A comparative study of particle swarm optimization and genetic algorithm
DOI:
https://doi.org/10.14419/jacst.v8i2.29401Published:
2019-10-19Keywords:
Particle Swarm Optimization (PSO), Genetic Algorithms (GAS), Swarm Intelligence, PSO and GA Comparison.Abstract
This paper provides an introduction and a comparison of two widely used evolutionary computation algorithms: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) based on the previous studies and researches. It describes Genetic Algorithm basic functionalities including various steps such as selection, crossover, and mutation.
References
[1] Alba, E. and Troya, J. (1999). A survey of parallel distributed genetic algorithms. Complexity, 4(4), pp.31-52. https://doi.org/10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-CPLX5>3.0.CO;2-4.
[2] A.J., U. and P.D., S. (2015). CROSSOVER OPERATORS IN GENETIC ALGORITHMS: A REVIEW. ICTACT Journal on Soft Computing, 06(01), pp.1083-1092. https://doi.org/10.21917/ijsc.2015.0150.
[3] Almufti, S. (2017). Using Swarm Intelligence for solving NPHard Problems. Academic Journal of Nawroz University, 6(3), pp. 46-50. https://doi.org/10.25007/ajnu.v6n3a78.
[4] Almufti, S. (2015). U-Turning Ant Colony Algorithm powered by Great Deluge Algorithm for the solution of TSP Problem. [online] Hdl.handle.net. Available at: http://hdl.handle.net/11129/1734 [Accessed 5 Aug. 2018].
[5] Almufti S., & Shaban A., (2018), U-Turning Ant Colony Algorithm for Solving Symmetric Traveling Salesman Problem, Academic Journal of Nawroz University, vol. 7, no. 4, pp. 45-49, Available: 10.25007/ajnu. v6n4a270. https://doi.org/10.25007/ajnu.v6n4a270.
[6] Almufti, S., R. Asaad, R., & B. Salim, (2019). Review on Elephant Herding Optimization Algorithm Performance in Solving Optimization Problems. International Journal of Engineering & Technology, 7(4), 6109-6114.
[7] Almufti, S., Marqas, R., & Ashqi V., (2019). Taxonomy of bio-inspired optimization algorithms. Journal Of Advanced Computer Science & Technology, 8(2), 23. https://doi.org/10.14419/jacst.v8i2.29402.
[8] Almufti, S., Marqas, R., & Asaad, R. (2019). Comparative study between elephant herding optimization (EHO) and U-turning ant colony optimization (U-TACO) in solving symmetric traveling salesman problem (STSP). Journal Of Advanced Computer Science & Technology, 8(2), 32. https://doi.org/10.14419/jacst.v8i2.29403.
[9] Asaad, R., Abdulnabi, N. (2018). Using Local Searches Algorithms with Ant Colony Optimization for the Solution of TSP Problems. Academic Journal of Nawroz University, 7(3), 1-6. https://doi.org/10.25007/ajnu.v7n3a193.
[10] Coello, Carlos. "An updated survey of GA-based multiobjective optimization techniques." ACM Computing Surveys, vol.32, no.2, p.109-143 (June 2000). https://doi.org/10.1145/358923.358929.
[11] D. E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning, Addison-Wesley, 1989.
[12] D.E. Goldberg. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, New York,
[13] DeJong, K. 1975. An Analysis of the Behavior of a Class of Genetic Adaptive Systems, PhD Dissertation, Department of Computer and Communication Sciences, University of Michigan, Ann Arbor.
[14] G. Sywerda, Uniform crossover in genetic algorithms, in Proceedings of the 3rd International Conference on Genetic Algorithms, 1989, pp. 2-9.
[15] Hochbaum, S. (1997), Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston. https://doi.org/10.1145/261342.571216.
[16] Holland, J. H. 1975. Adaptation in Natural and Artificial Systems, University of Michigan Press. Ann Arber.
[17] Kennedy J., Eberhart R. (1995), Particle swarm optimization, in: IEEE Inter-national Conference on Neural Networks Proceedings, vols. 1– 6, pp.1942–1948.
[18] Kennedy, J., and Mendes, R. (2002). Population Structure and Particle Swarm Performance. Proceedings of the 2002 World Congress on Computational Intelligence. https://doi.org/10.1109/CEC.2002.1004493.
[19] Kora, P. and Yadlapalli, P. (2017). Crossover Operators in Genetic Algorithms: A Review. International Journal of Computer Applications, 162(10), pp.34-36. https://doi.org/10.5120/ijca2017913370.
[20] Li, Z., Liu, X., Duan, X. and Huang, F. (2010). Comparative Research on Particle Swarm Optimization and Genetic Algorithm. Computer and Information Science, 3(1). https://doi.org/10.5539/cis.v3n1p120.
[21] Lim, S., Sultan, A., Sulaiman, M., Mustapha, A. and Leong, K. (2017). Crossover and Mutation Operators of Genetic Algorithms. International Journal of Machine Learning and Computing, 7(1), pp.9-12. https://doi.org/10.18178/ijmlc.2017.7.1.611.
[22] Mazza, C. and Piau, D. (2001). On the effect of selection in genetic algorithms. Random Structures and Algorithms, 18(2), pp.185-200. https://doi.org/10.1002/1098-2418(200103)18:2<185::AID-RSA1005>3.0.CO;2-7.
[23] Poli, R., Kennedy, J. and Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), pp.33-57. https://doi.org/10.1007/s11721-007-0002-0.
[24] Sivanandam S.N. and Deepa S. N.2007, Introduction to Genetic Algorithms, Springer, ISBN 9783540731894.
[25] Thengade, A. and Dondal, R. (2012). Genetic Algorithm – Survey Paper. International Journal of Computer Applications (IJCA), (0975 - 8887), pp.25-29.