar, T. Mutanda and F. Bux. (2010). Dual role of microalgae. Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. App Energy. 10: 1010-1016.

      [49] Rosenstock, L. (2003). The Environment as a Cornerstone of Public Health, Environmental Health Perspective. 111(7): 376-377. http://dx.doi.org/10.1289/ehp.111-a376.

      [50] Saha, SK., Swaminathan, P., Raghavan, C., Uma, L. and Subramanian, G. (2010). Ligninolytic and antioxidative enzymes of a marine cyanobacteium Oscillatoria willei BDU 130511 during Poly R-478 decolourization. Bioresour Technol. 101: 3076–84. http://dx.doi.org/10.1016/j.biortech.2009.12.075.

      [51] Scheffler and John. (2007). Underwater Habitats. Illumin. 9: 4.

      [52] Semmler, H., Bailly, X. and Wanninger, A. (2008). Myogenesis in the basal bilaterian Symsagittifera roscoffensis. Frontiers in zoology. 5. http://dx.doi.org/10.1186/1742-9994-5-14.

      [53] Semple, K.T. and Cain, R.B. (1995) and (1996). Metabolism of phenols by Ochromonas danica. FEMS Microbiol. Lett. 133: 253-257. http://dx.doi.org/10.1111/j.1574-6968.1995.tb07893.x.

      [54] Sivarajasekar, N., Baskar, R. and Balakrishnan, V. (2009). Biosorption of an azo dye from aqueous solutions onto Spirogyra. J Univ Chem Technol Metal. 44: 157–164.

      [55] Solisio, C., A. Lodi, P. Torre, A. Converti and Del M. Borghi. (2006). Copper removal by dry and re-hydrated biomass of Spirulina platensis. Bioresour. Technol. 97: 1756-1760. http://dx.doi.org/10.1016/j.biortech.2005.07.018.

      [56] Srinivasan, A. and Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents. A review. J Environ Manage. 91: 1915–1929. http://dx.doi.org/10.1016/j.jenvman.2010.05.003.

      [57] Sriram and R. Seenivasan. (2012). Algal Biomass Utln. Microalgae for nutrient removal. 3: 9- 13.

      [58] Teresa M. Mataa, António A. Martinsa, and Nidia, S. Caetanob. (2010).

      [59] Thurman, H.V. (1997). Introductory Oceanography. New Jersey, USA. Prentice Hall College. ISBN. 13: 262072-73.

      [60] Ting, YP. Lawson, F. and Prince, IG. (1989). Uptake of cadmium and zinc by the algae Chlorella vulgaris. Part I. Individual iron species. Biotechnol Bioeng. 34: 990-999. http://dx.doi.org/10.1002/bit.260340713.

      [61] Valiente, V. and Travieso, L. (1992). Catalogo de la colección microalgal. Algal growth potential measurement in distillery waste. Bull. Environ. Contam. Toxicol. 62: 483-489.

      [62] Vilchez, C., I. Garhayo, M.V. Lobato. And J.M. Vega. (1997). Microalgae-mediated chemicals production and wastes removal. Enzyme Microb. Technol. 20: 562-572. http://dx.doi.org/10.1016/S0141-0229(96)00208-6.

      [63] Wilde Edward, W., Benemann John, R., Weissman Joseph, C. And Tillett David, M. (1990). Bioremoval of heavy metal. Biotechnology advances. 11: 781-812. http://dx.doi.org/10.1016/0734-9750(93)90003-6.

      [64] Yanqun, Li. (2008). Algal Biomass. South China Normal University, Guangzhou. P.R. China, Biotechnol. 24: 815-820.

      [65] Yuan, X., A. Kumar, A. K. Sahu and S. J. Ergas. (2011). Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor. Bioresour. Technol. 102: 3234–3239. http://dx.doi.org/10.1016/j.biortech.2010.11.019.

  • Downloads

    Additional Files

  • How to Cite

    Usmani, M., & Sultana, H. (2014). Use of microalgae for the removal of environmental pollutants. International Journal of Scientific World, 3(1), 1-11. https://doi.org/10.14419/ijsw.v3i1.3795