Analytical and simulation results of micro-ring resonator system using two eyes imaging model

  • Authors

    • C. Tanaram Kasem Bundit University
    • P. Phatharacorn Kasetsart University
    • S. Chiangga Kasetsart University
    • P. P. Yupapin Kasetsart University
    2015-07-05
    https://doi.org/10.14419/ijsw.v3i2.4881
  • Micro-Conjugate Mirror, 3D Image Construction, Artificial Vision Model, Artificial Eye Model, 3D Imaging Pixel, Artificial Organs.
  • Abstract

    In this review article, the artificial vision model using the 3 cascaded conjugate mirrors system can be constructed, analyzed and simulated. A single 3D pixel (point) imaging construction is formed and obtained by using the conjugate mirror concept, where the large area of pixels can be potentially constructed and realized for large area application. This is a simulation work, where the software program is the finite difference time domain (FDTD) commercial program (Opti-wave). However, the used device parameters and materials can be fabricated and formed the artificial eyes for 3D artificial vision. Simulation result obtained has shown that the whispering gallery modes (WGMs) of radiation within the cascaded microring conjugate mirrors can be easily formed, and are coupled by the two nonlinear side rings, which can be potentially used for 3D imaging pixel construction applications by the two eyes construction model.

  • References

    1. [1] J.D. Weiland and M.S. Humayun, "Intraocular retinal prosthesis," IEEE Engineering in Medicine and Biology Magazine October: 60-66(2006). http://dx.doi.org/10.1109/MEMB.2006.1705748.

      [2] K. H. Jeong, J. Kim and L. P. Lee "Biologically inspired artificial compound eyes", Science, 312(57773): 557 -561 (2006). http://dx.doi.org/10.1126/science.1123053.

      [3] Q. He, J. Liu, B. Yang, Y. Dong, C. Yang, "Fabrication and characterization of biologically inspired curved-surface artificial compound eyes," J. Microelectronical System, 22 : 4-6 (2013). http://dx.doi.org/10.1109/JMEMS.2012.2226934.

      [4] W.H. Dobelle, "Artificial vision for the blind by connecting a television camera to the visual cortex," ASAIO J 46: 3–9(2000). http://dx.doi.org/10.1097/00002480-200001000-00002.

      [5] E. Kaniusas, G. Varonecka, B. Mahr, C. Szeles, "Optic visualization of auricular nerves and blood: optimization and validation," Instrumentation and Measurement, Transaction on 60:3253-3258(2011). http://dx.doi.org/10.1109/TIM.2011.2159314.

      [6] K. Tamee, K. Chaiwong, K. Yothapakdee and P.P Yupapin, "Brain signal monitoring and encoding for humanoid robots use," J. Biosensors & Bioelectronics 4:13e-124(2013).

      [7] J.B. Jonas, A.M. Schmidt, J.A. Müller-Bergh, U.M. Schlötzer-Schrehardt, and G.O. Naumann, "Human optic nerve fiber count and optic disc size". Investigative Opthalmology & Visual Science, 33: 2012-2018(1992).

      [8] J.B. Jonas, P. Martus, F.K. Horn, A. Jünemann, M. Korth, and W.M. Budde, "Predictive factors of the optic nerve head for the development of progression of glaucomatous visual field loss," IOVS Investigative Ophtalmology & Visual Science, 45:2613-2618(2004). http://dx.doi.org/10.1167/iovs.03-1274.

      [9] G.M. Cavallini et al., "Optic nerve aplasia and microphthalmos: a case report," J. Genetic Syndromes & Gene Therapy 4: 000175(2013). http://dx.doi.org/10.4172/2157-7412.1000175.

      [10] F.D. Zainol, N. Thammawongsa, S. Mitatha, J. Ali and P.P. Yupapin, "Nerve communication model by bio-cells and optical dipole coupling effects," Artificial Cells, Nanomedicine and Biotechnology, 2013: 1-8(2013). http://dx.doi.org/10.3109/21691401.2012.759124.

      [11] K. Tamee, K. Chaiwong, K. Yothapakdee and P.P. Yupapin, "Psychiatric investigation using WGMs using a nonlinear microring circuit," J Innovative Optical Health Sciences, 6: 1-8 (2013). http://dx.doi.org/10.1142/S1793545813500442.

      [12] K. Uomwech, K. Sarapat and P.P. Yupapin, "Dynamic modulated Gaussian pulse propagation within the double PANDA ring resonator", Microw. Opt. Technol. Lett., 52: 1818-1821(2010). http://dx.doi.org/10.1002/mop.25315.

      [13] P.P. Yupapin, "Nonlinear coupling effects of waves in a panda ring," Science Discovery 1: 1-5(2013). http://dx.doi.org/10.11648/j.sd.20130101.11.

      [14] N. Sarapat, T.D. Frank and P.P. Yupapin, "Conjugate mirror design and simulation using a nonlinear coupling microring circuit," J Nonlinear Optical Physics & Materials, 23(4): 1-11(2013). http://dx.doi.org/10.1142/s0218863513500240.

      [15] H.H. Lund, "Modern artificial intelligence for human-robot interaction", IEEE Proceeding, 92(11): 1821-1838 (2004). http://dx.doi.org/10.1109/jproc.2004.835362.

      [16] M.J. Mataric, "Using humanoid robots to study human behavior," IEEE Intelligent System and their Applications, 15(4): 46-56(2000). http://dx.doi.org/10.1109/5254.867912.

      [17] J. Sinapov, V. Sukhoy, R. Sahai, A. Stoytchev, "Vibrotactile recognition and categorization of surfaces by a humanoid robot," Robotics, IEEE Transaction on, 27(3), 488-497(2011). http://dx.doi.org/10.1109/TRO.2011.2127130.

      [18] K. Kuang, M. Gibson, B.E. Shi, M. Rucci, "Active vision during coordinated head/eye movements in a humanoid robot," IEEE Robotics, Transaction on, 28(6):1423-1430(2012). http://dx.doi.org/10.1109/TRO.2012.2204513.

      [19] K. Yokoi, N. Kawauchi, N. Sawasaki, T. Nakashima, S. Nakamura, Y. Yanagihara, K. Sawada, I. Takeuchi, K. Nakashima, Y. Yanagihara, K. Yokoyama, T. Isozumi, Y. Fukase, K. Kaneko, H. Inoue, "Humanoid robotics applications in HRP," International Journal of Humanoid Robotics, 1(3): 409-428(2004). http://dx.doi.org/10.1142/S0219843604000265.

      [20] E. Torta, H.R. Cuijpers, J.F. Juola, D. Van Der Pol, "Modeling and testing proxemic behavior for humanoid robots", International Journal of Humanoid Robotics, 9(4): 1250028-24(2012). http://dx.doi.org/10.1142/S0219843612500284.

      [21] M. Xie, "Five Steps of evolution from non-life to life-like robot," International Journal of Humanoid Robotics, 6(2), 307-327(2010). http://dx.doi.org/10.1142/S0219843609001759.

      [22] P. Coiffet, "An introduction to bio-inspired robot design," International Journal of Humanoid Robotics, 2(3): 229-276(2005). http://dx.doi.org/10.1142/S0219843605000533.

      [23] A. Bauer, D. Wollherr, M. Buss, "Human robot collaboration: A survey," International Journal of Humanoid Robotics, 5(1): 47-66(2008). http://dx.doi.org/10.1142/S0219843608001303.

      [24] P. Patel, "The brain-machine Interface: Unplugged," IEEE Spectrum, 46(10): 13-14(2009). http://dx.doi.org/10.1109/MSPEC.2009.5267979.

      [25] P.Y. Han, G. C. Cho, and X. C. Zhang, "Time-domain trans-illumination of biological tissues with terahertz pulses," Opt. Lett., 25: 242-244(2000). http://dx.doi.org/10.1364/OL.25.000242.

      [26] S.W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, "The interaction between terahertz radiation and biological tissue," Phys. Med. Biol., 46: 101-112(2001). http://dx.doi.org/10.1088/0031-9155/46/9/201.

      [27] E. Pickwell and V. P. Wallace, "Biomedical applications of terahertz technology," J. Phys. D: Appl. Phys., 39: 301-310(2006). http://dx.doi.org/10.1088/0022-3727/39/17/R01.

      [28] J.-H.Son, "Terahertz electromagnetic interactions with biological matter and their applications," J. Appl. Phys., 105, Art No: 102033(2009). http://dx.doi.org/10.1063/1.3116140.

      [29] R.M. Woodward, B. E. Cole, V. P. Wallace, D. D. Arnold, R. J. Pye, E. H. Linfeld, M. Pepper, and A. G. Davies, "Terahertz pulse imaging of in vitro basal cell carcinoma samples," TOPS, 56: 329-330(2001). http://dx.doi.org/10.1109/cleo.2001.947872.

      [30] R.M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnold, E. H. Linfield, and M. Pepper, "Terahertz pulse imaging in rejection geometry of human skin cancer and skin tissue," Phys. Med. Biol., 47: 3853-3863(2002). http://dx.doi.org/10.1088/0031-9155/47/21/325.

      [31] H. Lee, D.S. Lee, H. Kang, B.-N. Kim, M.K. Chung, "Sparse brain network recovery under compressed sensing," Medical Imaging, IEEE Transaction on, 30(5): 1154-1165(2011). http://dx.doi.org/10.1109/TMI.2011.2140380.

      [32] M. Milev, M. Hristov, "Analog implementation of ANN with inherent quadratic nonlinearity of the synapses," Neural networks, IEEE Transaction on, 14(5): 1187-2000(2003).

      [33] E. Pickwell, B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P. Wallace, "In vivo study of human skin using pulsed terahertz radiation," Phys. Med. Biol., 49: 1595-1607(2004). http://dx.doi.org/10.1088/0031-9155/49/9/001.

      [34] V.P. Wallace, A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and H. A. Thomas, "Terahertz pulsed spectroscopy of human basal cell carcinoma," Appl. Spectroscopy, 60: 1127-1133(2006). http://dx.doi.org/10.1366/000370206778664635.

      [35] E. Pickwell, B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, "Simulation of terahertz pulse propagation in biological systems," Appl. Phys. Lett., 84: 2190-2192(2004). http://dx.doi.org/10.1063/1.1688448.

      [36] M.A. Jalil, A. Abdolkarim, T. Saktioto, C.T. Ong, P.P. Yupapin, "Generation of THz frequency using PANDA ring resonator for THz imaging, imaging," International Journal of Nanomedicine, 7: 773 – 779(2012).

      [37] C.W. Gillian, E. Berry, S.W. Smye, N.N. Zinov'ev, A.J. Fitzgerald, R.E. Miles, M.C. and M. A. Smith, "Modeling the propagation of terahertz radiation through a tissue simulating phantom", Physics of Medicine and Biology, 49:1853-1864(2004). http://dx.doi.org/10.1088/0031-9155/49/10/002.

      [38] D.Y. Heh and E.L. Tan, "Modeling the interaction of terahertz pulse with healthy skin and basal cell carcinoma using the unconditionally stable fundamental ADI-FDTD method", Progress In Electromagnetics Research B, 37: 365-386(2012). http://dx.doi.org/10.2528/PIERB11090905.

      [39] I.S. Amiri and J. Ali, Deform of biological human tissue using inserted force applied by optical tweezers generated by PANDA ring resonator, Quantum Matter, 3:24-28(2014). http://dx.doi.org/10.1166/qm.2014.1091.

      [40] S. E. Alavi et al., Generation of femtosecond soliton tweezers using a half-Panda system for modeling the trapping of a human red blood cell. Journal of Computational and Theoretical Nanoscience (JCTN), 12:10-18(2015). http://dx.doi.org/10.1166/jctn.2015.3689.

      [41] I.S.Amiri, A. Afroozeh and H. Ahmad. Integrated micro-ring photonics: Principles and Applications as Slow light devices, Soliton generation and Optical transmission, CRC Press, (2015).

      [42] I. S. Amiri, J. Ali, Nano particle trapping by ultra-short tweezer and wells using MRR interferometer system for spectroscopy application. Nanoscience and Nanotechnology Letters, 5(8): 850-856, (2013). http://dx.doi.org/10.1166/nnl.2013.1636.

      [43] I.S. Amiri and J. Ali, Nano optical tweezers generation used for heat surgery of a human tissue cancer cells using Add/Drop interferometer system. Quantum Matter, 2, 489-493, (2013). http://dx.doi.org/10.1166/qm.2013.1087.

      [44] I.S. Amiri and J. Ali, Optical buffer application used for tissue surgery using direct interaction of nano optical tweezers with nano cells. Quantum Matter, 2, 484-488, (2013). http://dx.doi.org/10.1166/qm.2013.1086.

      [45] I. S. Amiri et al., Optical stretcher of biological cells using sub-nanometer optical tweezers generated by an Add/Drop microring resonator system, Nanoscience and Nanotechnology Letters, 6, 111-117, (2014.)

      [46] I.S. Amiri, A. Nikoukar, Ali, J. et al., Ultra-short of pico and femtosecond soliton laser pulse using microring resonator for cancer cells treatment, Quantum Matter, 1, 159-165, (2012). http://dx.doi.org/10.1166/qm.2012.1015.

      [47] N. Thmmawongsa and P.P. Yupapin, Remote artificial eyes using micro-optical circuit for long-distance 3D imaging perception, Artificial Cells, Nanomedicine and Biotechnology, 2014, 1-5(Early accessed), (2014).

      [48] N. Thammawongsa N, J. Ali and P.P. Yupapin, Artificial vision model by small scale conjugate mirrors, Journal of Biosensors and Bioelectronics, 4:e125, 2014.

      [49] D. Deng and Q Guo, Ince-Gaussian solitons in strongly nonlocal nonlinear media. Opt. Lett., 32(2), 3206-3208, (2007). http://dx.doi.org/10.1364/OL.32.003206.

      [50] I. Srithanachai, S. Ueamanapong, S. Niemcharoen, S. & Yupapin, P. P., Novel design of solar cell efficiency improvement using an embedded electron accelerator on-chip. Opt. Express, 20(12), 12641-12642, (2012). http://dx.doi.org/10.1364/OE.20.012640.

      [51] Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki and N. Zaizen, Fabrication technologies for vertically coupled micro ring resonator with multilevel crossing busline and ultracompact-ring radius. IEEE J. Sel. Top. Quant. Electron, 2005, 11(1), 4–10, (2005).

      [52] J. Jin, the Finite Element Method in Electromagnetic. 2nd edition. NJ, Wiley, 2010.

      [53] K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis Solving Maxwell's Equations and the Schrodinger Equation. New York: John Wiley, (2001). http://dx.doi.org/10.1002/0471221600.

      [54] J.C. Knight, N. Dubreuil, V. Sundoghdar, J. Hare, V. Lefevre, J.M. Raimond and S. Haroche, Characterizing whispering-gallery mode in microspheres by direct observation of the optic standing-wave pattern in the near field. Opt. Lett., 21(10), 698-670, (1996). http://dx.doi.org/10.1364/OL.21.000698.

      [55] H. Quan and Z. Guo, Analyses of whispering-gallery modes in small resonators. J. Micro. Nanolith. Mems, 8(3), 033060-3, (2009). http://dx.doi.org/10.1117/1.3213247.

      [56] J. Hu and C.R. Menynk, Understanding leaky modes: slab waveguide revisited. Advance in Optic and Photonices 1, 58(2), 63-70, 2009.

      [57] J.D. Jackson, Classical Electrodynamics. 2 nd edition, New York: John Wiley & Sons, (1962).

      [58] V. Zakharov, Lecture Notes Bessel Function and their Applications to Solution of Partial Differential Equation. New York: Vanderbilt University Press, 2009.

      [59] E. Schechter, Cubic Formula. [Online] Available from: http://www.math.vanderbilt.edu/.../cubic/.html. [Accessed: March 2015].

      [60] P.P. Yupapin and P. Suwancharoen, Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer. Opt. Commune, 280(2), 343–350, (2007). http://dx.doi.org/10.1016/j.optcom.2007.08.018.

      [61] Z. Guo, H. Quan and S. Pau, Numerical characterization of whispering-gallery mode optical microcavities. Appl. Opt., 45(4), 611–618, (2006). http://dx.doi.org/10.1364/AO.45.000611.

      [62] H. Quan and Z. Guo, Analyses of whispering-gallery modes in small resonators. J. Micro. Nanolith. Mems. Moems, 8(3), 033060, 2009. http://dx.doi.org/10.1117/1.3213247.

      [63] OptiFDTD by Opti-wave Corporation Company, Version 8.0, single license, (2008).

  • Downloads

  • How to Cite

    Tanaram, C., Phatharacorn, P., Chiangga, S., & Yupapin, P. P. (2015). Analytical and simulation results of micro-ring resonator system using two eyes imaging model. International Journal of Scientific World, 3(2), 227-238. https://doi.org/10.14419/ijsw.v3i2.4881

    Received date: 2015-06-03

    Accepted date: 2015-06-29

    Published date: 2015-07-05