Comparative study: bench-scale surfactin production from bacillus subtilis using analytical grade and concentrated glycerol from the biodiesel industry

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    The market price of glycerol worldwide tends to decrease, since it is a by-product of biodiesel production. Thus its biotechnological use might lead to significant reduction in the cost of fermentations. The aim of this study was to compare the production of surfactin in peptone culture media supplemented with analytical grade glycerol (AGG) and concentrated glycerol from biodiesel production (CGBP). Differences were observed between the two processes including cell growth and dissolved oxygen consumption. Surfactin yield was 325.19 mg/L with AGG and 71.13 mg/L with CGBP, which proves the impact and importance of the purity of glycerol on the yield of surfactin. In addition, five surfactin homologous were identified by ESI-Q-TOFMS, which were composed by two amino acid sequences ELLMDLD and ELLLDLL. Therefore, as surfactin is a high value-added product, the use of glycerol with high purity is fundamental to achieve higher productivity.

  • Keywords

    Bacillus Subtilis; Biodiesel; Biosurfactant; Glycerol; Surfactin.

  • References

      [1] Leoneti A. B, Aragão-Leoneti V, De Oliveira S. V. W. B, Glycerol as a by-product of biodiesel production in Brazil: Alternatives for the use on unrefined glycerol. Renewable Energy, 2012, 45: 138-145.

      [2] ANP - Brazilian National Agency for Petroleum, Natural Gas and Biofuel. Resolution Nº 42, 24.11.2004. Accessed September 19, 2010.

      [3] Sousa M, Melo V. M. M, Rodrigues S, Sant'ana H. B, Gonçalves L. R. B, Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioprocess Biosystems Engineering, 2012, 35: 897-906.

      [4] Sousa J. R, Correia J. A. C, Almeida J. G. L, Rodrigues S, Pessoa O. D. L, Melo V. M. M, Gonçalves L. R. B, Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02. Process Biochemistry, 2011, 46: 1831-1839.

      [5] Sousa M, Dantas I. T, Felix A. K. N, Sant'Ana H. B, Melo V. M. M, Gonçalves L. R. B. Crude Glycerol from Biodiesel Industry as Substrate for Biosurfactant Production by Bacillus subtilis ATCC 6633. Brazilian Archives of Biology and Technology, 2014, 57: 295-301.

      [6] Eraqi W. A, Yassin A. S, Ali A. E, Amin M. A, Utilization of crude glycerol as a substrate for the production of rhamnolipid by Pseudomonas aeruginosa. Biotechnology Research International, 2016: 2016, 1-9.

      [7] Rivaldi J. D, Sarrouh B. F, Fiorilo R, Glicerol de biodiesel - Estratégias biotecnológicas para o aproveitamento do glicerol gerado da produção de biodiesel. Biotecnologia Ciência & Desenvolvimento, 2008: 37, 44-51.

      [8] Brumano L. P, Soler M. F, Silva S. S, Recent advances in sustainable production and application of biosurfactants in Brazil and Latin America. Industrial Biotechnology, 2016: 12, 31-39.

      [9] Makkar R. S, Cameotra S. S, Banat I. M, Advances in utilization of renewable substrates for biosurfactant production. AMB Express, 2001: 1, 1-19.

      [10] Zhao Y, Yang S. Z, Mu B. Z, Quantitative analyses of the isoforms of surfactin produced by Bacillus subtilis HSO 121 using GC-MS. Analytical Sciences, 2012: 28, 789-793.

      [11] Raaijmakers J. M, Bruijn I, Nybroe O, Ongena M, Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Reviews, 2010: 34, 1037-1062.

      [12] Ayed H. B, Hmidet N, Béchet M, Chollet M, Chataigné G, Leclère V, Jacques P, Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochemistry, 2014: 49, 1699-1707.

      [13] De Faria A. F, Teodoro-Martinez D. S, Barbosa G. N. O, Vaz B. G, Silva I. S, Garcia J. S, Tótola M. R, Eberlin M. N, Grossman M, Alves O. L, Durrant L. R, (2011). Production and structural characterization of surfactin (C 14 /Leu 7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochemistry, 2011: 46, 1951-1957.

      [14] Al-Ajlani M. M, Sheikh M. A, Ahmad Z, Hasnain S, Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microbial Cell Factories, 2007: 6, 17-24.

      [15] Nitschke M, Ferraz C, Pastore G. M, Selection of microorganisms for biosurfactant production using agroindustrial wastes. Brazilian Journal of Microbiology, 2004: 35, 81-85.

      [16] Andrade C. J, Barros F. F. C, Andrade L. M, Rocco S. A, Sforça M. L, Pastore G. M, Jauregi P, Ultrafiltration based purification strategies for surfactin produced by Bacillus subtilis LB5A using cassava wastewater as substrate. Journal of Chemical Technology and Biotechnology, 20016,

      [17] Andrade C. J, Andrade L. M, Bution M. L, Dolder M. A. H, Barros, F. F. C, Pastore G. M, Optimizing alternative substrate for simultaneous production of surfactin and 2,3-butanediol by Bacillus subtilis LB5a. Biocatalysis and Agriculture Biotechnology, 2016: 6, 209-218.

      [18] Sheppard J. D, Mulligan C. N, The production of surfactin by Bacillus subtilis grown on peat hydrolysate. Applied Microbiology and Biotechnology, 1987: 27, 110-116.

      [19] Isa M. H. M, Coraglia D. E, Frazier R. A, Jauregi P, Recovery and purification of surfactin from fermentation broth by a two steps ultrafiltration process. Journal of Membrane Science, 2007: 296, 51-57.

      [20] Jauregi P, Coutte F, Catiau L, Lecouturier D, Jacques P, Micelle size characterization of lipopeptides produced by B. subtilis and their recovery by the two-step ultrafiltration process. Separation and Purification Technology, 2013: 104, 175-182.

      [21] Chen X, Zhang Y, Fu X, Li Y, Wang Q, Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology, 2016: 115, 113-121.

      [22] Salakkam A, Webb C, The inhibition effect of methanol, as a component of crude glycerol, on the growth rate of Cupriavidus necator and other micro-organisms. Biochemical Engineering Journal, 2015: 98, 84-90.

      [23] Cooper D. G, Macdonald C. R, Duff S. J. B, Kosaric N, Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Applied and Environmental Microbiology, 1981: 42, 408-412.

      [24] Christesen J. E, Dudley G. E, Pederson J. A, Steele J. L, Peptidase and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhock, 1999: 76, 217-246.

      [25] Yan S, Liang Y, Zhang J, Liu C-M, Aspergillus flavus grown in peptone as the carbon source exhibits spore density- and peptone concentration-dependent aflatoxin biosynthesis. BMC Microbiology, 2012: 12, 106-119.

      [26] Orita I, Sato T, Yurimoto H, Kato N, Atomi H, Imanaka T, Sakai Y, The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. Journal Bacteriology, 2006: 188, 4698-4704.

      [27] Pasteris S. E, Strasser de Saad A. M, Aerobic glycerol catabolism by Pediococcus pentosaceus isolated from wine. Food Microbiology, 2005: 22, 399-407.

      [28] Mulligan C. N, Gibbs B. F, Factors influencing the economics of biosurfactants. In: Kosaric, N. editor. Biosurfactants: production, properties, applications. New York: E-Publishing Inc; 1993, 392-437.

      [29] De Faria A. F, Stéfani D, Vaz B. G, Silva I. S, Garcia J. S, Eberlin M. N, Grossman M. J, Alves O. L, Durrant L. R, Purification and structural characterization of fengycin homologues produced by Bacillus subtilis LSFM-05 grown on raw glycerol. Journal of Industrial Microbiology & Biotechnology, 2011: 38, 863-871.




Article ID: 6965
DOI: 10.14419/ijsw.v5i1.6965

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.