Investigation of thermophysical properties of alates (swarmers) termite wing as potential raw material for insulation

  • Authors

    • Sunday Etuk Department of Physics, University of Uyo, Uyo.
    • Okechukwu Agbasi Department of Physics, Michael Okpara University of Agriculture, Umudike
    • Zaidoon Abdulrazzaq Ministry of Science and Technology/ Space Directorate and Communication
    • Ubong Robert Department of Physics, Akwa Ibom State University, Ikot Akpaden, Mkpat Enin.
    2017-12-01
    https://doi.org/10.14419/ijsw.v6i1.8529
  • Thermophysical Properties, Alates Termite, Insulation, Bulk Density, Specific Heat Capacity.
  • Abstract

    Thermo physical properties of Alates (Swarmers) termite wing has been investigated. The result of our investigation shows the values of thermo physical parameters of the sample materials as 0.0403Wm-1K-1 being the mean thermal conductivity value, bulk density of 188. 8kgm-3 and thermal diffusively value being 8.2485 x 10-8m2s-1. The values are within the values for commonly used insulating materials. Comparing the rate of cooling as well as heat absorption into the material as lagging material with the performance of fiberglass and cork, Alate's wing is adjudged to be a potential insulating raw material.

  • References

    1. [1] The Economist (2015). Clear Thinking on Climate Change. November 28th – December 4th edition, volume, 417, number 8966, the Economist Newspaper ltd, London, pp 13, 14.

      [2] Al-Sanea S.A, Zedan, M.F., Al-Ajlan S.A., Abdul Habi, A.S (2003). Heat Transfer Characteristics and Optimum Insulation Thickness for Cavity Walls. Journal of Thermal Env. And Bldg. Sci., Vol. 26, No.3 pp. 285 – 307. https://doi.org/10.1177/109719603027973.

      [3] AL- Momoud M. S. (2004). The Effectiveness of Thermal Insulation in Different types of buildings in Hot Climates. Journal of Thermal Env. and Bldg. Sci 27(3): 235- 247. https://doi.org/10.1177/1097196304038368.

      [4] United States of America Forest Products Laboratory Wood Handbook (1974) Wood as an Engineering Material. Us Government Printing Office, Washington, USA.

      [5] Etukudo, I. E., (2000). Forest our Divine Treasure. Dorand Publisher, Uyo Nigeria.

      [6] Etukudo, I. E, (2003) Enthnobotany Conventional and Traditional Uses of Plants vol.1, verdict press Uyo Nigeria.

      [7] Null G. (2004). The Complete Encyclopedia of Natural Healing. Bottom Line Books, Stanford. Conn. USA.

      [8] Schneider, M. F. (1999). General Information about Termite (2). Termite Life Cycle and Caste System. http://www.fzi-freiburg.de/insectpestkey-long%20version/termit2.htm.

      [9] Senger, J. V., and Klein M. (1980). The Technical Importance of Accurate Thermophysical Property Information. National Bureau of standards Technical Note No. 590.

      [10] Naijar, M. S., Bell, K. J., and Maddox R. N. (1981). Heat Transfer Eng. 2, 27. https://doi.org/10.1080/01457638108962758.

      [11] Adeosun B. F. and Olaofe O. (2002). Thermodynamic Parameters of Stretching and Thermal Conductivity of Loaded Natural Rubber. J. Chem. Soc. Of Nigeria 27 (2):128.

      [12] Fontana, A. J., Wacker, B., Campbell C. S. and Campbell G. S. (2001). Simultaneous Thermal Conductivity, Thermal Resistivity and Thermal Diffusivity Measurement of Selected Foods and Soils. The society for engineering in agricultural food and biology systems. An ASAE meeting presentation paper number: 01-6101.

      [13] Polley S. L., Snyder, O. P. and Kotnour, P. (1980). A Compillation of Thermal Properties of Foods. Food Technology. 34(11):76-94.

      [14] Ekpe S. D. (2005). Study of Energy Flux in Magnetron Sputter Deposition system. A thesis submitted to the faculty of Graduate studies and Research in partial fulfillment of the requirements for the degree of Doctor of philosophy, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada. pp 54, 55.

      [15] Incropera F. P. and De Witt D. P. (1990). Fundamentals of Heat and Mass Transfer 3rd Edu, john Wiley and Sons, New York, pp 43 – 66.

      [16] Whittington, A. G., Hofmeister A. M and Nabelek P. I. (2009). Temperature – dependent thermal diffusivity of the Earth’s Crust and implications for magmation. Nature, 458, pp 319- 321. https://doi.org/10.1038/nature07818.

      [17] Silva T. S., Alves, A. S, Pepe, I., Tsuzuki, H., Nakamuna, O., D’AngularNeto M. M. F., Ferreira da Silva, A., Velssid, N., and An, C. Y. (1998). Thermal Diffusivity of Lead Lodide Journal of Applied Physics, 83 (11): 6193-6195.

      [18] Petitijean, S. Rabinowicz M., Gregoire M. and Chevrot, S. (2006). Difference between Archean and Proterozoic lithospheres: Assessment of the possible major role of thermal conductivity. Geochem. Geophys. Geosyst 7, https://doi.org/10.1029/2005GC001053.

      [19] Turcotte, D. L. and Schubert G. (2001). Geodynamics, 2nd Edu, Cambridge University Press pp 132-194.

      [20] Thompson W. (1899). The age of the Earth as an abode fitted for life science 9:665 – 674.

      [21] Touloukian Y. S. and Ho C. Y. (1970 - 1977). Thermophysical Properties of Matter, the TPRC. Data Series, plenum press, New York, volumes 1-13.

      [22] Fink D. G. and Mckenzie (1975). Electronics Engineer’s Handbook, McGraw – Hill, New York 6 – 10.

      [23] Pritchard, R. T. (1970). General Course Workshop Processes and Materials, Hodder and Stoughton, London, 17.

      [24] Reif R. (1965). Fundamentals of Statistical and Thermal Physics. McGraw – Hill, New York, 482-483.

      [25] Wolfson R. and Pasachoff J. M. (1999) Physics, 3rdEdn. Volume One. Addison- Wesley New York, 481.

      [26] Tippler, P. A. and Mosca, G. (2004). Physics for Scientists and Engineers, vol.1, 5th Edu, W.H. Freeman, USA, 634 – 635.

      [27] Young H. D., Freeman R. A. and Ford A. L. (2008). University Physics with Modern Physics, Pearson International Edu. 12thEdn. Pearson Addison – Wesley New York, 592, 593.

      [28] Rajput, Er. R. K. (2015). Heat and Mass Transfer, Revised Edn. S. Chand and Company PVT ltd, Ram Nagar, New Delhi pp 13-45.

      [29] Calsitherm (2002). Calcium Silicate Products for Insulation and Engineered Applications. Ceramic News Special Refractories.

      [30] Kossecka, E. (1999). Method of Average to Determine Insulation Conductivity under Transient Conditions. J. Thermal Env and Bldg SC. 23: 145 – 158. https://doi.org/10.1177/109719639902300204.

      [31] Feng, Y., Yu B., Zou, M. and Zhang, D. (2004). A Generalized Model for the Effective Thermal Conductivity of Porous Media Based on Self-similarity. J. Phys. D: Applied phys. 37:3030-3040. https://doi.org/10.1088/0022-3727/37/21/014.

      [32] Krupiczka R. (1967). Analysis of Thermal Conductivity in Granular Materials Int. Chem. Engr, 7:122.

      [33] Hsu C. T., Cheng P. and Wong K. W. (1995). A Lumped-parameter Model for Stagnant Thermal Conductivity of Spatially Periodic Porous Media. J Heat Transfer, 117:264. https://doi.org/10.1115/1.2822515.

      [34] Zehnder, P. and Schlunder E. U. (1970). Thermal Conductivity of Granular Materials at Moderate Temperatures. Chemieingr. – Tech, 42:933.

      [35] Yu B. M. and Cheng P. (2002). Fractal Models for the Effective Thermal Conductivity of Bi- dispersed Porous Media J. Thermophys. Heat Transfer 16:22. https://doi.org/10.2514/2.6669.

      [36] Ma, Y. T., Yu, B. M., Zhang, D. M. and Zou M.Q. (2003). A Self- similarity Model for Effective Thermal Conductivity of Porous Media. J. Phys. D; Appl.phys.36:2157. https://doi.org/10.1088/0022-3727/36/17/321.

      [37] Beck, A., Heinemann, U., Reindinger, M., and Fricke. J., (2004) Thermal Transport in Straw Insulation. Journal of thermal Env. And Bldg. sci 27(3):227. https://doi.org/10.1177/1097196304039831.

      [38] Frieke J. (1993). Materials Research for the Optimization of Thermal Insulation. High Temperature High Pressure 25(4): 379- 390.

      [39] Sodha, M. S., Goyal, I. C., Tiwari, G. N. and Seth, A. K. (1977). Periodic Heat Transfer with Temperature Dependent Thermal Conductivity. Int. J. Heat Mass Transfer, 22(1): 777-781.

      [40] Szelagowski, H., Arvanitidis, I. and Seetharaman, S. (1999). Effective Thermal Conductivity of Porous Strontium Oxide and Strontium Carbonate Samples. Journal of applied physics 85(1): 193-198. https://doi.org/10.1063/1.369468.

      [41] Li, B. and Zhang, S. (1977). The Effect of Interface Resistance on Thermal Wave Propagation in Multi – Layered Samples. J.phys. D: Appl. Phys. (30) pp 1447 – 1454.

      [42] Welty, J. R., Wick, C. E., Wilson R. E. and Rorrer, G. (2002). Fundamentals of Momentum, Heat, and Mass Transfer 4thEdn. John Wiley and Sons, Inc.

      [43] Liebe, J. D., Kang H., Haupt, L., Mandal, P., Medvedeva I. V., Rao, G. H. and Barna (1998). Heat Diffusivity of Nd1-xSrxMnO3-5 and La1-xCaxMnO3-5 compounds. Journal of Applied Physics 83(11): 7148-7150. https://doi.org/10.1063/1.367790.

      [44] Diamant, R. M. E., (1986). Thermal and Acoustic Insulation, Butterworth’s, London.

      [45] Minkowyez, W. J., Sparrow, E. M., Schneider G. E. and Pletcher R. H. (1988). Handbook of Numerical Heat Transfer, John Wiley and sons, Inc., New York, p788.

      [46] Beck, J. V. and Arnold K. J. (1977). Parameter Estimation in Engineering and Science, Wiley, New York.

      [47] Bard, Y. (1974). Nonlinear Parameter Estimation Academic, New York.

      [48] Mottaghy D., Vosteen H. D. and Schellschmidt R. (2007). Temperature Dependence of the Relationship of Thermal Diffusivity versus Thermal Conductivity for Crystalline Rocks. Int. J. Earth Sic (GeolRundsch) Springer, D01 10.1007/s00531-007-0238-3.

      [49] Whitten K., Davis, R., Peck M. L. and Stanley G. (2010). Chemistry the Core, 9thEdn. Brooks Cengage Learning Mason, pp36, 37.

      [50] Ajibola, K. and Onabanjo, B. (1995) Investigation of CocosNucifera as a Potential Insulator for Buildings. Renewable Energy, 6 (1). 81- 84. https://doi.org/10.1016/0960-1481(94)00032-2.

      [51] Ekpe S. D. and Akpabio G. T. (1994). Comparison of the Thermal Properties of Soil Samples for a Passively Cooled Building Design. Turkish Journal of Physics, 18(2): 117- 122.

      [52] Jackson R. D and Taylor S. A. (1965). Heat Transfer, Methods of Soil Analysis Agronomy Monograph (1) Academic Press, pp 349-360.

      [53] Tyler F. A. (1971). Laboratory Manual of Physics. 4thedn. Landon. Edward Arnold, pp 118, 119

      [54] Sayigh A. A. M. (1978). Effect of Dust on Flat Plate in Proceedings of the International Solar Energy Congress, New Delhi, pp 960 – 964.

  • Downloads

  • How to Cite

    Etuk, S., Agbasi, O., Abdulrazzaq, Z., & Robert, U. (2017). Investigation of thermophysical properties of alates (swarmers) termite wing as potential raw material for insulation. International Journal of Scientific World, 6(1), 1-7. https://doi.org/10.14419/ijsw.v6i1.8529

    Received date: 2017-10-19

    Accepted date: 2017-11-23

    Published date: 2017-12-01