A study on the reliability and performance of solar powered street lighting systems

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    This paper presents the results of a study on the reliability and performance of the solar-powered street lighting systems installed at the African University of Science and Technology (AUST) in Nigeria, a hot and humid environment. The technical performance of the systems was studied using the following performance indicators: system energy yield, capture loss, as well as the system performance ratio while the reliability of the systems was examined using a model developed from the findings from the maintenance and fault diagnosis of the systems. The model was used to predict the total failure and survival probability of the systems using the Weibull distribution. The performance evaluation during the monitored period (February 2012 to January 2015) indicated that the performance ratios of the systems vary from 70% to 89% and the energy yields of the systems ranging from 2.87 h/day to 5.57 h/day. The results from the reliability analysis also showed that when the stress concentration factor around the notch between the cable terminals in the charge controller increases, the charge controller will become overheated, which in turn affected other components of the systems. The implications of this study are also discussed for the design and development of future solar-powered street lighting systems.

  • Keywords

    : Failure; Performance; Photovoltaic; Reliability; Solar-Powered Street Lighting System.

  • References

      [1] Peter, R.; Ramaseshan, B.; Nayar, C.V. Conceptual model for marketing solar based technology to developing countries. Renew. Ener, 25(4), (2002) 511-524. https://doi.org/10.1016/S0960-1481(01)00080-5.
      [2] IEA. World Energy Outlook; OECD/IEA: Paris, France, 2013.
      [3] REN21. Renewables 2015 Global Status Report; REN21 Secretariat: Paris, France, 2015.
      [4] Fraunhofer ISE. Photovoltaics Report; Fraunhofer ISE: Freiburg, Germany, 2015.
      [5] IRENA. Africa 2030: Roadmap for a Renewable Energy Future; IRENA: Masdar City United Arab Emirates, 2015.
      [6] REN21. Renewables 2016 Global Status Report; REN21 Secretariat: Paris, France, 2016
      [7] IRENA. Solar PV in Africa: Costs and Markets; IRENA: Masdar City, United Arab Emirates, 2016.
      [8] REN21. ECOWAS Renewable Energy and Energy Efficiency Status Report; ECREEE/UNIDO/REN21: Paris, France, 2014.
      [9] IEA. Technology Roadmap: Solar Photovoltaic Energy 2014 edition; OECD/IEA: Paris, France, 2014.
      [10] NREL. Best Research Cell Efficiencies; NREL: Golden, CO, USA, 2016.
      [11] IEA. Projected Costs of Generating Electricity 2015 Edition; IEA: Paris, France, 2015.
      [12] Tong T.M.; Asare J.; Rwenyagila E.R.; Anye V.; Oyewole O.K.; Fashina A.A.; Soboyejo W.O. A study of factors that influence the adoption of solar powered lanterns in a rural village in Kenya. Persp. Glo. Dev. Tech. 14(4), (2015) 448-491 https://doi.org/10.1163/15691497-12341356.
      [13] Gujba H.; Mulugetta Y.; Azapagic A. Environmental and economic appraisal of power generation capacity expansion plan in Nigeria. Ener. Pol. 2010, 38, 5636-5652. https://doi.org/10.1016/j.enpol.2010.05.011.
      [14] BP. Statistical Review of World Energy, Workbook (xlsx), 2013 edition; London, England, 2013.
      [15] Quansah, D.A.; Adaramola, M.S.; Takyi; Edwin, I.A.; Reliability and Degradation of Solar PV Modules—Case Study of 19-Year-Old Polycrystalline Modules in Ghana. Technologies, 5(2), (2017) 22 https://doi.org/10.3390/technologies5020022.
      [16] Yoshikawa K.; Kawasaki H.; YoshidaW.; Irie T.; Konishi K.; Nakano K.; Uto T.; Adachi D.; Kanematsu M.; Uzu H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, (2017) 17032. https://doi.org/10.1038/nenergy.2017.32.
      [17] IEA. Review of Failures of Photovoltaic Modules; OECD/IEA: Paris, France, 2014.
      [18] Otth D.H.; Ross R.G. Assessing photovoltaic module degradation and lifetime from long-term environmental tests. In Proceedings, 29th Institute of Environmental Sciences Technical Meeting, Los Angeles, CA, USA, April 1983, pp. 121-126.
      [19] Fashina A.A.; On the Effect of Surface Texture and Nanoscale Surface Oxides on the Optical and Mechanical Properties of Silicon Single Crystals and MEMS Thin films, PhD Thesis AUST, Abuja, Nigeria. (2015).
      [20] Wohlgemuth J.H. Reliability of PV systems. In Proceedings of SPIE conference. Reliability of Photovoltaic Cells, Modules, Components, and Systems. San Diego, USA, September, 2008 Vol. 10, pp. 704802-1. https://doi.org/10.1117/12.795248.
      [21] Wohlgemuth J.H.; Conway M.; Meakin D.H.; Reliability and performance testing of photovoltaic modules. In Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, Anchorage, AK, USA, 06 August 2002, pp. 1483-1486. https://doi.org/10.1109/PVSC.2000.916174.
      [22] Wohlgemuth J.H.; Cunningham D.W.; Monus P.; Miller J.; Nguyen A. Long term reliability of photovoltaic modules. In Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference. Waikoloa, HI, USA, 15 January 2007, Vol. 2, pp. 2050-2053.
      [23] Zamini S.; Mau S.; Krametz T. "IEC 61215 - Erfahrungen aus 4 Jahren Prüftätigkeit." TÜV Modulworkshop, (TÜV, Cologne, Germany) 2007
      [24] Grunow P.; Clemens P.; Hoffmann V.; Litzenburger B.; Podlowski L. Influence of micro cracks in multi-crystalline silicon solar cells on the reliability of PV modules. Proceedings of the 20th EUPVSEC, Barcelona, Spain, 6-10 June 2005, pp.2042-2047.
      [25] Schulze K.; Groh M.; Nieß M.; Vodermayer C.; Wotruba G.; Becker G. Untersuchung von Alterungseffekten bei monokristallinen PV-Modulen mit mehr als 15 Betriebsjahren durch Elektrolumineszenz- und Leistungsmessung, Proc. 28. Symposium Photovoltaische Solarenergie (OTTI, Staffelstein, Germany, 2013) https://www.sev-bayern.de/content/Beitrag_Staffelstein13.pdf (Accessed 27 November 2016).
      [26] Asare J.; Adeniji S.A.; Oyewole O.K.; Agyei-Tuffour B.; Du J.; Arthur E.; Fashina A.A.; Zebaze Kana M.G.; Soboyejo W.O. Cold Welding of Organic Light Emitting Diode: Interfacial and Contact Models. AIP Advances 6 (6), (2016) 065125-1 -065125-12.
      [27] Oyewole O.; Yu D.; Du J.; Asare J.; Anye V.; Fashina A.; Zebaze Kana M.G.; Soboyejo W.O. Lamination of Organic Solar Cells and Organic Light Emitting Devices: Models and Experiments. J. Appl. Phys. 118(7), (2015) 075302-075314. https://doi.org/10.1063/1.4928729.
      [28] Oyewole O.; Yu D.; Du J.; Asare J.; Oyewole D.O.; Anye V.; Fashina A.; Zebaze Kana M.G.; Soboyejo W.O. Micro-wrinkling and delamination-induced buckling of stretchable electronic structures. J. Appl. Phys. 117(23), (2015) 235501-2355011. https://doi.org/10.1063/1.4922665.
      [29] Yu D.; Oyewole O.; Kwabi D.; Tong T.; Anye V.; Asare J.; Rwenyagila E.; Fashina A.; Akogwu O.; Du J.; Soboyejo W.O. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells. J. Appl. Phys. 116(7), (2014) 074506-074509. https://doi.org/10.1063/1.4892393.
      [30] Asare J.; Turkoz E.; Agyei-Tuffour B.; Oyewole O.K.; Fashina A.A.; Du J.; Zebaze Kana M.G.; Soboyejo W.O. Effect of pre-buckling on the bending of organic electronic structures. AIP Advances. 7(4), (2017) 045202-1 - 045202-10.
      [31] Fashina A.A.; Adama K.K.; Zebaze M.G.; Soboyejo W.O. Improving the Performance of Light Trapping in Crystalline Silicon Solar Cell through Effective Surface Texturing. Trans Tech Publications, 1132, (2016) 144-159.
      [32] Fashina A.A.; Adama K.K.; Oyewole O.K.; Anye V.C.; Asare J.; Zebaze Kana M.G.; Soboyejo W.O. Surface texture and optical properties of crystalline silicon substrates. J. Renew. Sus. Ener., 7(6), (2015) 063119-1 - 063119-11.
      [33] Zaman A.; Parlevliet D.; Calais M.; Djordjevic S.; Pulsford, S.; Bruce A.; Passey R. PV System Reliability–Preliminary Findings from the PV Module and System Fault Reporting Website.2014 Asia-Pacific Solar Research conference pp. 1-8. http://apvi.org.au/wp-content/uploads/2015/02/3-Parlevliet_APVI_PVPerformance-2_PeerReviewed.pdf (Accessed 7 September 2016).
      [34] Pregelj A.; Begović M.; Rohatgi A.; Ristow A. Estimation of PV system reliability parameters. Georgia Institute of Technology. 2001. https://smartech.gatech.edu/handle/1853/26161 (Accessed April 2017).
      [35] Oozeki T.; Yamada T.; Kato K.; Yamamoto T. An analysis of reliability for photovoltaic systems on the field test project for photovoltaic in Japan. In Proceedings of ISES World Congress 2007. Springer Berlin Heidelberg Germany, 2009, pp. 1628-1632. (Vol. I–Vol. V)
      [36] Voronko Y.; Eder G.; Weiss M.; Knausz M.; Oreski G.; Koch T.; Berger KA,; Leoben PP. Long term performance of PV modules: system optimization through the application of innovative non-destructive characterization methods. In 27th European Photovoltaic Solar Energy Conference and Exhibition 2012, pp. 3530-3535.
      [37] Lorenzo, E.; Zilles, R.; Moretón, R.; Gómez, T.; de Olcoz, A.M. Performance analysis of a 7-kW crystalline silicon generator after 17 years of operation in Madrid. Prog. Photovolt. Res. Appl. 22, (2014) 1273–1279.
      [38] Bandou, F.; Arab, A.H.; Belkaid, M.S.; Logerais, P.-O.; Riou, O.; Charki, A. Evaluation performance of photovoltaic modules after a long time operation in Saharan environment. Int. J. Hydrog. Energy 40, (2015) 13839–13848. https://doi.org/10.1016/j.ijhydene.2015.04.091.
      [39] Ndiaye, A.; Kébé, C.M.F.; Charki, A.; Ndiaye, P.A.; Sambou, V.; Kobi, A. Degradation evaluation of crystalline-silicon photovoltaic modules after a few operation years in a tropical environment. Sol. Energy 103, (2014) 70–77. https://doi.org/10.1016/j.solener.2014.02.006.
      [40] Skoczek, A.; Sample, T.; Dunlop, E.D. The results of performance measurements of field-aged crystalline silicon photovoltaic modules. Prog. Photovolt. Res. Appl. 17, (2009) 227–240. https://doi.org/10.1002/pip.874.
      [41] Liu H.; Wang Y.; Zhang X.; Xu D.; Guo L. Dimmable Electronic Ballast for 250W HPS Lamp in Street Lighting with Analog Dimming Interface Circuit. Twenty Second Annual IEEE Applied Power Electronics Conference, APEC 2007, Feb. 25 2007-March 1 2007, pp. 259 - 262.
      [42] Wendt M.; Andriesse J.W. LEDs in Real Lighting Applications: from Niche Markets to General Lighting. Conference Record of the 41st IAS Annual Meeting. Vol. 5, 8-12 Oct. 2006, pp. 2601 - 2603. https://doi.org/10.1109/IAS.2006.256905.
      [43] Wang K.; Liu S. A Sensor Integrated Ultra-long Span LED Street Lamp System. 8th International Conference on Electronic Packaging Technology, ICEPT 2007, 14-17 Aug. 2007, pp. 1-3. https://doi.org/10.1109/ICEPT.2007.4441495.
      [44] Handbook of Batteries, 2nd ed., D. Linden, Editor, McGraw-Hill, New York (1995)
      [45] Long X.; Liao R.; Zhou, J. Development of street lighting system-based novel high-brightness LED modules. IET optoelectronics 3(1), (2009) 40-46. https://doi.org/10.1049/iet-opt:20070076.
      [46] Fashina A.A.; Zebaze Kana M.G.; Soboyejo W.O. Optical reflectance of alkali-textured silicon wafers with pyramidal facets: 2D analytical model. J. Mater. Res., 3(7), (2015) 904 - 913. https://doi.org/10.1557/jmr.2015.70.
      [47] Gay C.F.; Berman E. Performance of large photovoltaic systems. Chemtech, 20, (1990) 182-186.
      [48] Nunoo S.; Attachie J.; Abraham C. Using solar power as an alternative source of electrical energy for street lighting in Ghana. Proceeding of the 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply (CITRES), Waltham, MA, USA, 2010, pp. 467–471. https://doi.org/10.1109/CITRES.2010.5619814.
      [49] National Renewable Energy Laboratory (NREL), Photovoltaic Degradation rates – An Analytical Review 2012 edition. NREL: Colorado, USA, 2012.
      [50] Jahn, U.; Nasse W. Performance analysis and reliability of grid-connected PV systems in IEA countries. In Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference, 2003, vol. 3, pp. 2148-2151.
      [51] International standard IEC 61724:1998: Photovoltaic System Performance Monitoring - Guidelines for Measurement, Data Exchange and Analysis 1998 edition. IEC: Geneva, Switzerland, 1998.
      [52] Adelstein J; Boyle K; Hayden H; Hammond B; Fletcher T; Canada B; Narang D; Kimber A; Mitchell L; Rich G. Performance Parameters for Grid-Connected PV Systems. Proceedings, 31st IEEE Photovoltaic Specialists Conference and Exhibition, Lake Buena Vista, Florida, USA, January 3, 2005, pp. 1601-1606.
      [53] International standard IEC 61724:2010: Photovoltaic System Performance Monitoring - Guidelines for Measurement, Data Exchange and Analysis 2010 edition. IEC: Geneva, Switzerland, 2010.
      [54] International Energy Agency IEA PVPS Task 2, 2000 Report: Analysis of Photovoltaic Systems IEA: Paris, France, 2000.
      [55] Ueda Y.; Kurokawa K.; Kitamura K.; Yokota, M.; Akanuma, K.; Sugihara, H. Performance analysis of various system configurations on grid-connected residential PV systems. Sol. Ener. Mater. Sol. Cells, 93(6), (2009) 945-949. https://doi.org/10.1016/j.solmat.2008.11.021.
      [56] Soboyejo, W.O., Mechanical Properties of Engineering Materials Marcel Dekker, New York, NY, USA, 2002, pp. 1 – 583 https://doi.org/10.1201/9780203910399.
      [57] Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 18(3), (1951) 293-297.
      [58] Soboyejo, A.B.O.; Orisamolu I.R.; Soboyejo W.O. Probabilistic Methods in Fatigue and Fracture. Trans Tech Publishers Ltd, Zurich, Switzerland; for the American Society of Mechanical Engineers Materials Division. 2001. ISSN 1013-9826
      [59] Soboyejo, A.B.O. Probabilistic Methods in Engineering and Bio-systems Engineering; Probabilistic Methods in Engineering Design, Available online: http://hcgl.eng.ohio-state.edu/∼fabe735/. (Accessed 12 December 2016).
      [60] Yang, G. Life Cycle Reliability Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2007. https://doi.org/10.1002/9780470117880.
      [61] Maish A.B.; Atcitty, C.; Hester S.; Greenberg D.; Osborn D.; Collier D.; Brine M. Photovoltaic system reliability. In Photovoltaic Specialists Conference, 1997, Conference Record of the Twenty-Sixth IEEE, September, 1997, pp. 1049-1054. https://doi.org/10.1109/PVSC.1997.654269.
      [62] Bower W. Inverters—critical photovoltaic balance‐of‐system components: status, issues, and new‐millennium opportunities. . Prog. Photovolt. Res. Appl. 8(1), (2000) 113-26. https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1<113::AID-PIP306>3.0.CO;2-C.
      [63] Begovic M, Pregelj A, Rohatgj A. Four-year performance assessment of the 342 kW PV system at Georgia Tech. In Photovoltaic Specialists Conference. Conference Record of the Twenty-Eighth IEEE 2000, pp. 1575-1578. https://doi.org/10.1109/PVSC.2000.916198.
      [64] Costa MA; Costa GH; dos Santos AS; Schuch L; Pinheiro JR. A high efficiency autonomous street lighting system based on solar energy and LEDs. In Power Electronics Conference, 2009. COBEP'09. Brazilian 2009 Sep 27 pp. 265-273. https://doi.org/10.1109/COBEP.2009.5347688.




Article ID: 8109
DOI: 10.14419/ijsw.v5i2.8109

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.