Sound velocities and thermal properties of BeX (X=S, Se and Te) alkaline-earth chalcogenides

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The sound velocities and some thermal properties of BeX (X=S, Se and Te) beryllium-chalcogenides large band gaps semiconductors have been estimated by employing some usual theoretical and emperical formulas. The lattice parameters and the elastic stiffness constants used here are taken from the literature. The longitudinal, transverse and average elastic wave velocities, the Debye temperature, the melting temperature, the thermal conductivity and the Grüneisen parameter are successfully predicted and analyzed in comparison with the available experimental and theoretical data. In general, our obtained results of these quantities agree well with the experimental and other theoretical data of the literature.


  • Keywords


    Elastic Wave Velocity; Thermal Properties; Beryllium-Chalcogenides Large Band Gaps Semiconductors.

  • References


      [1] A. S. Verma, "Extant ionic charge theory for bond orbital model based on the tight-binding method: A semi-empirical model applied to wide-bandgap II-VI and III-V semiconductors", Materials Science in Semiconductor Processing, Vol. 29, (2015), pp., 2-15. https://doi.org/10.1016/j.mssp.2014.05.033.

      [2] D. P. Rai, M. P. Ghimire & R.K. Thapa, "A DFT Study of BeX (X = S, Se, Te) Semiconductor: Modified Becke Johnson (mBJ) Potential", Semiconductors, Vol. 48, No. 11, (2014), pp., 1447-1422. http://link.springer.com/article/10.1134/S1063782614110244.

      [3] F. El Haj Hassan & H. Akbarzadeh, "Ground state properties and structural phase transition of beryllium chalcogenides", Computational Materials Science, Vol. 35, (2006), pp., 423-431. https://doi.org/10.1016/j.commatsci.2005.02.010.

      [4] Kh. Bouamama, K. Daoud & K. Kassali, "Ab initio calculations in the virtual-crystal approximation of the structural and the elastic properties of BeSxSe1−x alloys under high pressure", Modeling and Simulation in Materials Science and Engineering, Vol. 13, (2005), pp. 1153 -1162. http://iopscience.iop.org/article/10.1088/0965-0393/13/7/010. https://doi.org/10.1088/0965-0393/13/7/010.

      [5] R. P. Singh, R.K. Singh, "Temperature dependent physical effects of ultrasonic wave in beryllium chalcogenides", Applied Acoustics Vol. 71, No. 4, (2010), pp. 328-334. https://doi.org/10.1016/j.apacoust.2009.10.005.

      [6] F. Kong, G. Jiang, "Phase transition, elastic, thermodynamic properties of zinc-blend BeSe from first-principles", Physica B, Vol. 404, No. 21, (2009), pp., 3935-3940. https://doi.org/10.1016/j.physb.2009.07.131.

      [7] S. Dabhi, V. Mankad & Prafulla K. Jha, "A First Principles Study of Phase Stability, Bonding, Electronic and Lattice Dynamical Properties of Beryllium Chalcogenides at high pressure", Journal of Alloys and Compounds, Vol. 617, No. 25, (2014), pp., 3905 - 914. https://doi.org/10.1016/j.jallcom.2014.08.035.

      [8] S. Laref, A. Laref, "Thermal properties of BeX (X = S, Se and Te) compounds from ab initio quasi-harmonic method", Computational Materials Science, Vol. 51, No. 1, (2012), pp., 135-140. https://doi.org/10.1016/j.commatsci.2011.07.016.

      [9] S. Narain, "Analysis of the Debye Temperature for ANB8–N Type Ionic and Partially Covalent Crystals ", Physica Status Solidi B, Vol. 182, No. 2, (1994), pp. 273-278. https://doi.org/10.1002/pssb.2221820203.

      [10] V. Kumar, V. Jha & A. K. Shrivastava, "Debye temperature and melting point of II-VI and III-V semiconductors", Crystal Research and Technology, Vol. 45, No. 9, (2010), pp. 920-924. http://www. onlinelibrary.wiley.com/doi/10.1002/crat.201000268/pdf. https://doi.org/10.1002/crat.201000268.

      [11] X. Ji, Y. Yu, J. Ji, J. Long, J. Chen & D. Liu, "Theoretical studies of the pressure-induced phase transition and elastic properties of BeS", Journal of Alloys and Compounds, Vol. 623, (2015), pp., 304 - 310. https://doi.org/10.1016/j.jallcom.2014.10.151.

      [12] C. McCammon, R. Caracas, K. Glazyrin, V. Potapkin, A. Kantor, R. Sinmyo, C. Prescher, I. Kupenko, A. Chumakov & L. Dubrovinsky, "Sound velocities of bridgmanite from density of states determined by nuclear inelastic scattering and first-principles calculations", Progress in Earth and Planetary Science, Vol. 3, (2016), pp (10 pages). DOI 10.1186/s40645-016-0089-2.

      [13] S. Daoud," Sound velocities and thermal properties of BX (X=As, Sb) compounds", International Journal of Scientific World: Vol. 3, No. 1 (2015), pp. 43-48. https://doi.org/10.14419/ijsw.v3i1.4039.

      [14] S. Adachi, "Properties of Group-IV, III-V and II-VI Semiconductors", John Wiley & Sons, England, (2005). ISBN 0-470-09032-4.

      [15] V. P. Shaileshkumar, "Application of pseudopotential theory to certain binary, ternary and quaternary semiconductors," Thesis of Doctor of Philosophy in Physics, Sardar Patel University, India (January- 2012). http://hdl.handle.net/10603/7350.

      [16] A. Murugan, G. Sudha Priyanga, R. Rajeswarapalanichamy, & K. Iyakutti, "Structural, electronic, mechanical and magnetic properties of rare-earth nitrides REN (RE=Ce, Pr, Nd): A first principles study ", Materials Science in Semiconductor Processing, Vol. 41, (2016), pp. 17-25.

      [17] S. Daoud, "Mechanical and piezoelectric properties, sound velocity and Debye temperature of thallium-phosphide under pressure", International Journal of Advanced Research in Physical Science, Vol. 1, No. 6, (2014), pp. 1-11. www.arcjournals.org/pdfs/ijarps/ v1-i6/1.pdf.

      [18] M. Blackman, "On the calculation of characteristic temperatures from the elastic constants", Philosophical Magazine, Vol.42, No. 335, (1951), pp. 1441-1442.

      [19] S. Daoud,"Simplified expressions for calculating Debye temperature and melting point of II-VI and III-V semiconductors ", International Journal of Scientific World, Vol. 3, No. 2, (2015), pp. 275-279. https://doi.org/10.14419/ijsw.v3i2.5314.

      [20] J. Chang, X-R. Chen, W. Zhang & J. Zhu, "First-principles investigations on elastic and thermodynamic properties of zinc-blende structure BeS ", Chinese Physics B, Vol. 17, No. 4, (2008), pp. 1377-1382. https://doi.org/10.1088/1674-1056/17/4/037.

      [21] N. Benosman, N. Amrane, S. Méçabih & H. Aourag, "Structural and electronic properties of bulk BeS", Physica B, Vol. 304, (2001), pp. 214-220.

      [22] J. A. Van Vechten, "Scaling Theory of Melting Temperatures of Covalent Crystals", Physical Review Letters, Vol. 29, No. 12, (1972), pp., 769 -772.

      [23] W. M. Yim, J. P. Dismukes, E. J. Stofko & R. J. Paff, " Synthesis and some properties of BeTe, BeSe and BeS", Journal of Physics and Chemistry of Solids, Vol. 33, (1972), pp., 501 - 505. https://doi.org/10.1016/0022-3697(72)90032-7.

      [24] H. Chen, X. Lei, J. Long & W. Huang, "The elastic and thermodynamic properties of new antiperovskite-type superconductor CuNNi3 under pressure", Materials Science in Semiconductor Processing, Vol. 27, (2014), pp. 207-211. https://doi.org/10.1016/j.mssp.2014.06.042.

      [25] A. S. Verma, B. K. Sarkar & V. K. Jindal "Inherent properties of binary tetrahedral semiconductors", Physica B, Vol. 405, (2010), pp. 1737-1739. https://doi.org/10.1016/j.physb.2010.01.029.


 

View

Download

Article ID: 6929
 
DOI: 10.14419/ijsw.v5i1.6929




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.