Domains of attraction of walking and running attractors are context dependent: illustration for locomotion on tilted floors

  • Authors

    • Till Frank University of Connecticut, USA
    2015-03-09
    https://doi.org/10.14419/ijsw.v3i1.4321
  • Synergetics, Nonlinear Physics, Gait transitions, Amplitude equations, Order parameters.
  • There is a general consensus that gaits of humans and animals can be considered as spatio-temporal patterns emerging via self-organization. In line with synergetics, a theory of pattern formation and self-organization founded by Haken, an amplitude equation model for human run-walk gait transitions is presented. The model allows for a definition of two distinct attractors representing walking and running. In particular, the size of the two attractors in the space of locomotion speed can be determined as a function of the model parameters. Furthermore, the model parameters can be estimated based on data from walking experiments on treadmills. The approach is illustrated for data reported in the literature on walking experiments involving tilted floors. It is shown that attractor size depends on the floor inclination, which suggests that in general the domains of attraction of walking and running attractors are context dependent. In particular, they depend on floor inclination. In other words, a pattern formation model is presented that describes how sensory feedback about environmental conditions may impact gait control.

  • References

    1. [1] G. Nicolis, Introduction to nonlinear sciences, Cambridge University Press,Cambridge, 1995.

      [2] H. Haken, Synergetics. An introduction, Springer,Berlin, 1977.

      [3] S.M. Lopresti-Goodman, M.T. Turvey, T.D. Frank, Behavioral dynamics of the affordance "graspable", Attention, Perception, and Psychophysics 73 (2011) 1948--1965.

      [4] P.G. Amazeen, E. Amazeen, M.T. Turvey, Dynamics of human intersegmental coordination: theory and research, in: D.A. Rosenbaum, C.E. Collyer (Eds.), Timing of behavior, MIT Press, Cambridge, 1998, pp. 237--259.

      [5] P.J. Beek, C.E. Peper, D.F. Stegeman, Dynamical models of movement coordination, Hum. Movement Sci. 14 (1995) 573--608.

      [6] J.A.S. Kelso, Dynamic patterns - The self-organization of brain and behavior, MIT Press,Cambridge, 1995.

      [7] H. Haken, Principles of brain functioning, Springer,Berlin, 1996.

      [8] T.D. Frank, P.L. Silva, M.T. Turvey, Symmetry axiom of the Haken-Kelso-Bunz coordination dynamics revisited in the context of cognitive activity, Journal of Mathematical Psychology 56 (2012) 149--165.

      [9] T.D. Frank, M.J. Richardson, S.M. Lopresti-Goodman, M.T. Turvey, Order parameter dynamics of body-scaled hysteresis and mode transitions in grasping behavior, J. Biol. Phys. 35 (2009) 127--147.

      [10] S.M. Lopresti-Goodman, M.T. Turvey, T.D. Frank, Negative hysteresis in the behavioral dynamics of the affordance "graspable", Attention, Perception, and Psychophysics 75 (2013) 1075--1091.

      [11] T.D. Frank, A nonlinear physics model based on extended synergetics for the flow of infant actions during infant-mother face-to-face communication, International Journal of Scientific World 2 (2014) 62--74.

      [12] T.D. Frank, Interpersonal distances are the consequence of self-organization of human spatial behavior: a theoretical study based on synergetics. Universal Journal in Psychology 2 (2014) 285--289.

      [13] H.Haken, G. Schiepek, Synergetik in der Psychologie, Hogrefe,Gottingen, 2006, in German.

      [14] W.Tschacher, J.P. Dauwalder, Situated cognition, ecological perception, and synergetics: a novel perspective for cognitive psychology?, in: W. Tschacher, J.P. Dauwalder (Eds.), Dynamics, synergetics, autonomous agents, World Scientific, Singapore, 1999, pp. 83--104.

      [15] T.D. Frank, Multistable perception in schizophrenia: a model-based analysis via coarse-grained order parameter dynamics and a comment on the 4th law, Universal Journal in Psychology 2 (2014) 231--240.

      [16] T. D. Frank, A limit cycle model for cycling mood variations of bipolar disorder patients derived from cellular biochemical reaction equations, Communications in Nonlinear Science and Numerical Simulation 18 (2013), 2107--2119.

      [17] T. D. Frank, From systems biology to systems theory of bipolar disorder, in: F.~Miranda (Ed.), Systems theory: perspectives, applications and developments, Nova Publ.,New York, 2014, pp. Chap. 2 (pp. 17--36).

      [18] T. D. Frank, Action flow in obsessive-compulsive disorder rituals: a model based on extended synergetics and a comment on the 4th law, Journal of Advances in Physics 5 (2014) 845--853.

      [19] T. D. Frank, Secondary bifurcations in a Lotka-Volterra model for n competitors with applications to action selection and compulsive behaviors, International Journal Bifurcation and Chaos 24 (2014) article 1450156.

      [20] F. J. Diedrich, W. H. Warren, Why change gaits? Dynamics of the walk-run transition, J. Exp. Psychol. - Hum. Percept. Perform. 21 (1995) 183--202.

      [21] T. D. Frank, J. van der Kamp, G. J. P. Savelsbergh, On a multistable dynamic model of behavioral and perceptual infant development, Dev. Psychobiol. 52 (2010) 352--371.

      [22] H. Haken, Synergetic computers and cognition, Springer,Berlin, 1991.

      [23] M. Bestehorn, R. Friedrich, H. Haken, Two-dimensional traveling wave patterns

      in nonequilibrium systems, Z. Physik B 75 (1989) 265--274.

      [24] M. Bestehorn, R. Friedrich, H. Haken, Modulating traveling waves in nonequilibrium systems: the blinking state, Z. Physik B 77 (1989) 151--155.

      [25] M. Bestehorn, H. Haken, Associative memory of a dynamical system: an example of the convection instability, Z. Physik B 82 (1991) 305--308.

      [26] T. D. Frank, Multistable pattern formation systems: candidates for physical intelligence, Ecological Psychology 24 (2012) 220--240.

      [27] J. Swift, P. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A 15 (1977) 319--328.

      [28] A. C. Newell, J. A. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38 (1969) 279--303.

      [29] M. C. Cross, P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65 (1993) 851--1112.

      [30] C. A. Jones, M. R. E. Proctor, Strong spatial resonance and traveling waves in Benard convection, Phys. Lett. A 121 (1987) 224--228.

      [31] D. J. Wollkind, L. E. Stephenson, Chemical Turing pattern formation analyses: comparison of theory with experiment, SIAM Journal of Applied Mathematics 61 (2000) 387--431.

      [32] H. Levine, Directional solidification: theoretical models and current understanding, in: D. Walgraef, N. M. Ghoniem (Eds.), Patterns, defects, and material instabilities, Kluwer Academic Publishers, Dordrecht, 1990, pp. 123--133.

      [33] C. Rattanakul, Y. Lenbury, D. J. Wollkind, V. Chatsudthipong, Weakly nonlinear analysis of a model of signal transduction pathway, Nonlinear Analysis 71 (2009) e1620--e1625.

      [34] L. E. Stephenson, D. J. Wollkind, V. Chatsudthipong, Weakly nonlinear analysis of one-dimensional Turing pattern formation in activator-inhibitor/immobilizer model system, Journal of Mathematical Biology 33 (2009) 771--815.

      [35] T. D. Frank, Psycho-thermodynamics of priming, recognition latencies, retrieval-induced forgetting, priming-induced recognition failures and psychopathological perception, in: N. Hsu, Z. Schutt (Eds.), Psychology of priming, Nova Publ.,New York, 2012, pp. Chap. 9 (pp. 175--204).

      [36] M. I. Rabinovich, M. K. Muezzinoghu,I.Strigo, A. Bystritsky, Dynamic principles of emotion-cognition interaction: mathematical images of mental disorders, PLoS ONE 5 (2010) e12547.

      [37] R. M. Alexander, Introduction to the theory of ferromagnetism,New York, W. H.

      Freeman, 1992.

      [38] F. J. Diedrich, W.~H. Warren, The dynamics of gait transitions: effects of grade and load, J. Motor Behav. 30 (1998) 60--78.

      [39] A. Hreljac, R. Imamura, R. F. Escamilla, W. B. Edwards, Effects of changing protocol, grade, and direction on the preferred gait transition speed during human locomotion, Gait and Posture 25 (2007) 419--424.

      [40] M. J. Richardson, K. L. Marsh, R. M. Baron, Judging and actualizing intrapersonal and interpresonal affordances, J. Exp. Psychol. - Hum. Percept. Perform. 33 (2007) 845--859.

  • Downloads

  • How to Cite

    Frank, T. (2015). Domains of attraction of walking and running attractors are context dependent: illustration for locomotion on tilted floors. International Journal of Scientific World, 3(1), 81-90. https://doi.org/10.14419/ijsw.v3i1.4321