
Journal of Advanced Computer Science and Technology, 1 (4) (2012) 337-346

©Science Publishing Corporation

www.sciencepubco.com/index.php/JACST

Reconfigurable Architectures

Abida Yousuf, Roohie Naaz Mir, and

Hakim Najeeb-ud-din (SMIEEE)

Department of Information Technology,

E-mail: abidayousuf.17@gmail.com

Department of Computer Sciences and Engineering

E-mail: naaz310@yahoo.co.in

Department of Electronics and Communication Engineering

E-mail: najeeb@nitsri.net

Abstract

In the area of computer architecture, designers are faced with the
trade-of between flexibility and performance. The architectural choices
span a wide spectrum, with general-purpose processors and application
specific integrated circuits (ASICs) at opposite ends. General-purpose
processors are not optimized to specific applications, they are flexible
due to their versatile instruction sets that allow the implementation of
every computable task. ASICs are dedicated hardware devices that can
achieve higher performance, require less silicon area, and are less
power-consuming than instruction-level programmable processors.
However, they lack in flexibility. Reconfigurable computer
architectures promise to overcome this traditional trade-off and
achieve both, the high performance of ASICs and the flexibility of
general-purpose processors.

Keywords: ASICs, Compile Time Reconfiguration, FPGA, Reconfigurable
Computing, Run Time Reconfiguration.

1 Introduction

The concept of reconfigurable computing has existed since 1960, when Gerald

Estrin’s land mark paper proposed the concept of a computer made of a standard

processor and an array of reconfigurable hardware. The main processor would

control the behavior of the reconfigurable hardware. Once the task was done, the

hardware could be adjusted to do some other task. This results in hybrid computer

338 Abida Yousuf, Roohie Naaz Mir, H.Najeeb-Ud-Din

structure combining the flexibility of software with speed of hardware. But

unfortunately this idea was far ahead of its time in needed electronic technology.

Reconfigurable devices like field-programmable gate arrays (FPGAs) contain an

array of computational elements whose functionality is determined through

multiple programmable configuration bits. For a given application, at a given

time, the spatial structure of the device will be modified such as to use the best

computing approach to speed up that particular application. If a new application

has to be computed, the device structure will be modified again to match the new

application. Contrary to the Von Neumann computers, which are programmed by

a set of instructions to be executed sequentially, the structure of reconfigurable

devices are changed by modifying all or part of the hardware at compile-time or at

run-time, usually by downloading a logic onto the device. In reconfigurable

systems, Flexibility is possible because ‘the application must always adapt to the

hardware’ in order to be executed and the Performance is possible because ‘the

hardware is always adapted to the application.’ If we consider two scales, one for

the performance and the other for the flexibility, then the General Purpose

Computers (GPP) can be placed at one end and the Application Specific

Integrated Circuits (ASICs) at the other end as illustrated in Fig. 1.

Reconfigurable computing is intended to fill the gap between hardware and

software, achieving potentially much higher performance than software, while

maintaining a higher level of flexibility than hardware [1] [2].

Ideally, we would like to have the flexibility of the GPP and the performance of

the ASIC in the same device. We would like to have a device able ‘to adapt to the

application’ on the fly. We call such a hardware device a reconfigurable

hardware or reconfigurable device or reconfigurable processing unit (RPU) in

analogy to the Central Processing Unit (CPU) [2].

Fig.1: Flexibility v/s performance of processor classes.

Reconfigurable Architectures 339

2 Vision for Reconfigurable Computer

Reconfigurable computing is defined as a computer having hardware that can be

reconfigured to implement application-specific functions and is typically shown in

Fig. 2. The reconfigurable computer systems combine microprocessors and

programmable logic devices, typically field programmable gate arrays (FPGAs),

into a single system. Reconfigurable computing allows applications to map

computationally dense code to hardware. This mapping often provides orders of

magnitude improvements in speed while decreasing power and space

requirements.

Fig. 2: A typical schematic of a reconfigurable computer.

As mentioned above, RC uses programmable FPGAs. Current FPGA technology

provides more than 10 million logic elements, internal clock rates over 200MHz,

and pin toggle rates approaching 10 Gb/s. With these large devices, the scope of

applications that can target an FPGA has dramatically increased. The challenges

for using FPGAs effectively fall into two categories: ease of use and performance

[3] [4] [5].

Ease of use issues includes the following:

1. Methodology of generating the ‘program’ or bit stream for the FPGA.

2. Ability to debug an application running on both the microprocessor and FPGA

simultaneously.

3. Interface between the application and the system or Application Programming

Interface (API).

Performance issues include the following:

1. Data movement (bandwidth) between microprocessors and FPGAs.

2. Latency of communication between microprocessors and FPGAs.

3. Scalability of the system topology.

Performance is the fundamental reason for using RC systems. By mapping

algorithms to hardware, designers can tailor not only the computational

components, but also perform data flow optimization to match the algorithm.

340 Abida Yousuf, Roohie Naaz Mir, H.Najeeb-Ud-Din

Today’s FPGAs provide over a terabyte per second of memory bandwidth from

small on chip memories as well as tens of billions of operations per second.

Transferring data to the FPGA and receiving the results poses a difficult challenge

to RC system designers. In addition to bandwidth, efficient use of FPGA

resources requires low latency communication between the host microprocessor

and the FPGAs. Achieving low latency in the presence of high bandwidth

communication is one of the most difficult obstacles facing a system designer.

When low latency is achieved, scaling and optimization across multiple

computational elements can occur, often called load balancing [6] [7] [8].

2.1 Coupling with Host Processor

There are several ways in which reconfigurable element may be coupled with the

host processor as illustrated in Fig. 3 [9] [10].

Initially, reconfigurable hardware can be used solely to provide reconfigurable

functional units within a host processor. This allows for a traditional programming

environment with the addition of custom instructions that may change over time.

Here, the reconfigurable units execute as functional units on the main

microprocessor data-path, with registers used to hold the input and output

operands. Then a reconfigurable unit may be used as a coprocessor. A coprocessor

is in general larger than a functional unit, and is able to perform computations

without the constant supervision of the host processor. Instead, the processor

initializes the reconfigurable hardware and either sends the necessary data to the

logic, or provides information on where this data might be found in memory.

Next, an attached reconfigurable processing unit behaves as if it is an additional

processor in a multiprocessor system. The host processor's data cache is not

visible to the attached reconfigurable processing unit. Therefore, there is a higher

delay in communication between the host processor and the reconfigurable

hardware, such as when communicating configuration information, input data, and

results. However, this type of reconfigurable hardware does allow for a great deal

of computation independence, by shifting large chunks of a computation over to

the reconfigurable hardware.

Fig. 3: Different levels of coupling in a reconfigurable system, Reconfigurable

logic is shaded.

Reconfigurable Architectures 341

Finally, the most loosely coupled form of reconfigurable hardware is that of an

external standalone processing unit. This type of reconfigurable hardware

communicates infrequently with a host processor. This model is similar to that of

networked workstations, where processing may occur for very long periods of

time without a great deal of communication.

3 Reconfigurable Architecture Systems

The research efforts in reconfigurable computing are divided into two groups

according to the level of the used hardware abstraction or granularity [11] as

follows:

1. Fine-grained reconfiguration System.

2. Course-grained reconfiguration System.

3.1 Fine-Grained Reconfiguration System

The hardware abstraction in this approach is the gate and register level. By

reconfiguration of registers, gates, and their interconnections, the internal

structure of typical functional units is changed. This approach has been enabled

by the development of SRAM-based field-programmable gate arrays (FPGAs).

3.1.1 Basic System Architecture

The basic architecture for fine-grained reconfigurable systems is shown in Fig. 4.

The reconfigurable hardware (FPGA) is connected to a host processor by a

memory bus. In many systems, the FPGAs have separate data-paths to the

memories which require dual-ported RAMs or arbitration logic.

Fig. 4: Basic system architecture for fine-grained reconfiguration.

342 Abida Yousuf, Roohie Naaz Mir, H.Najeeb-Ud-Din

Reconfigurable architectures can be differentiated with coprocessors and attached

processors. The former contain only a small number of FPGAs and are mostly

found in embedded applications. Attached processors denote architectures that

employ arrays of FPGAs. These architectures often use programmable switches to

interconnect FPGAs with FPGAs or memories and are targeted to general-purpose

processing. For many applications, FPGA-based computing machines achieve

sound speedups compared to general-purpose processors. The sources of these

speedups are manifold. First, dedicated function units and data paths are

specialized to the actually required operations and number of bits. Second,

parallelism is exploited at the operation level. Third, customized memory

architectures provide the memory bandwidth required to keep the parallelized

function units busy. The control is specialized, and hard-wired instruction fetching

and decoding are eliminated. Typical of FPGAs with their highly regular array-

like structure are deep pipelines, e.g. bit-serial and systolic designs. Pipelining is

often used for digital signal processing (DSP) applications, where latency is

traded in for high throughput [12].

3.1.2 The main Characteristics of Fine Grained Systems are as under:

1. Maps small groups of instructions onto the reconfigurable device.

2. A lot of communication is needed between those parts.

3. Low granularity implies greater flexibility.

4. Needs more power and more space, However higher delays occur (more

routing is required).

5. Logic cells have at least 1 bit.

6. A wide variety of applications benefits from this paradigm with speed ups

between 2 and 5.

3.2 Coarse-Grained Reconfiguration System

The hardware abstraction in this approach is based on a set of fixed blocks, like

functional units, processor cores, and memory tiles. Reconfigurability is achieved

by reprogramming the switches that interconnect processor cores, ALUs, and

memory tiles. It is often argued that these architectures should be called adaptive

rather than reconfigurable. In fact, the distinction between reconfigurability and

programmability is blurred. All research efforts in this area target general-purpose

computing and the organizational issues of future generation processors. This

work is driven by the following two trends of IC technology and application

demands respectively [12].

- The trend from IC technology is the increased importance of wire delay in the

future one billion transistor single-chip processors. Along with decreasing

silicon feature sizes, the speed of gates doubles every 5 years, but the wires

slow down by a factor of 4 in the same time. This 8-fold increase in the

relative wire-to-gate delay limits the scalability of contemporary general-

Reconfigurable Architectures 343

purpose processors that use centralized control and register files. Future

processor architectures will have to consist of some sort of local computing

clusters that are interconnected.

- The application trend is the increased importance of data-streaming

workloads. The term data-streaming describes DSP algorithms that process

large amounts of data. Examples are video compression or graphics, as used in

multi-media applications. The support of multimedia applications already

drives the instruction-set design for current processors. However, to achieve

higher and scalable performance for future generation processors, parallelism

will have to be exploited to a much greater extent and at more levels than it is

done now.

The main Characteristics of Coarse-grained Systems are as under:

1. Maps large, computationally-intensive parts to the reconfigurable array.

2. Potential to reduce communication between internal blocks.

3. Better optimized for standard data path applications.

4. Every CLB (configurable logic block) has more than 1 Bit (2, 4 or more bits

are usually).

5. Optimized for large bit-width computation.

6. More power efficient, lower delays (less routing is required).

7. Suffers for 1 bit-width instructions.

4 Reconfiguration Models

 There are two reconfiguration models: compile-time reconfiguration (CTR) and

run-time reconfiguration (RTR), as shown in the schematic 5. CTR is the most

often used model in fine-grained reconfigurable computing. RTR is a rather new

technique and only few application examples have been reported yet.

Fig. 5: Reconfiguration Model.

344 Abida Yousuf, Roohie Naaz Mir, H.Najeeb-Ud-Din

4.1 Compile-Time Reconfiguration (CTR)

The reconfigurable hardware system is configured prior to the application's run-

time, i.e. at compile-time, and remains static during the run-time. The main goal

of CTR architectures is to achieve high performance as hardware accelerators.

The critical, i.e. most time-consuming portions of an application are extracted and

synthesized to run on the reconfigurable hardware. The extraction of critical

program portions is either done automatically or by user assistance. For

applications that contain long integer operations, e.g. cryptography, or linear

systolic applications, these machines have achieved a higher performance than

conventional supercomputers.

Reconfigurable architectures for emulation and prototyping of digital systems

belong also to the category of CTR systems. They are used during the design

process of ASICs and general-purpose designs to verify by emulation. As digital

systems are often described in hardware description languages (HDLs), these

emulation and prototyping architectures can be seen as HDL accelerators.

4.2 Run-Time Reconfiguration (RTR)

In RTR, also called dynamic reconfiguration, the hardware is reconfigured during

the application's run-time. An application is split into segments that are executed

successively, utilizing the same reconfigurable hardware. RTR can increase the

functional density of FPGAs. The functional density is defined as

 1D AT

This metric includes the area A in some unit hardware resources and the execution

time T for a task. Generally, successfully applied RTR increases T slightly by the

additional reconfiguration time, but decreases A to a much greater extend. RTR

systems are used in two cases.

 In the first case, RTR architectures substitute larger CTR systems or systems with

several ASICs in embedded systems. Here, the goal of RTR is to reduce the cost.

The second case is applications where CTR systems are not feasible due to

excessive hardware requirements. Compared to CTR, RTR involves three

additional problems: temporal partitioning, reconfiguration overhead, and inter-

configuration communication.

In temporal partitioning, an application is split into time-exclusive segments. For

each of these segments dedicated hardware is designed. Many applications break

down into segments or operational phases quite naturally. As the reconfiguration

takes places during the application's run-time, the reconfiguration time becomes

an overhead. This reconfiguration overhead, i.e. the ratio of the reconfiguration

time to the execution time must be kept as small as possible. Therefore, FPGAs

with short reconfiguration times are of utmost importance. The problem of inter-

configuration communication arises, when one FPGA configuration produces

Reconfigurable Architectures 345

results that are used by other configurations. To avoid this, results are stored

temporarily in a memory or in FPGA registers/RAM cells that are not destroyed

during reconfiguration.

RTR can be further divided into global and local RTR. In global RTR, the

complete FPGA is reconfigured. To achieve an acceptable FPGA utilization, the

application must be partitioned into segments with roughly equally-sized

hardware requirements. An application class for RTR is pattern matching, where

huge amounts of data have to be compared with different templates. For each

template dedicated hardware is designed, leading to high speedups compared to

software solutions. If the number of templates is high, CTR systems become

infeasible. RTR systems however, have been built in these cases for free-text

database searching or scanning the human genome database. In local RTR, only a

part of the FPGA is reconfigured, while the other parts of the FPGA remain

active. This gives greater flexibility than global RTR, because the segment sizes

are not required to be equal. However, the partitioning and design process for

local RTR systems is very complicated, as the correct interfacing of the different

concurrent designs on the FPGA must be assured. Examples for local RTR

systems have been reported for artificial neural networks.

5 Conclusion

Reconfigurable computing is becoming an integral part of research in computer

architectures and software systems. By placing the computationally intense

portions of an application onto the reconfigurable hardware, the overall

application can be greatly accelerated. An architectural paradigm shift is required

to meet the complex problems facing high-performance computing (HPC).

Although challenges abound, RC systems allow us to explore solutions that are

not viable in today’s limited computing environments. The benefits in size, speed

and power alone make RC systems a necessity.

This paper surveys reconfigurable computing, architecture and design issues. The

main trends in architectures are fine grained and course grained systems and the

main trends in design methods are compile time and run time reconfiguration

models

References

[1] Christophe Bobde, “Introduction to Reconfigurable Computing,” Springer,

(2007).

[2] K .Hwang, “Advanced computer architecture,” McGraw-Hill, (1993).

[3] R. Hartenstein, “Basics of reconfigurable computing,” Springer, (2007), pp.

451-501.

346 Abida Yousuf, Roohie Naaz Mir, H.Najeeb-Ud-Din

[4] Stephen Brown, and Jonathan Rose, “Architecture of FPGAs and CPLDs: A

Tutorial,”Available at http://www.eecg.toronto.edu/~jayar/pubs/brown/

survey pdf.

[5] T. J. Todman, G.Constantinides, O.Mender, and P. Cheung, “Reconfigurable

computing: architectures and design methods,” Proceedings of the IEE -

Computers and Digital Techniques, Vol. 152, No. 2, (2005), pp. 193-207.

[6] D.A Buell and Kenneth, L. Pocek, “An introduction to custom computing

machines,” The Journal of Super Computing, Vol. 9, No. 3, (1995), pp. 219-

230.

[7] R. Hartenstein, “A decade of reconfigurable computing,” Proceedings,

Conference on Design, Automation and Test in Europe, Munich, Germany,

(2001), pp. 642-649.

[8] R. Hartenstein, H. Grünbacher, “The Roadmap to reconfigurable

computing ,” Proceedings of the 10
th

 International Conference on Field-

 Programmable Logic and Applications, Springer Verlag, Heidelberg,

Lecture Notes in Computer Science, Villach, Austria, Vol. LNCS 1896, (FPL

2000).

[9] R. Hartenstein, “Morphware and Configware,” Springer, (2006).

[10] K. Compton, S. Hauck, “Configurable computing: A survey of systems and

software,” Northwestern University, Dept. of ECE Technical Report, (1999),

pp. 1-2.

[11] Stamatis, Vassiliadis, D. Soudris, “Fine and course grained reconfigurable

computing,” Springer, (2007).

[12] S. Hauck, “The role of FPGAs in reprogrammable systems,” Proceedings of

the IEEE Vol. 86, No. 4, (1998), pp. 615-638.

[13] R. Hartenstein, “Course grained reconfigurable architectures,” Proceedings

of the Asia and South Pacific Design Automation Conference (ASP-DAC),

Yokohama, Japan, (2001), pp. 564-570.

[14] S. Hauck and A. Dehon, “Reconfigurable Computing: The theory and

practice of FPGA-Based computation,” Morgan Kaufmann Series in Systems

on Silicon, (2008).

