
Journal of Advanced Computer Science and Technology, 1 (4) (2012) 337-346 

©Science Publishing Corporation 

www.sciencepubco.com/index.php/JACST 
 

 

 

Reconfigurable Architectures 

Abida Yousuf, Roohie Naaz Mir, and 
 
Hakim Najeeb-ud-din (SMIEEE) 

 

Department of Information Technology, 

E-mail: abidayousuf.17@gmail.com 

Department of Computer Sciences and Engineering 

E-mail: naaz310@yahoo.co.in 

Department of Electronics and Communication Engineering 

E-mail: najeeb@nitsri.net 

 

Abstract 

In the area of computer architecture, designers are faced with the 
trade-of between flexibility and performance. The architectural choices 
span a wide spectrum, with general-purpose processors and application 
specific integrated circuits (ASICs) at opposite ends. General-purpose 
processors are not optimized to specific applications, they are flexible 
due to their versatile instruction sets that allow the implementation of 
every computable task. ASICs are dedicated hardware devices that can 
achieve higher performance, require less silicon area, and are less 
power-consuming than instruction-level programmable processors. 
However, they lack in flexibility. Reconfigurable computer 
architectures promise to overcome this traditional trade-off and 
achieve both, the high performance of ASICs and the flexibility of 
general-purpose processors. 

Keywords: ASICs, Compile Time Reconfiguration, FPGA, Reconfigurable 
Computing, Run Time Reconfiguration. 

 

1 Introduction 

The concept of reconfigurable computing has existed since 1960, when Gerald 

Estrin’s land mark paper proposed the concept of a computer made of a standard 

processor and an array of reconfigurable hardware. The main processor would 

control the behavior of the reconfigurable hardware. Once the task was done, the 

hardware could be adjusted to do some other task. This results in hybrid computer 
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structure combining the flexibility of software with speed of hardware. But 

unfortunately this idea was far ahead of its time in needed electronic technology. 

Reconfigurable devices like field-programmable gate arrays (FPGAs) contain an 

array of computational elements whose functionality is determined through 

multiple programmable configuration bits. For a given application, at a given 

time, the spatial structure of the device will be modified such as to use the best 

computing approach to speed up that particular application. If a new application 

has to be computed, the device structure will be modified again to match the new 

application. Contrary to the Von Neumann computers, which are programmed by 

a set of instructions to be executed sequentially, the structure of reconfigurable 

devices are changed by modifying all or part of the hardware at compile-time or at 

run-time, usually by downloading a logic onto the device. In reconfigurable 

systems, Flexibility is possible because ‘the application must always adapt to the 

hardware’ in order to be executed and the Performance is possible because ‘the 

hardware is always adapted to the application.’ If we consider two scales, one for 

the performance and the other for the flexibility, then the General Purpose 

Computers (GPP) can be placed at one end and the Application Specific 

Integrated Circuits (ASICs) at the other end as illustrated in Fig. 1. 

Reconfigurable computing is intended to fill the gap between hardware and 

software, achieving potentially much higher performance than software, while 

maintaining a higher level of flexibility than hardware [1] [2]. 

Ideally, we would like to have the flexibility of the GPP and the performance of 

the ASIC in the same device. We would like to have a device able ‘to adapt to the 

application’ on the fly. We call such a hardware device a reconfigurable 

hardware or reconfigurable device or reconfigurable processing unit (RPU) in 

analogy to the Central Processing Unit (CPU) [2]. 

 

 

Fig.1: Flexibility v/s performance of processor classes. 
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2 Vision for Reconfigurable Computer 

Reconfigurable computing is defined as a computer having hardware that can be 

reconfigured to implement application-specific functions and is typically shown in 

Fig. 2. The reconfigurable computer systems combine microprocessors and 

programmable logic devices, typically field programmable gate arrays (FPGAs), 

into a single system. Reconfigurable computing allows applications to map 

computationally dense code to hardware. This mapping often provides orders of 

magnitude improvements in speed while decreasing power and space 

requirements. 

 

Fig. 2: A typical schematic of a reconfigurable computer. 

 

As mentioned above, RC uses programmable FPGAs. Current FPGA technology 

provides more than 10 million logic elements, internal clock rates over 200MHz, 

and pin toggle rates approaching 10 Gb/s. With these large devices, the scope of 

applications that can target an FPGA has dramatically increased. The challenges 

for using FPGAs effectively fall into two categories: ease of use and performance 

[3] [4] [5]. 

Ease of use issues includes the following: 

1. Methodology of generating the ‘program’ or bit stream for the FPGA. 

2. Ability to debug an application running on both the microprocessor and FPGA 

simultaneously. 

3. Interface between the application and the system or Application Programming 

Interface (API). 

Performance issues include the following: 

1. Data movement (bandwidth) between microprocessors and FPGAs. 

2. Latency of communication between microprocessors and FPGAs. 

3. Scalability of the system topology. 

Performance is the fundamental reason for using RC systems. By mapping 

algorithms to hardware, designers can tailor not only the computational 

components, but also perform data flow optimization to match the algorithm. 
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Today’s FPGAs provide over a terabyte per second of memory bandwidth from 

small on chip memories as well as tens of billions of operations per second. 

Transferring data to the FPGA and receiving the results poses a difficult challenge 

to RC system designers. In addition to bandwidth, efficient use of FPGA 

resources requires low latency communication between the host microprocessor 

and the FPGAs. Achieving low latency in the presence of high bandwidth 

communication is one of the most difficult obstacles facing a system designer. 

When low latency is achieved, scaling and optimization across multiple 

computational elements can occur, often called load balancing [6] [7] [8]. 

2.1   Coupling with Host Processor 

There are several ways in which reconfigurable element may be coupled with the 

host processor as illustrated in Fig. 3 [9] [10].  

Initially, reconfigurable hardware can be used solely to provide reconfigurable 

functional units within a host processor. This allows for a traditional programming 

environment with the addition of custom instructions that may change over time. 

Here, the reconfigurable units execute as functional units on the main 

microprocessor data-path, with registers used to hold the input and output 

operands. Then a reconfigurable unit may be used as a coprocessor. A coprocessor 

is in general larger than a functional unit, and is able to perform computations 

without the constant supervision of the host processor. Instead, the processor 

initializes the reconfigurable hardware and either sends the necessary data to the 

logic, or provides information on where this data might be found in memory. 

Next, an attached reconfigurable processing unit behaves as if it is an additional 

processor in a multiprocessor system. The host processor's data cache is not 

visible to the attached reconfigurable processing unit. Therefore, there is a higher 

delay in communication between the host processor and the reconfigurable 

hardware, such as when communicating configuration information, input data, and 

results. However, this type of reconfigurable hardware does allow for a great deal 

of computation independence, by shifting large chunks of a computation over to 

the reconfigurable hardware. 

 

Fig. 3: Different levels of coupling in a reconfigurable system, Reconfigurable 

logic is shaded. 
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Finally, the most loosely coupled form of reconfigurable hardware is that of an 

external standalone processing unit. This type of reconfigurable hardware 

communicates infrequently with a host processor. This model is similar to that of 

networked workstations, where processing may occur for very long periods of 

time without a great deal of communication. 

 

3 Reconfigurable Architecture Systems  

The research efforts in reconfigurable computing are divided into two groups 

according to the level of the used hardware abstraction or granularity [11] as 

follows: 

1. Fine-grained reconfiguration System. 

2. Course-grained reconfiguration System. 

3.1   Fine-Grained Reconfiguration System   

The hardware abstraction in this approach is the gate and register level. By 

reconfiguration of registers, gates, and their interconnections, the internal 

structure of typical functional units is changed. This approach has been enabled 

by the development of SRAM-based field-programmable gate arrays (FPGAs). 

3.1.1   Basic System Architecture 

The basic architecture for fine-grained reconfigurable systems is shown in Fig. 4. 

The reconfigurable hardware (FPGA) is connected to a host processor by a 

memory bus. In many systems, the FPGAs have separate data-paths to the 

memories which require dual-ported RAMs or arbitration logic. 

 

Fig. 4: Basic system architecture for fine-grained reconfiguration. 
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Reconfigurable architectures can be differentiated with coprocessors and attached 

processors. The former contain only a small number of FPGAs and are mostly 

found in embedded applications. Attached processors denote architectures that 

employ arrays of FPGAs. These architectures often use programmable switches to 

interconnect FPGAs with FPGAs or memories and are targeted to general-purpose 

processing. For many applications, FPGA-based computing machines achieve 

sound speedups compared to general-purpose processors. The sources of these 

speedups are manifold. First, dedicated function units and data paths are 

specialized to the actually required operations and number of bits. Second, 

parallelism is exploited at the operation level. Third, customized memory 

architectures provide the memory bandwidth required to keep the parallelized 

function units busy. The control is specialized, and hard-wired instruction fetching 

and decoding are eliminated. Typical of FPGAs with their highly regular array-

like structure are deep pipelines, e.g. bit-serial and systolic designs. Pipelining is 

often used for digital signal processing (DSP) applications, where latency is 

traded in for high throughput [12]. 

3.1.2   The main Characteristics of Fine Grained Systems are as under: 

1. Maps small groups of instructions onto the reconfigurable device. 

2. A lot of communication is needed between those parts. 

3. Low granularity implies greater flexibility. 

4. Needs more power and more space, However higher delays occur (more 

routing is required).  

5. Logic cells have at least 1 bit. 

6. A wide variety of applications benefits from this paradigm with speed ups 

between 2 and 5. 

3.2   Coarse-Grained Reconfiguration System 

The hardware abstraction in this approach is based on a set of fixed blocks, like 

functional units, processor cores, and memory tiles. Reconfigurability is achieved 

by reprogramming the switches that interconnect processor cores, ALUs, and 

memory tiles. It is often argued that these architectures should be called adaptive 

rather than reconfigurable. In fact, the distinction between reconfigurability and 

programmability is blurred. All research efforts in this area target general-purpose 

computing and the organizational issues of future generation processors. This 

work is driven by the following two trends of IC technology and application 

demands respectively [12]. 

- The trend from IC technology is the increased importance of wire delay in the 

future one billion transistor single-chip processors. Along with decreasing 

silicon feature sizes, the speed of gates doubles every 5 years, but the wires 

slow down by a factor of 4 in the same time. This 8-fold increase in the 

relative wire-to-gate delay limits the scalability of contemporary general-
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purpose processors that use centralized control and register files. Future 

processor architectures will have to consist of some sort of local computing 

clusters that are interconnected. 

- The application trend is the increased importance of data-streaming 

workloads. The term data-streaming describes DSP algorithms that process 

large amounts of data. Examples are video compression or graphics, as used in 

multi-media applications. The support of multimedia applications already 

drives the instruction-set design for current processors. However, to achieve 

higher and scalable performance for future generation processors, parallelism 

will have to be exploited to a much greater extent and at more levels than it is 

done now. 

The main Characteristics of Coarse-grained Systems are as under: 

1. Maps large, computationally-intensive parts to the reconfigurable array. 

2. Potential to reduce communication between internal blocks. 

3. Better optimized for standard data path applications. 

4. Every CLB (configurable logic block) has more than 1 Bit (2, 4 or more bits 

are usually). 

5. Optimized for large bit-width computation. 

6. More power efficient, lower delays (less routing is required). 

7. Suffers for 1 bit-width instructions. 

 

4 Reconfiguration Models  

 There are two reconfiguration models: compile-time reconfiguration (CTR) and 

run-time reconfiguration (RTR), as shown in the schematic 5. CTR is the most 

often used model in fine-grained reconfigurable computing. RTR is a rather new 

technique and only few application examples have been reported yet.  

 

 

Fig. 5: Reconfiguration Model. 



 

 

 

344 Abida Yousuf, Roohie Naaz Mir, H.Najeeb-Ud-Din 

 

4.1   Compile-Time Reconfiguration (CTR) 

The reconfigurable hardware system is configured prior to the application's run-

time, i.e. at compile-time, and remains static during the run-time. The main goal 

of CTR architectures is to achieve high performance as hardware accelerators. 

The critical, i.e. most time-consuming portions of an application are extracted and 

synthesized to run on the reconfigurable hardware. The extraction of critical 

program portions is either done automatically or by user assistance. For 

applications that contain long integer operations, e.g. cryptography, or linear 

systolic applications, these machines have achieved a higher performance than 

conventional supercomputers. 

Reconfigurable architectures for emulation and prototyping of digital systems 

belong also to the category of CTR systems. They are used during the design 

process of ASICs and general-purpose designs to verify by emulation.  As digital 

systems are often described in hardware description languages (HDLs), these 

emulation and prototyping architectures can be seen as HDL accelerators.  

4.2   Run-Time Reconfiguration (RTR) 

In RTR, also called dynamic reconfiguration, the hardware is reconfigured during 

the application's run-time. An application is split into segments that are executed 

successively, utilizing the same reconfigurable hardware. RTR can increase the 

functional density of FPGAs. The functional density is defined as 

  1D AT   

This metric includes the area A in some unit hardware resources and the execution 

time T for a task. Generally, successfully applied RTR increases T slightly by the 

additional reconfiguration time, but decreases A to a much greater extend. RTR 

systems are used in two cases. 

 In the first case, RTR architectures substitute larger CTR systems or systems with 

several ASICs in embedded systems. Here, the goal of RTR is to reduce the cost. 

The second case is applications where CTR systems are not feasible due to 

excessive hardware requirements. Compared to CTR, RTR involves three 

additional problems: temporal partitioning, reconfiguration overhead, and inter-

configuration communication.  

In temporal partitioning, an application is split into time-exclusive segments. For 

each of these segments dedicated hardware is designed. Many applications break 

down into segments or operational phases quite naturally. As the reconfiguration 

takes places during the application's run-time, the reconfiguration time becomes 

an overhead. This reconfiguration overhead, i.e. the ratio of the reconfiguration 

time to the execution time must be kept as small as possible. Therefore, FPGAs 

with short reconfiguration times are of utmost importance. The problem of inter-

configuration communication arises, when one FPGA configuration produces 
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results that are used by other configurations. To avoid this, results are stored 

temporarily in a memory or in FPGA registers/RAM cells that are not destroyed 

during reconfiguration. 

RTR can be further divided into global and local RTR. In global RTR, the 

complete FPGA is reconfigured. To achieve an acceptable FPGA utilization, the 

application must be partitioned into segments with roughly equally-sized 

hardware requirements. An application class for RTR is pattern matching, where 

huge amounts of data have to be compared with different templates. For each 

template dedicated hardware is designed, leading to high speedups compared to 

software solutions. If the number of templates is high, CTR systems become 

infeasible. RTR systems however, have been built in these cases for free-text 

database searching or scanning the human genome database. In local RTR, only a 

part of the FPGA is reconfigured, while the other parts of the FPGA remain 

active. This gives greater flexibility than global RTR, because the segment sizes 

are not required to be equal. However, the partitioning and design process for 

local RTR systems is very complicated, as the correct interfacing of the different 

concurrent designs on the FPGA must be assured. Examples for local RTR 

systems have been reported for artificial neural networks. 

 

5 Conclusion  

Reconfigurable computing is becoming an integral part of research in computer 

architectures and software systems. By placing the computationally intense 

portions of an application onto the reconfigurable hardware, the overall 

application can be greatly accelerated. An architectural paradigm shift is required 

to meet the complex problems facing high-performance computing (HPC). 

Although challenges abound, RC systems allow us to explore solutions that are 

not viable in today’s limited computing environments. The benefits in size, speed 

and power alone make RC systems a necessity. 

This paper surveys reconfigurable computing, architecture and design issues. The 

main trends in architectures are fine grained and course grained systems and the 

main trends in design methods are compile time and run time reconfiguration 

models 
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