Nanofluid properties for forced convection heat transfer :a review

  • Authors

    • Mohsen Darabi Young Researchers and Elite Club, shahrood Branch, Islamic Azad University ,shahrood, Iran
    • Reza Naeimi process expert of Abadan oil refinery
    • Hamid Mohammadiun Department of Mechanical Engineering,Shahrood Branch
    • Saeed Mortazavi Department of chemical Engineering,Shahrood Branch
    2015-04-24
    https://doi.org/10.14419/ijsw.v3i1.4572
  • Nanofluids, Heat Transfer, Viscosity, Thermal Conductivity.
  • Abstract

    The thermal conductivity of nanofluids depends on various parameters, such as concentration, temperature, particle size, pH, shape, material, and possibly on the manufacturing process of the nanoparticles. Data on the viscosity of nanofluids, available in the literature, are very limited. Theoretical models for the determination of the thermal conductivity and viscosity of nanofluids have been pursued. Experiments with nanofluids indicate that they higher heat transfer coefficients than the base fluid. No significant increase in a pressure drop is reported with nanofluids, compared with values with the base fluid. However, the stability of nanofluids with regard to settlement/agglomeration, especially at higher concentrations, is still a problem for practical applications.

  • References

    1. [1] Avsec, J. (2008). The combined analysis of phonon and electron heat transfer mechanism on thermal conductivity for nanofluids. International Journal of Heat and Mass Transfer, 51(19-20), 4589-4598. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.02.030.

      [2] Batchelor, G. K. (1977). Effect of Brownian-motion on bulk stress in a suspension of spherical-particles. Journal of Fluid Mechanics, 83(1), 97-117. http://dx.doi.org/10.1017/S0022112077001062.

      [3] Beck, M., Yuan, Y., Warrier, P., & Teja, A. (2009). The effect of particle size on the thermal conductivity of alumina nanofluids. Journal of Nanoparticle Research, 11(5), 1129-1136. http://dx.doi.org/10.1007/s11051-008-9500-2.

      [4] Brinkman, H. C. (1952). The viscosity of concentrated suspensions and solutions. Journal of Chemical Physics, 20(4), 571-581. http://dx.doi.org/10.1063/1.1700493.

      [5] Chon, C. H., & Kihm, K. D. (2005). Thermal conductivity enhancement of nanofluids by brownian motion. Journal of Heat Transfer, 127(8), 810. http://dx.doi.org/10.1115/1.2033316.

      [6] Chon, C. H., Kihm, K. D., Lee, S. P., & Choi, S. U. S. (2005). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Applied Physics Letters, 87(15), 1531071-1531073. http://dx.doi.org/10.1063/1.2093936.

      [7] Das, S. K., Putra, N., Thiesen, P., & Roetzel, W. (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer, 125(4), 567-574. http://dx.doi.org/10.1115/1.1571080.

      [8] Duangthongsuk, W., & Wongwises, S. (2009). Measurement of temperature-dependent thermal conductivity and viscosity of TiO2 - water nanofluids. Experimental Thermal and Fluid Science, 33(4), 706-714. http://dx.doi.org/10.1016/j.expthermflusci.2009.01.005.

      [9] Duangthongsuk, W., & Wongwises, S. (2010). An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. International Journal of Heat and Mass Transfer, 53(1-3), 334-344. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.09.024.

      [10] Eastman, J. A., Choi, S. U. S., Li, S., Thompson, L. J., & Lee, S. (1997). Enhanced thermal conductivity through the development of nanofluids. Proc. Symposium Nanophase and Nanocomposite Materials II, Boston, MA, Materials Research Society.

      [11] Hamilton, R. L., & Crosser, O. K. (1962). Thermal Conductivity of Heterogeneous Two Component Systems. I & EC Fundamentals, 1, 187–191. http://dx.doi.org/10.1021/i160003a005.

      [12] He, Y., Jin, Y., Chen, H., Ding, Y., Cang, D., & Lu, H. (2007). Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer, 50(11-12), 2272-2281. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.10.024.

      [13] Heris, S. Z., Etemad, S. G., & Nasr Esfahany, M. (2006). Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33(4), 529-535. http://dx.doi.org/10.1016/j.icheatmasstransfer.2006.01.005.

      [14] Hong, J., Kim, S. H., & Kim, D. (2007). Effect of laser irradiation on thermal conductivity of ZnO. Journal of Physics, 59, 301–304. http://dx.doi.org/10.1088/1742-6596/59/1/063.

      [15] Hwang, K. S., Jang, S. P., & Choi, S. U. S. (2009). Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer, 52(1-2), 193-199. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.06.032.

      [16] Jang, S. P., & Choi, S. U. S. (2007). Effects of Various parameters on nanofluid thermal conductivity. Journal of Heat Transfer, 129(5), 617-623. http://dx.doi.org/10.1115/1.2712475.

      [17] Koo, J., & Kleinstreuer, C. (2005). Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. International Communications in Heat and Mass Transfer, 32(9), 1111-1118. http://dx.doi.org/10.1016/j.icheatmasstransfer.2005.05.014.

      [18] Lee, J. H., Hwang, K. S., Jang, S. P., Lee, B. H., Kim, J. H., Choi, S. U. S., & Choi, C. J. (2008). Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. International Journal of Heat and Mass Transfer, 51(11-12), 2651-2656. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.10.026.

      [19] Lee, S., Choi, S. U. S., Li, S., & Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 121(2), 280-289. http://dx.doi.org/10.1115/1.2825978.

      [20] Lee, S. W., Park, S. D., Kang, S., Bang, I. C., & Kim, J. H. (2011). Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. International Journal of Heat and Mass Transfer, 54(1-3), 433-438. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.09.026.

      [21] Maïga, S. E. B., Nguyen, C. T., Galanis, N., Roy, G., Maré, T., & Coqueux, M. (2006). Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension. International Journal of Numerical Methods for Heat and Fluid Flow, 16(3): 275–292. http://dx.doi.org/10.1108/09615530610649717.

      [22] Masuda, H., Ebata, A., Teramae, K., & Hishinuma, N. (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles. Netsu Bussei, 4(4), 227–233. http://dx.doi.org/10.2963/jjtp.7.227.

      [23] Prasher, R., Bhattacharya, P., & Phelan, P. E. (2006). Brownian motion based convective conductive model for the effective thermal conductivity of nanofluids. Journal of Heat Transfer, 128(6), 588-595. http://dx.doi.org/10.1115/1.2188509.

      [24] Mintsa, H. A., Roy, G., Nguyen, C. T., & Doucet, D. (2009). New temperature dependent thermal conductivity data for water-based nanofluids. International Journal of Thermal Sciences, 48(2), 363-371. http://dx.doi.org/10.1016/j.ijthermalsci.2008.03.009.

      [25] Murshed, S. M. S., Leong, K. C., & Yang, C. (2005). Enhanced thermal conductivity of TiO2 - water based nanofluids. International Journal of Thermal Sciences, 44(4), 367-373. http://dx.doi.org/10.1016/j.ijthermalsci.2004.12.005.

      [26] Nguyen, C. T., Desgranges, F., Galanis, N., Roy, G., Maré, T., Boucher, S., & Angue Mintsa, H. (2008). Viscosity data for Al2O3-water nanofluid--hysteresis: is heat transfer enhancement using nanofluids reliable? International Journal of Thermal Sciences, 47(2), 103-111. http://dx.doi.org/10.1016/j.ijthermalsci.2007.01.033.

      [27] Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., & Angue Mintsa, H. (2007). Temperature and particle-size dependent viscosity data for water-based nanofluids- Hysteresis phenomenon. International Journal of Heat and Fluid Flow, 28(6), 1492-1506. http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.02.004.

      [28] Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer, 11(2), 151-170. http://dx.doi.org/10.1080/08916159808946559.

      [29] Rao, G. S., Sharma, K. V., Chary, S. P., Bakar, R. A., Rahman, M. M., Kadirgama, K., & Noor, M. M. (2011). Experimental Study on heat transfer coefficient and friction factor of Al2O3 nanofluid in a packed bed column. Journal of Mechanical Engineering and Sciences, 1: 1-15. http://dx.doi.org/10.15282/jmes.1.2011.1.0001.

      [30] Maxwell, J. C. (1904). A treatise on electricity and magnetism. Cambridge, U.K.: Oxford University Press.

  • Downloads

  • How to Cite

    Darabi, M., Naeimi, R., Mohammadiun, H., & Mortazavi, S. (2015). Nanofluid properties for forced convection heat transfer :a review. International Journal of Scientific World, 3(1), 145-151. https://doi.org/10.14419/ijsw.v3i1.4572

    Received date: 2015-03-31

    Accepted date: 2015-04-20

    Published date: 2015-04-24