Streamrate stagnation-point flow of a nanofluid on a stationary cylinder
-
2015-03-30 https://doi.org/10.14419/ijsw.v3i1.4400 -
Nanofluid, Stagnation-Point Flow, Stationary Cylinder, Self-Similar Solution, Particle Fraction. -
Abstract
The steady-state, viscous flow of Nanofluid in the vicinity of an axisymmetric stagnation point of a stationary cylinder is investigated. The impinging free-stream is steady and with a constant strain rate . Exact solution of the Navier–Stokes equations is derived in this problem. A reduction of these equations is obtained by use of appropriate transformations introduced in this research. The general self-similar solution is obtained when the wall temperature of the cylinder is constant. All the solutions above are presented for Reynolds numbers ranging from 0.1 to 1000 and selected values of particle. For all Reynolds numbers, as the particle fraction increases, the depth of diffusion of the fluid velocity field in radial direction, the depth of the diffusion of the fluid velocity field in -direction, shear-stresses and pressure function decreases.
-
References
[1] S. U. S. Choi, Enhancing thermal conductivity of fluid with nanoparticles, Dev. Appl Non-Newtonian Flows. 66 (1995) 99 –105.
[2] S. E. B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, Heat transfer behaviors of nanofluid in a uniformly heated tube, SuperlatticesMicrostruct. 35 (2004) 453–462.http://dx.doi.org/10.1016/j.spmi.2003.09.012.
[3] S. Z. Heris, S. Gh. Etemad, M. N. Esfahani, Experimental investigation of oxide nanofluid laminar forced flow convective heat transfer, Int. Comm. Heat Mass Transf. 33 (2006) 529–535.http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.01.005.
[4] W. Duangthongsuk, S. Wongwises, Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchangers, Int. J. Heat Mass Transf. 52 (2009) 2059–2067.http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.10.023.
[5] A. K. Santra, S. Sen, M. Chkroborty, Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates, Int. J. Therm. Sci. 48 (2009) 391–400.http://dx.doi.org/10.1016/j.ijthermalsci.2008.10.004.
[6] C. T. Nguyen, N. Galanis, G. Polidori, S. Fohanno, C. V. Pota, A. L. Beche, An experimental study of con- fined and submerged impinging jet heat transfer using Al2O3-water nanofluid, Int. J. Therm. Sci. 48 (2009) 401–411.http://dx.doi.org/10.1016/j.ijthermalsci.2008.10.007.
[7] A. V. Kuznetsov and D. A. Nield, Natural convection boundary-layer flow of a nanofluid past a vertical plate, Int. J. Therm. Sci. 49 (2010) 243–247.http://dx.doi.org/10.1016/j.ijthermalsci.2009.07.015.
[8] A. V. Kuznetsov and D. A. Nield, Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model, Transp. Porous Med. 81 (2010) 409–422.http://dx.doi.org/10.1007/s11242-009-9413-2.
[9] W. A. Khan and I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transfer. 53 (2010) 2477–2483.http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.
[10] K. Hiemenz, Die Grenzchicht an einem in den gleichformingenFlussigkeitsstromeingetauchtengeraden, Kreiszylinder. DinglersPolytech. J. 326 (1911) 321-410.
[11] F. Z. Homann, Der Einfluss grosser Zahighkeitbei der Strmung um den Zylinder und um die Kugel, Zeitsch. Angew. Math. Mech. 16 (1936) 153-164.http://dx.doi.org/10.1002/zamm.19360160304.
[12] L. Howarth, The boundary layer in three-dimensional flow, Part II. The flow near a stagnation point, Phil. Mag. Series 7. 42 (1951) 1433-1440.http://dx.doi.org/10.1080/14786445108560962.
[13] A. Davey, Boundary layer flow at a saddle point of attachment, J. Fluids Eng.10 (1951) 593-610.
[14] C. Wang, Axisymmetric stagnation flow on a cylinder, Quarterly of Applied Mathematics. 32 (1974) 207-213.
[15] R. S. R. Gorla, Unsteady laminar axisymmetric stagnation flow over a circular cylinder, Dev. Mech. 9 (1977) 286-288.
[16] R. S. R. Gorla, Nonsimilar axisymmetric stagnation flow on a moving cylinder, Int. J. Engineering Science. 16 (1978) 397-400. http://dx.doi.org/10.1016/0020-7225(78)90029-0.
[17] R. S. R. Gorla, Transient response behavior of an axisymmetric stagnation flow on a circular cylinder due to time dependent free stream velocity, Int. J. Engng. Sci. 16 (1978) 493- 502. http://dx.doi.org/10.1016/0020-7225(78)90082-4.
[18] R. S. R. Gorla, Unsteady viscous flow in the vicinity of an axisymmetric stagnation-point on a cylinder, Int. J. Engng. Sci. 17 (1979) 87-93. http://dx.doi.org/10.1016/0020-7225(79)90009-0.
[19] G. M. Cunning, A. M. J. Davis, Weidman, P.D., Radial stagnation flow on a rotating cylinder with uniform transpiration, J. Eng. Math. 33 (1998) 113-128. http://dx.doi.org/10.1023/A:1004243728777.
[20] H. S. Takhar, A. J. Chamkha, G. Nath, Unsteady axisymmetric stagnation-point flow of a viscous fluid on a cylinder, Int. J. Engng. Sci. 37 (1999) 1943-1957. http://dx.doi.org/10.1016/S0020-7225(99)00009-9.
[21] R. Saleh and A. B. Rahimi, Axisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid on a Moving Cylinder with Time- Dependent Axial Velocity and Uniform Transpiration, J. Fluids Eng. 126 (2004) 997–1005 http://dx.doi.org/10.1115/1.1845556.
[22] A. B. Rahimi and R. Saleh, Axisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid on a Rotating Cylinder With Time-Dependent Angular Velocity and Uniform Transpiration, J. Fluids Eng. 129 (2007) 107–115. http://dx.doi.org/10.1115/1.2375132.
[23] A. B. Rahimi and R. Saleh, Similarity Solution of Unaxisymmetric Heat Transfer in Stagnation-Point Flow on a Cylinder with Simultaneous Axial and Rotational Movements, J. Heat Transfer. 130 (2008) 054502.1–054502.5. http://dx.doi.org/10.1115/1.2885173.
[24] A. S. Abbasi and A. B. Rahimi, Non-Axisymmetric Three-Dimensional Stagnation-Point Flow and Heat Transfer on a Flat Plate, J. Fluids Eng. 131 (2009) 074501.1– 074501.5.
[25] A. S. Abbasi and A. B. Rahimi, Three-Dimensional Stagnation- Point Flow and Heat Transfer on a Flat Plate with Transpiration, J. Thermophys Heat Transfer. 23 (2009) 513–521. http://dx.doi.org/10.2514/1.41529.
[26] A. S. Abbasi, A. B. Rahimi, H. Niazmand, Exact Solution of Three-Dimensional Unsteady Stagnation Flow on a Heated Plate, J. Thermophys Heat Transfer. 25 (2011) 55–58. http://dx.doi.org/10.2514/1.48702.
[27] A. S. Abbasi and A. B. Rahimi, Investigation of Two-Dimensional Stagnation-Point Flow and Heat Transfer Impinging on a Flat Plate, J. Heat Transfer, accepted as technical brief. (2011).
[28] S. V. Subhashini and G. Nath, Unsteady Compressible Flow in the Stagnation Region of Two-Dimensional and Axisymmetric Bodies, ActaMechanica. 134 (1999) 135–145. http://dx.doi.org/10.1007/BF01312652.
[29] M. Kumari and G. Nath, Unsteady Compressible 3-Dimensional Boundary Layer Flow near an Axisymmetric Stagnation Point with Mass Transfer, Int. J. Engineering Science. 18 (1980) 1285–1300. http://dx.doi.org/10.1016/0020-7225(80)90120-2.
[30] M. Kumari and G. Nath, Self-Similar Solution of Unsteady Compressible Three-Dimensional Stagnation-Point Boundary Layers, Journal of Applied Mathematics and Physics. 32 (1981).
[31] A. Katz, Transformations of the Compressible Boundary Layer Equations, SIAM Journal on Applied Mathematics. 22 (1972).
[32] N. Afzal and S. Ahmad, Effect of Suction and Injection on Self- Similar Solutions of Second-Order Boundary Layer Equations, Int. J. Heat Mass Transf. 18 (1975) 607–614. http://dx.doi.org/10.1016/0017-9310(75)90272-0.
[33] P. A. Libby, Heat and Mass Transfer at a General Three-Dimensional Stagnation Point, AIAA Journal, 5 (1967) 507–517. http://dx.doi.org/10.2514/3.4008.
[34] K. Gersten, H. D. Papenfuss, J. F. Gross, Influence of the Prandtl Number on Second-Order Heat Transfer Due to Surface Curvature at a Three-Dimensional Stagnation Point, Int. J. Heat Mass Transf. 21 (1978) 275–284. http://dx.doi.org/10.1016/0017-9310(78)90120-5.
[35] C. T. Nguyen, G. Roy, P. R. Lajoie, Refroidissement des microprocesseursa haute performance enutilisant des nanofluides. Congre`sFrancais de Thermique, SFT, Reims, 30 mai-2 juin (2005).
[36] M. Corcione, Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Ene. Convers. Manage, 52 (2011) 789-793. http://dx.doi.org/10.1016/j.enconman.2010.06.072.
[37] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing, Cambridge Univ. Press, New York, (1997) 548.
-
Downloads
-
How to Cite
Amerian, V., Mohammadiun, H., Mohammadiun, M., & Khazaee, I. (2015). Streamrate stagnation-point flow of a nanofluid on a stationary cylinder. International Journal of Scientific World, 3(1), 124-136. https://doi.org/10.14419/ijsw.v3i1.4400Received date: 2015-02-21
Accepted date: 2015-03-23
Published date: 2015-03-30