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Abstract

In this Letter, a (2 + 1)-dimensional soliton equation is studied by
He’s variational approach. The solitary solutions are obtained using the
Ritz method.
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1 Introduction

In this letter, we consider the following (2 + 1) dimensions soliton equation to
reveal new exact traveling wave solutions using He’s variational method

i ut + uxx + u v = 0,

vt + vy + (v u∗)x = 0,
(1)

where i =
√−1,u(x, y, t) is a complex function and v(x, y, t) is a real function

which has studied in [1] by using the bifurcation theory.
Soliton is an important feature of nonlinearity and can be found in many

applications of science. Many effective and reliable methods are used in the
literature to investigate solitons and in particular multiple soliton solutions
of completely integrable equations. Nonlinear evolution equations have been
noticed in plasma physics, fluid dynamics, optical fibers, biological systems
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and other applications. In the past decades, there has been an increased inter-
est on studying the nonlinear evolution equations. Exact solutions play a vital
role in understanding various qualitative and quantitative features of nonlinear
phenomena. There are diverse classes of interesting exact solutions, such as
traveling wave solutions, but it often needs specific mathematical techniques
to construct exact solutions due to the nonlinearity present in dynamics [2, 3].
It has recently become more interesting to obtain exact solutions of nonlinear
partial differential equations (NPDEs) using symbolic computation softwares
such as Maple, Mathematica and Matlab that facilitate complex and tedious
algebraical computations. In recent years, various effective methods have been
developed to find the exact solutions of NPDEs, such as tanh-function method
[4, 5, 6, 7, 8, 9, 10, 11], generalized hyperbolic function method [12], homo-
geneous balance method [13, 14], Jacobi-elliptic function method [15, 16, 17],
exp-function method [18, 19], auxiliary equation method [20, 21, 22, 23, 24]
and so on, e.g. see [25, 26, 27].

2 He’s variational method

In order to seek exact solutions of Eq. (1), we suppose that

u(x, y, t) = φ(ξ) exp(i η), v(x, y, t) = v(ξ),

η = k x + l y + λ t, ξ = K(x + Ly − 2k t),
(2)

where φ(ξ) and v(ξ) are real functions, k, l, λ, K and L are real constants to
be determined later. Substituting Eq. (2) into Eq. (1), we have

K2 φ
′′
(ξ)− (λ + k2) φ(ξ) + φ(ξ) v(ξ) = 0, (3)

(L− 2 k)v
′
(ξ) + (φ2(ξ))

′
= 0. (4)

where prime denotes the differentiation with respect to ξ. Integrating Eq. (4)
with respect to ξ and taking the integration constant as zero yields

v(ξ) =
1

2 k − L
φ2(ξ), if L 6= 2k. (5)

Substituting Eq. (5) into Eq. (3) yields

φ
′′
(ξ) + α φ(ξ)− β φ3(ξ) = 0, (6)

and

α =
−λ− k2

K2
, β =

1

K2(L− 2k)
, L 6= 2k.
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According to Ref. [29], upon using He’s semi-inverse method [30], we can
arrive at the following variational formulation:

J(φ) =

∫ ∞

0

[
1

2
(φ

′
)2 − α

2
φ2 +

β

4
φ4

]
dξ. (7)

We assume the soliton solution in the following form

φ(ξ) = Asech(ξ) (8)

where A is an unknown constant to be further determined.
By Substituting Eq. (8) into Eq. (7) we obtain

J =
1

6
β A4 +

1

6
A2 − 1

2
α A2. (9)

For making J stationary with respect to A

∂J

∂A
=

2

3
β A3 +

1

3
A− α A (10)

from Eq. (10), we have

A = ±
√

2β (3 α− 1)

2β
(11)

and

α =
−λ− k2

K2
, β =

1

K2(L− 2k)
, L 6= 2k.

The solitary solution is, therefore, obtained as follows:

φ(ξ) = ±
√

2β (3 α− 1)

2β
sech(ξ). (12)

By Eqs. (2) and (5), we have

u(x, y, t) = Asech(ξ) ei η = ±
√

2β (3 α− 1)

2β
sech(ξ) ei η,

v(ξ) =
3 α− 1

2β (2 k − L)
sech2(ξ), if L 6= 2k,

(13)

where
η = k x + l y + λ t , ξ = K(x + Ly − 2k t). (14)

We search another soliton solution in the form

φ(ξ) = Dsech2(ξ) (15)
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where D is an unknown constant to be further determined.
By Substituting Eq. (15) into Eq. (7) we obtain

J =
4

35
D4β − 1

3
α D2 +

4

15
D2. (16)

For making J stationary with respect to D

∂J

∂D
=

16

35
D3β − 2

3
α D +

8

15
D. (17)

From Eq. (17), we have

D = ±
√

42β (5 α− 4)

12β
(18)

and

α =
−λ− k2

K2
, β =

1

K2(L− 2k)
, L 6= 2k.

The solitary solution is, therefore, obtained as follows:

φ(ξ) = ±
√

42β (5 α− 4)

12β
sech2(ξ). (19)

By Eqs. (2) and (5), we have

u(x, y, t) = Dsech2(ξ) ei η =

√
42β (5 α− 4)

12β
sech2(ξ) ei η,

v(ξ) =
73 α− 1

24β (2 k − L)
sech4(ξ), if L 6= 2k,

(20)

where
η = k x + l y + λ t , ξ = K(x + Ly − 2k t). (21)

3 Conclusions

In this letter, we have used He’s variational method to search for solitary
solutions. He’s variational principle is a very dominant instrument to find the
solitary solutions for various nonlinear equations.
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