

Journal of Advanced Computer Science & Technology, 4 (1) (2015) 60-67

www.sciencepubco.com/index.php/JACST

©Science Publishing Corporation
doi: 10.14419/jacst.v4i1.4211

Research Paper

Taxonomy of intelligence software reliability model

Saeed Ahmadluei

PhD. Student, Department of Computer Engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran

E-mail: saluei@qiau.ac.ir

Copyright © 2015 Saeed Ahmadluei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The probability of failure free software operation for a specified period of time in a specified environment is called

Reliability, it is one of the attributes of software quality and study about it come back to 1384. Exposition and spreading

of new software systems and profound effect of it to human life emphasize the importance of software reliability

analysis, until it poses formal definition at 1975. First race of reliability analysis methods that we called classic methods

has stochastic process approach and in this way, attempt to predict the software behavior in future. Due to the ambiguity

in fruitfulness of these solutions the challenge about reliability analysis continued till now. Great tendency in applying

intelligence systems at variety of applications can be seen at 90 decade, and software reliability attracts some research

direction to itself. Until now variety of methods in reliability analysis on the base of intelligence systems approach

exhibited. In this survey the taxonomy of these methods represented with brief description of each one. Also

comparison between these methods can be seen at the end of survey.

Keywords: Genetic Algorithm, Intelligence System, Neural Network, Software Engineering, Software Reliability.

1. Introduction

The increasing development of using software in sensitive and costly fields such as military systems’ navigation,

astronaut robots, medical subjects, many other various areas, and the growing complexities of productive applications

clarify the necessity of presenting some approaches to evaluating the error-proof performance of applications along with

the time and expenses spent in this area more than before. Reliability is the most important parameter of software

quality in software engineering [7]. Its publicly accepted definition is as follows, “The probability of operating without

failure during a specific period of time and in a specific environment.”[5].

The history of evaluating the reliability of systems is traced back to 1384 [1]. Therefore, the subject was officially

defined in software in 1975 [2]. This definition and the ones presented after it have not resulted in an accepted solution

in this field so far [4]. The use of Intelligence methods has started since early 1990 in this field [3], and this new

http://creativecommons.org/licenses/by/3.0/

Journal of Advanced Computer Science & Technology 61

approach peaked in the 90s, although some limited numbers of new papers are still presented in this field. Despite the

fact that it appears unreasonable to evaluate software reliability without considering the hardware infrastructure, the

hardware infrastructure is assumed to be flawless in the majority of models presented to evaluate software reliability.

However, some models have been presented without this presumption to deal with the problem in combination [6].

A general classification of Intelligence methods for this field is presented in the second part. The third part deals with

the methods pertaining to the neural networks used in this field. The fourth part investigates genetic algorithms, while

the methods of support vector machines are studied in the fifth part. In the sixth part, some criteria are introduced to

compare different methods, and the comparison of these methods and conclusion are presented in the seventh and

eighth part, respectively.

2. Classification of Intelligence methods to evaluate the reliability

Generally, the Intelligence models of evaluating the software reliability are called nonparametric models. This is due to

the performance of classic models as they are called parametric models [8]. Parametric (classic) approaches which have

been presented to estimate the unknown parameters in the distribution function of the model led to the selection of the

name parametric. In these models, functions named average functions or hazard functions which have one or more

unknown parameters are presented. Using estimation methods, the values of these parameters are estimated, and then

the value of reliability pertaining to future times is estimated by using the resulting function. The Intelligence models

presented in this field can be classified into three general categories according to intelligent techniques and

performance:

As mentioned earlier, this classification is done according to the approach which has been used; however, it is possible

to do more detailed classifications in each group. This matter will be dealt with in the next parts.

2.1. Methods based on neural networks

It is obvious that many parameters such as the methodology used to develop the software applications, the software

type, developing environment, software complexities, organization, the personnel producing the software application,

and so forth influence the software reliability. Factors which are quite effective on the subject and the fact that these

attributes focus on quality (so it is not possible to measure some of them precisely and numerically) have made the

reliability face with a totally non-linear pattern. Dealing with such problems which are accompanied by many vague

factors (in terms of quantity evaluation), the majority of experts would select neural networks as an appropriate

approach because these networks are capable of estimating complicated functions quite well. Therefore, the neural

networks have been paid more attention than two other techniques in this field, and many papers have been presented

on this approach so far [9-15]. The neural networks were first presented in [14], [15] for this field.

Given the approach used in different papers which apply the neural networks, it is possible to classify these papers into

four main groups as follows:

The first category includes error-error models. This appellation refers to the fact that we encounter models which gives

the desired neural network the number of errors occurred during the previous tests and predicts the number of expected

failures in the next interval. In other words, the inputs and outputs of the neural network is the number of errors [16],

[17], [18]. Various papers reported different results as the type or structure of network changes and the number of

neural network inputs varies. Using the multilayer feed forward network, recurrent network, and radial-based function

62 Journal of Advanced Computer Science & Technology

network, a comparison is made in [14] according to the square errors in future prediction. Table 1 indicates the results

of this comparison.

Table 1: The Results of Comparing Three Neural Networks in Error-Error Group

 RMSE

 Training Data Test Data

MLP 0.6061 0.6677

RBFN 1.6465 0.1591

Elman 0.1625 0.1394

As it is observed, the performance of recurrent network has been reported to be better than that of the other ones. The

higher capabilities of recurrent networks in predicting the parameters pertaining to the reliability have also been

reported in comparison with other networks in other papers. In fact, this higher capability results from the innate ability

of such networks in predicting real subjects [19], [20], and [21]. The poor performance of radial-based function neural

networks is among the interesting reported results. Given the strength and flexibility of these networks in estimating the

functions, this weak output can be caused by two factors: 1- The number of training data has not been sufficient, 2- The

number of neurons has been small in the hidden layer of radial-based function network. Conducting other tests, if we,

however, can prove that none of the above-mentioned reasons has not caused the poor performance of radial-based

function neural networks, then the lack of input parameters (another one except for the number of failures) to estimate

the output will be the only reason for this matter. This is a very important problem which has not been taken into

account so far.

The second category includes time-time models. Like the first category, this one is named according to the type of input

and output expected by the neural network. In this category, we encounter the models which give the times pertaining to

the history of the application and those between failures to the neural network and predict the time to failure then. The

papers proposed in this category are more than those of other categories. The reason can be sought in acquiring a rather

satisfactory result in this category because no certain reason has been proposed so far [22-26]. A quite comprehensive

investigation pertaining to the ability of multilayer feed forward network is done in [22] with the approach proposed in

this group. However, no definite result has been presented for the structure of the optimized neural network in order to

evaluate the reliability. In fact, the results of simulations conducted in [22] indicate that it is not possible to present such

structure. In [22] and the other final results obtained by the authors of different papers in [22-26], the predictability

mainly depends on the type of training data or the so-called input data. In other words and according to different papers

[22-26], it is not possible to present a comprehensive neural network which has a constant ability while encountering

different datasets.

It appears that the most interesting and useful approach to using the neural networks in order to predict the reliability is

the hybrid models. However, these models do not have anything special by nature, and whatever they present is adapted

from a viewpoint of classic models. In some cases in these models, the number of failures occurred during the previous

intervals and sometimes the intervals pertaining to the previous periods are given to the neural network as the input.

Likewise, the next interval or the number of the following failures is predicted. It is obvious that they are not any

different from the other two categories; therefore, what makes these models different from the previous two categories

is the combination of some models which evaluate the reliability of classic software in a neural network and present a

hybrid output. Selecting the activity function intelligently for mid-layer neurons in these models, the performance of the

neural network changes so that it appears to present a hybrid of classic models.

Like the classic models, the hybrid models attempt to find the unknown parameters of the assumed distribution

function. Therefore, the difference is that the classic models attempt to find the unknown parameters by using the

estimation methods (mostly maximum likelihood); however, the hybrid model of the neural network attempts to the

appropriate values of weight coefficients which are the same as the unknown parameters of the distribution function by

using the back propagation training technique or increasing the average error squares.

Therefore, the activity functions of different neurons can be selected according to the proposed distribution function in

the classic models or by combining the output of these neurons in the next layer of the neural network so that a

weighted output of majority is obtained from the classic models. An instance of these models is presented in [27] in

which a comprehensive investigation and comparison of the performance of the hybrid model has been conducted on

the usual neural network and the classic models, and a higher performance has been observed for the hybrid models.

Given the performance of the hybrid models of neural networks, we may be able to resolve the main problem of

software reliability which is the selection of an appropriate model according to the environment and the target software

application. In other words, selecting the activity function according to the distribution function proposed in the classic

model and then the training network model and finally considering the weight coefficients calculated in the output

layer, we attempt to select an equal classic model which has the maximum weight coefficient in the output layer.

There are a few models of the neural networks which do not fit into any groups according to the presented classification

definitions, and they are not studied here due to the fact that they are limited and not very well-liked. The inputs and

outputs of the neural networks are the intervals between failures and the number of failures predicted for the next

interval or vice versa, respectively [18-29].

Journal of Advanced Computer Science & Technology 63

2.2. Methods based on genetic algorithms

The genetic algorithm is a method for searching in the problem space and finding the optimal value for the problem.

Given this definition and the problem of estimating the unknown parameters of distribution functions in predicting

software reliability in classic models, the way of using the genetic algorithms is clarified in this area. As it was stated

earlier, the problem of estimating software reliability has turned into the problem of estimating the unknown parameters

existing in the distribution functions; therefore, the problem can be turned into finding the optimal value for these

parameters simply and by defining the parameters relating to a genetic algorithm. Although it is possible to present such

a method, no actions have been taken so far, and no paper has discussed this matter. Perhaps the reason for is the lack of

a valuable classic model or society which is publicly acclaimed (and therefore, it would be justifiable to spend time

finding the optimal values of its parameters). Nevertheless, for the sake of classification integrity, the models of

evaluating the software reliability which are based on genetic algorithms fall into two general categories:

The first group named parameter-exploring models refer to the models explained in specified classification. The second

group named exploratory models of model-parameter includes the models which attempt to find the distribution

function and the relevant parameters simultaneously. In other words, the approaches have been presented to search the

space of functions by considering the sample data in order to select the best function in predicting software reliability.

Given the performance of these models, they have been titled as exploratory models of model-parameter.

These models do not have any presumptions for distribution functions and attempt to find the function itself with the

relevant parameters. According to the training data, we attempt to find the best distribution function (or the best

function which can present an estimate for future, according to the training data). In other words, the problem of

evaluating the software reliability has turned into an optimization problem to find the best function. Given the problem,

it is obvious that the solution is genetic programing [30], a branch of genetic algorithms in which the individuals are the

functions, and the operators which function on the individuals produce function, too. An instance of these models is

presented in [31] so that the inefficiency of classic models is completely obvious in encountering some datasets

according to the results. However, the Intelligence models indicate more flexibility, and they did not have disappointing

results regarding any of datasets. Also, it has been clarified during the tests conducted in [31] that trigonometric and

exponential functions are not efficient in this field. A very important result which has been referred to in [31] indicates

the inefficiency of a certain model in encountering different datasets. This result is consistent with those of other

models. In other words, the characteristics of input data have a great impact on the output of the proposed models, so it

is not possible to select a special model as an efficient and comprehensive model to encounter every type of dataset.

Statistically, the outputs of genetic algorithm are, however, better than those of other models. Therefore, the relative

superiority of model-parameter exploratory genetic algorithm is clarified in comparison with the model of neural

network and classic model. Perhaps the reason can be found in non-presumption approach of genetic algorithm models.

2.3. Methods based on support vector machine

The support vector machine [32] is used comprehensively to predict non-linear problems. The support vector machine

has mainly presented for pattern recognition. However, its modified type named support vector regression (SVR) [33]

has been presented. It is used to estimate the function or regression, in other words. The success of support vector

machine in different fields has drawn experts’ attention to software reliability. However, its usage has not been accepted

for software reliability in comparison with other techniques. In fact, all the methods proposed in the field of software

reliability have used the modified version of support vector machine named support vector regression. The main idea of

this method is to attempt to find a function in order to estimate the number of failures or the interval between the next

two failures. In other words, a classification can also be presented according to the type of input or output used like in

neural network models. However, since the number of models presented with this approach is small, such classification

has not been presented. According to the simulations conducted in the presented papers, it has been claimed that the

results of predictions carried out by SVR are better than the results of genetic algorithms or those of neural networks

[36], [34-39]. However, lack of reception of SVR in reliability in comparison with other methods takes an aura of

mystery on this claim.

For instance, a model which uses data presented in [35] is proposed in [34]. It uses the cumulative time between two

failures from the previous periods as the input, and the cumulative time between two failures pertaining to the next step

64 Journal of Advanced Computer Science & Technology

will be predicted. The interesting point in the results of [34] is the increased number of errors in the model based on

support vector machine in comparison with neural network models as the number of previous input data increases.

Given these results and also the rather satisfactory results of classic models based on Markov’s model, it may be stated

that predicting the next step regarding the cumulative time of failure does not depend on the all previous models. It is

obvious that this matter is still a theory, and it has not been investigated or proven precisely so far.

3. Comparison of methods

The classic models state some presumptions on the environment and targeted application in the first place; therefore,

they narrow down the application area of the model to simplify the presentation of the regulations over the model. In the

first step in intelligent methods, we encounter the fact that these models have no presumption regarding the

environment or the software application. This matter accounts for the main privileges of the intelligent models.

Therefore, almost all the papers, in the majority of approaches, (except for the hybrid approaches of neural networks

whose models are few) have reached the conclusion that the efficiency of the proposed model is highly sensitive to the

input data. This issue refers to the inefficiency of Intelligence models while encountering all circumstances. In fact, it

confirms the necessity of some presumptions which are stated in classic models. Therefore, two main flaws which all

intelligent modes have are as follows:

1) Their disintegration or, in other words, their inability in presenting the satisfactory result in all environments and

circumstances.

2) Lack of presenting the presumptions or the necessary circumstances for the satisfactory performance of the

proposed model.

In Table 1, a general comparison of the explained methods is presented. As it was observed, three intellectualizing

approaches which have been taken into account in software reliability field are neural networks, genetic algorithms, and

support vector machines. These three approaches have been compared with each other in Table 2.

4. Conclusion

It is obvious that generating a flawless system is not possible; therefore, we cannot consider the objective of evaluating

software reliability to be the production of flawless applications. Thus, the objective is to decrease the errors. So the

answer to the question which asks, “What is the acceptable threshold of error in systems?” can resolve the challenge

existing in the subject of evaluating the software reliability.

The classic models of evaluating the reliability mostly attempt to find a probability distribution function based on the

subject so that they can predict the future according to that function. Therefore, finding this distribution function and

predicting the future have turned out to be a challenge.

Intelligent approaches have not made special innovations in the main problem; however, they attempt to find the

solution by accepting the problem the way it is (inputs, outputs, and assumptions). Also, the degree of this reception

varies from a maximum value in the hybrid approaches of neural networks or parametric models of genetic algorithm to

a minimum value in the exploratory genetic algorithms of the model. High dependence of all existing approaches

(intelligent/classic) on the input data creates this theory that there are other efficient parameters which have not been

taken into account for the definition of the main problem so far. For instance, the hypothesis which states no errors are

added in the process of resolving the discovered error is totally different from the real world of software. This issue is

simply overlooked in the majority of models.

Given the comprehensive researches which have been conducted in the evaluation of reliability classically and the still-

remained challenge, it appears that accepting the existing problems (the way they are) and presenting intelligent

approaches for them do not influence the problem solving so much. Moreover, the results of intelligent approaches

proposed confirm this assertion. Considering the power of intelligent methods in presenting an approach for the

problems in multi-dimensional spaces, it is expected that a step be taken in order to achieve this goal by redefining the

problem of evaluating the reliability from a different perspective.

Finally, although accepting the input parameters of a problem which was introduced many years ago and using the

modern techniques may sometimes be troubleshooting, it is not a new and terrific subject. The intelligent techniques are

also considered to be troubleshooting to some extents in the field of software reliability. However, lack of precise and

mathematical analysis of these techniques is a black point in this field in order to encourage the experts to use such

techniques.

Journal of Advanced Computer Science & Technology 65

Table 1: The Presented Method Comparison

Method Method Main Idea Advantages Disadvantages

Neural Network,

Error-Error

According to the history record of the

existing errors, it attempts to predict

the errors in the future. The Errors are

considered to be normal or

cumulative.

 Simple Implementation

 Different Datasets for

training and testing the

network

 Low predicting power which

appears to be due to the

independency of errors on

each other in each period.

 Low reception of this

approach in comparison with

two other neural networks

Neural Network,

Time-Time

According the history record of times

between the existing failures, it

attempts to predict the time between

failures in the future. The time may be

cumulative or noncumulative. Also, it

is possible the calendar time or the

software runtime in the CPU may be

considered.

 Simple Implementation

 Availability of Datasets

Required for Training

and Testing the Network

 Satisfactory results in

various tests, although

observing these results

has not been proven

while encountering other

datasets with mathematic

logic.

 Referring to the satisfactory

results obtained from

datasets under the test and

not proving the desired

efficiency of the proposed

approach officially and

systematically.

 Make reliability depending

on time while time refers to

system execution time and

test time.

Hybrid Neural

Network

Presenting a special neural network, it

proposes the hybrid behavior of

classic models and attempts to

estimate the output according to

averaging or the majority.

 An appropriate

mathematical base and

lack of black box

colliding with the neural

network

 Selecting an appropriate

classic model in different

environments, and

therefore solving the

problem of model

selection in the

appropriate environment

 Benefiting from the

majority in order to

predict about future

 A few presented models

make it hard to make

remarks on them with this

approach.

 Whatever is presented is

somehow adapted from other

methods, and don’t have

anything but result

combination or value making

in their natures.

Genetic

Algorithm,

Exploratory-

Parameter

Using the main ability of the genetic

algorithm, it attempts to find the

optimal value of unknown parameters

in the functions with the functions

proposed for classic models.

 Simple Implementation

 The main characteristic

of genetic algorithm

which is the search for

finding the optimal value

is used.

 It cannot be considered as a

single model. In fact, it is a

method to find the unknown

parameter of another model.

Therefore, the method

changes, and the value of

unknown parameter and the

output results will be

different.

Genetic

Algorithm,

Exploratory of

Model and

Parameter

Using the genetic programing, it

attempts to find the optimal function

for evaluation and predicting the

reliability.

 It solves the problem

without any

presumption.

 Unlike other models, it

assumes both the

function and its

parameters; therefore, it

appears that it is more

flexible while dealing

with different datasets.

 The number of presented

models is almost few;

therefore, it is hard to make

an absolute statement about

this matter.

 Achieving the desired result

requires almost a lot of

training data in comparison

with other methods.

Support Vector

Machine

Using SVR version of support vector

machine, it seeks to estimate the

evaluation function of reliability in

the future.

 SVM is of the very

efficient methods of

estimation non-linear

functions.

 Compared with the

models of neural

networks, it has a high

power of generalization;

therefore, it indicates

rather satisfactory results

for different datasets.

 Compared with other

methods, fewer models have

been presented by this

model, and this problem

makes the efficiency

evaluation difficult.

66 Journal of Advanced Computer Science & Technology

Table 2: Comparison of the Proposed Approaches

Approach Main Idea Advantages Disadvantages

Neural

Networks

Predicting the next value of

time with the number of

failures according to the

previously available data.

 Simple Implementation

 The efficiency of neural

network has been proven as

an estimation method of

functions [40].

 It doesn’t require a certain

parameter adjustment.

 It doesn’t state a certain

presumption to solve the

problem.

 Various available models

according to this method

simplify the evaluation and

comparison.

 An almost good ability in

dealing with noise-making

data.

 Dealing with the network in the form

of black box, and the lack of precise

and mathematic analysis regarding the

efficiency of the proposed model.

 They attempt to learn the model

existing in training data, and they

experience over fitting or lack of

generalizability as usual.

Genetic

Algorithm

Finding the Unknown

Parameter or Functions to

Predict the Future.

 Simple Implementation

 Dealing with the problem

without presumption

 It requires more training data in order

to achieve the satisfactory results in

comparison with other methods.

Support

Vector

Machine

Finding the Unknown

Function in order to Predict

the Future.

 High Generalizability

 Low Error Tolerance While

Dealing with Different

Datasets

 Few available samples make the

comparing evaluation difficult with

this approach.

References

[1] Dionysius lardner “Babbage s’ calculating engine” computer society, 1834.

[2] Johon D. Musa “A Theory of Software Reliability and its Application” IEEE Trans. Softw. Eng., vol. SE-1, no.3, pp. 312–327, Sep. 1975
http://dx.doi.org/10.1109/TSE.1975.6312856.

[3] N.Karunanithi, D. Whitley “Prediction of Software Reliability Using Connectionist Models” IEEE Trans. Softw. Eng., vol.18, no.7, pp. 563–

574, Jul. 1992 http://dx.doi.org/10.1109/32.148475.
[4] J.P. Carnegie Mellon university http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/

[5] M.Xie,Y.S.Dai, K.L.Poh “Computing System Reliability Models and Analysis” Kluwer AcademicPublishers – 2004

[6] Lai, C.D., Xie, M., Poh, K.L., Dai, Y.S. and Yang, P. “A model for availability analysis of distributed software/hardware systems”
Information and Software Technology, 44 (6), 343-350. 2002 http://dx.doi.org/10.1016/S0950-5849(02)00007-1.

[7] R.Presman “Software Engineering A Practitioner`s Approach” 7edition, Mc Graw Hill, 2010

[8] E.O.Costa,A.T.R.Pozo “A Genetic Programming Approach for Software Reliability Modeling” IEEE Trans. Reliability, vol.59, no.1,pp. 222–
230, Mar. 2010 http://dx.doi.org/10.1109/TR.2010.2040759.

[9] K.Y. Cai, L. Cai, W.D. Wang, Z.Y. Yu, D. Zhang, “On the neural network approach in software reliability modeling” The Journal of Systems

and Software vol.58, 2001, pp. 47–62 http://dx.doi.org/10.1016/S0164-1212(01)00027-9.
[10] T.Dohi, Y.Nishio, S.Osaki, “Optional software release scheduling based on artificial neural networks”Annals of Software Engineering vol.8,

1999, pp.167–185 http://dx.doi.org/10.1023/A:1018962910992.
[11] N.Karunanithi, D.Whitley, Y.K.Malaiya, “Prediction of software reliability using neural networks” International Symposium on Software

Reliability, 1991, pp.124–130.

[12] T.M.Khoshgoftaar, R.M.Szabo “Predicting software quality, during testing using neural network models:a comparative study” International
Journal of Reliability, Quality and Safety Engineering 1,1994, pp.303–319 http://dx.doi.org/10.1142/S0218539394000222.

[13] T.M.Khoshgoftaar, E.B.Allen, W.D.Jones, “Classification – tree models of software quality over multiple releases” IEEE Transactions on

Reliability vol.49, 2000, pp.4–11 http://dx.doi.org/10.1109/24.855532.
[14] N.Karunanithi, Y.K.Malaiya, “The scaling problem in neural networks for software reliability prediction” Proceedings of the 3rd

International IEEE Symposium of Software Reliability Engineering, Los Alamitos, CA, 1992, pp.76–82

http://dx.doi.org/10.1109/ISSRE.1992.285856.

[15] N.Karunanithi, D.Whitley “Prediction of software reliability using connectionist models” IEEE Transactions on Software Engineering vol.18,

1992, pp.563–574 http://dx.doi.org/10.1109/32.148475.

[16] S.H.Aljahdali,K.A.Buragga “Employing four ANNs Paradigms for Software Reliability Prediction: an Analytical Study” ICGST-AIML
Journal, ISSN: 1687-4846, Vol.8, No.2, Sep 2008.

[17] Aljahdali, S., Sheta, A., and Rine, D., “Predicting Accumulated Faults in Software Using Radial Basis Function Network” Proceedings of the

ISCA 17th International Conference on Computers and their Application, 4-6, April 2002, pp. 26-29.
[18] Y.Wu, R.Yang “Study of Software Reliability Prediction Based on GR Neural Network” School of Reliability and Systems Engineering

Beihang University, DOI: 978-1-61284-666-8 IEEE 2010.

[19] J. L. Elman “Finding structure in time” Cognitive Science, pp. 179-211, 1990 http://dx.doi.org/10.1207/s15516709cog1402_1.
[20] M. I. Jordan, “Attractor dynamics and parallelism in a connectionist sequential machine,” Proc. 8th Annual Conf. Cognitive Science, pp.531-

546, 1986

[21] R. I. Williams,D. Zipser, “A learning algorithm for continually running fully recurrent neural networks,” Neural Computation, vol. 1, pp. 270-
280, 1989 http://dx.doi.org/10.1162/neco.1989.1.2.270.

[22] K.Y.Cai,L.CaiW.D.Wang “On the neural network approach in software reliability“ Journal of system and software(elseavier), vol.58, pp 47-

62 ,2001 http://dx.doi.org/10.1016/S0164-1212(01)00027-9.

http://dx.doi.org/10.1109/TSE.1975.6312856
http://dx.doi.org/10.1109/32.148475
http://www.ece.cmu.edu/~koopman/des_s99/sw_reliability/
http://dx.doi.org/10.1016/S0950-5849(02)00007-1
http://dx.doi.org/10.1109/TR.2010.2040759
http://dx.doi.org/10.1016/S0164-1212(01)00027-9
http://dx.doi.org/10.1023/A:1018962910992
http://dx.doi.org/10.1142/S0218539394000222
http://dx.doi.org/10.1109/24.855532
http://dx.doi.org/10.1109/ISSRE.1992.285856
http://dx.doi.org/10.1109/32.148475
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1162/neco.1989.1.2.270
http://dx.doi.org/10.1016/S0164-1212(01)00027-9

Journal of Advanced Computer Science & Technology 67

[23] N. Karunanithi, Y.K. Malaiya, D. Whitley “The scaling problem in neural networks for software reliability prediction” Proceedings of the

Third International IEEE Symposium of Software Reliability Engineering, Los Alamitos, CA, 1992, pp. 76–82
http://dx.doi.org/10.1109/ISSRE.1992.285856.

[24] N. Karunanithi, D. Whitley, Y.K. Malaiya, “Prediction of software reliability using connectionist models” IEEE Tran. on Software

Engineering vol.18, 1992, pp 563–574 http://dx.doi.org/10.1109/32.148475.
[25] R. Sitte “Comparison of software-reliability-growth predictions: neural networks vs parametric-recalibration” IEEE Tran. on Reliability

vol.48 NO.3, 1999, pp. 285–291 http://dx.doi.org/10.1109/24.799900.

[26] L. Tian, A. Noore, “On-line prediction of software reliability using an evolutionary connectionist model” The Journal of Systems and
Software, vol.77, 2005, pp.173–180 http://dx.doi.org/10.1016/j.jss.2004.08.023.

[27] Y.S.Su,C.Y.Huang “Neural-network-based approaches for software reliability estimation using dynamic weighted combinational models”

Journal of Systems and Software(elseavier),vol.80, pp. 606–615, 2007 http://dx.doi.org/10.1016/j.jss.2006.06.017.
[28] T.M. Khoshgoftaar, R.M.Szabo “Using Neural Networks to Predict Software Faults During Testing” IEEE Trans. Reliability., vol. 45,

no.3,pp. 456–462, Sep. 1996 http://dx.doi.org/10.1109/24.537016.

[29] John R. Koza “Genetic Programming” MIT Press 1998.
[30] E.O.Costa, A.T.R.Pozo “A Genetic Programming Approach for Software Reliability Modeling” IEEE Trans.Reliability., vol. 59, no.1,pp.

222–230, Mar. 2010 http://dx.doi.org/10.1109/TR.2010.2040759.

[31] V.Vapnik “The Nature of Statistical Learning Theory” Springer,New York, 1995 http://dx.doi.org/10.1007/978-1-4757-2440-0.
[32] A.J.Smola, B.S.Lkopf “A tutorial on support vector regression”, Statistics and Computing, vol.14,pp.199–222, Nov 2004

http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88.

[33] B.Yang, X.Li “A Study on Software Reliability Prediction Based on Support Vector Machines” University of Electronic Science and
Technology of China, IEEE, doi : 1-4244-1529-2/07, 2007

[34] A. Wood, “Predicting software reliability,” Computer, vol.29, no. 11, pp. 69-77, 1996 http://dx.doi.org/10.1109/2.544240.

[35] P.F.Pai, W.C.Hong “Software reliability forecasting by support vector machines with simulated annealing algorithms” The Journal of Systems
and Software vol.79, pp.747–755, 2006 http://dx.doi.org/10.1016/j.jss.2005.02.025.

[36] H.Can1, X.Jianchun1, Z.Ruide ”A New Model for Software Defect Prediction Using Particle Swarm Optimization and Support Vector

Machine“ University of Science and Technology, Nanjing, China, DOI : 978-1-4673-5534-6/13, IEEE,2013
[37] Z.Qiuhong “Research of Software Failure Prediction Based on Support Vector Regression” The 2nd International Conference on Computer

Application and System Modeling, 2012

[38] C.Jin “Software reliability prediction based on support vector regression using a hybrid genetic algorithm and simulated annealing algorithm”
IET Software, Vol. 5, Iss. 4, pp.398–405, 2011 http://dx.doi.org/10.1049/iet-sen.2010.0073.

[39] L.Tian, A.Noore “Evolutionary neural network modeling for software cumulative failure time prediction” Reliability Engineering and System

Safety(elsevier), vol.87, pp 45–51, 2005 http://dx.doi.org/10.1016/j.ress.2004.03.028.
[40] Osaki, Shunji “Software Reliability Models” Book Section, Stochastic Models in Reliability and Maintenance,pp 53-280, Springer Berlin

Heidelberg, P.B.2002

[41] Jelinski, Z. and Moranda “Software reliability research”, In: Freiberger W. (ed), Statistical Computer Performance Evaluation, New York:
Academic Press, pp.465-497. P.B. 1972

[42] P. K. Kapur “Artificial Neural Networks Based SRGM” Springer Series in Reliability Engineering“Software Reliability Assessment with OR
Applications”, DOI: 10.1007/978-0-85729-204-9_7, 2011 http://dx.doi.org/10.1007/978-0-85729-204-9_7.

[43] Iyer, R.K, Lee, “Measurement Based analysis of software reliability” In: Handbook of software reliability engineering McGraw-Hill, New

York, pp 303-358, 1996
[44] Musa, J.D., Iannino, A., Okumoto, K. ”Software Reliability,Measurement, Prediction and application” McGraw-Hill, New York, 1987

[45] G.Paris, D.Robilliard,C.Fonlupt “Applying Boosting Techniques to Genetic Programming” Universit´e du Littoral-Cˆote d’Opale,Springer-

Verlag Berlin Heidelberg pp. 267–278, 2002
[46] S.Yamada “Software Reliability Models” Tottori University,Book chapter,Springer-Verlag Berlin Heidelberg, 2002

[47] R.H.Reussner, H.W.Schmidt “Reliability prediction for component-based software architectures” Journal of Systems and Software, vol.66, pp.

241–252, 2003 http://dx.doi.org/10.1016/S0164-1212(02)00080-8.
[48] R. Chillarege, “Orthogonal defect classification” in Handbook of Software Reliability Engineering, M. R. Lyu, Ed. New York: McGraw-

Hill,1996, pp. 359–400

[49] S.Dick, C.L. Bethel, A.Kandel, “Software-Reliability Modeling: The Case for Deterministic Behavior” IEEE Trans. On Systems man and
cyber, vol. 37, no.1,pp. 106–119, Janu,2007

[50] A.L.Goel, K.Okumoto “GoelOkumoto Time-Dependent Error-Detection Rate Model for Software Reliability and Other Performance

Measures” IEEE Trans. Reliability., vol. 28, no.3,pp. 206–212, Aug. 1979 http://dx.doi.org/10.1109/TR.1979.5220566.
[51] Osaki, Shunji “Software Reliability Models” Book Section of Stochastic Models in Reliability and Maintenance,pp 53-280, Springer Berlin

Heidelberg, P.B.2002.

http://dx.doi.org/10.1109/ISSRE.1992.285856
http://dx.doi.org/10.1109/32.148475
http://dx.doi.org/10.1109/24.799900
http://dx.doi.org/10.1016/j.jss.2004.08.023
http://dx.doi.org/10.1016/j.jss.2006.06.017
http://dx.doi.org/10.1109/24.537016
http://dx.doi.org/10.1109/TR.2010.2040759
http://dx.doi.org/10.1007/978-1-4757-2440-0
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1109/2.544240
http://dx.doi.org/10.1016/j.jss.2005.02.025
http://dx.doi.org/10.1049/iet-sen.2010.0073
http://dx.doi.org/10.1016/j.ress.2004.03.028
http://dx.doi.org/10.1007/978-0-85729-204-9_7
http://dx.doi.org/10.1016/S0164-1212(02)00080-8
http://dx.doi.org/10.1109/TR.1979.5220566

