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Abstract 
 

The purpose of this paper is to develop a qualitative stability analysis of a class of nonlinear integro-differential equation within the 

framework of Lyapunov-Krasovskii. We show that the existence of a Lyapunov-Krasovskii functional is a necessary and sufficient con-

dition for the uniform asymptotic stability of the nonlinear Volterra integro-differential equations. 
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1. Introduction 

Volterra integro-differential equations have wide applications in 

biology, ecology, medicine, physics and other scientific areas and 

thus has been extensively studied. Originally motivated by prob-

lems in mechanics, Mathematical biology, and Economics, the 

study of integro-differential and integral equations can be traced 

back to the works these scholars, Abel, Lotka, Fredholm, Mathlus, 

Verhulst and Volterra [16]. In particular, the work of Volterra on 

the problem of competing species was vitally important for the 

development of the work in this area, since then, the theory and 

application of Volterra integro-differential equations have 

emerged as an important area of research. 

In the last years, a lot of interesting results related to the qualita-

tive behaviors of solutions; stability, boundedness etc. of Volterra 

integro-differential equations haven obtained by many researchers, 

see the papers of ([1], [[2], [5], [6], [7], [9], [11], [13], [21], [22], 

[23], [24], [25] ) and references therein. 

Several stability methods for nonlinear integro-differential sys-

tems can be found in dynamical  

systems literature, such as Lyapunov-Krasovskii functionals, 

Razumhim, fixed point methods, Linear and nonlinear variation of 

parameter, stability in variation, method of reduction etc., (for 

detailed account see, ([4], [7], [12], [14], [15], [16]).  

An important tool used in the discussion of the qualitative proper-

ties of solution of ordinary, functional and integro-differential 

equations is the Lyapunov’s second method. The method allows 

one to deduce inequalities that all solutions must satisfy and from 

which criteria are deduced.  

Over the years, Lyapunov method for the stability of integro-

differential equation have been proposed by different researcher 

([8], [13], [17], [18], [19], [20], [23], [24]). 

In particular [18], worked on the stability of the zero-state solution 

of impulsive function differential equation by applying Lyapunov-

Razumikhin method and Piecewise continuous function to check 

the behavioral solution of equation. In [24], they established sys-

tem’s stability of a class of Volterra integro-differential equation. 

They used a known form of Lyapunov functional to establish the 

stability condition for the system. In their paper, [8] constructed a 

Lyapunov functionals to check and investigate the stability for 

hereditary system. [23] studied certain nonlinear Volterra integro 

differential equations with delay. He established stability and 

boundedness condition of the solution by defining a suitable Lya-

punov functional used to prove the result. In 2007, [19] estab-

lished the stability of the solutions of a class of integro-differential 

equations of Volterra type whose nonlinear term is assumed to be 

holomorphic function of variables and possible some integral form 

in a small neighborhood of zero. Stability in Lyapunov’s sense of 

single zero root and of pair of pure imaginary roots for the unper-

turbed equation is analyzed by relying on functional in integral 

form represented by Frechet series. 

2. Preliminaries 

Our aim in this paper is to use a suitable Lyapunov functional and 

determine necessary and sufficient condition for the stability of 

the zero solution of the nonlinear integro – differential equation of 

Volterra type defined by  

 

y′(t) = B(t)g(y(t)) +  ∫ G(t, s, y(s)) 
t

0
                                    (2.1) 

 

Where y ∈ R,the functions G is continuous in (t, s, y) for 0 ≤ s ≤
t < ∞ , B (t) continuous for 

0 ≤ t < ∞, g(y(t)) is continuous on (−∞, ∞) and 

 

∫ G(t, s, y(s)) ds < ∞, ∫ tG(t, s, y(s)) ds <
t

0

t

0
∞                       (2.2) 

 

We use the following notation and basic information throughout 

this paper. For any t0 ≥ 0and initial functionφ ∈ [t0, t], let y(t) =
y(t, t0, φ)denote the solution of eq. (2.1) on [t0, t] such thaty(t) =
φ(t). Let C([t0, ti]) and C([t0, ∞]) denote the continuous of real 

valued functions on [t0, t1]  and [t0, ∞]  respectively. For φ ∈
C[t0, 0], |φ| = sup{|y(t)|: 0 ≤ t ≤ t0} 

 

Definition 2.1: he zero solution of eq. (2.1) is stable if for each 

𝜀 > 0and each 𝑡0 ≥ 0  , there exist 𝛿(𝜀) > 0  such that‖𝜑‖𝑡0
<
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𝛿(𝜀) which implies that ‖𝑦(𝑡, 𝑡0)‖ < 𝜀, 𝑓𝑜𝑟 𝑡 ≥ 0 where 𝑦(𝑡, 𝜑)is 

a solution of eq. (2.1) which is defined for 𝑡 ≥ 𝑡0 . 

 

Definition 2.2: The zero solution of eq. (2.1) is uniformly stable if 

for each 𝜀 > 0  there exist 𝛿 =  𝛿(𝜀) > 0  such that 𝜑 ∈ [0, 𝑡0] 
with ‖𝜑‖ < 𝛿(any𝑡0 ≥ 0) implies that ‖𝑦(𝑡, 𝜑)‖ < 𝜀  for all 𝑡 ≥
𝑡0 

 

Definition 2.3: The zero solution of eq. (2.1) is said to be asymp-

totically stable if it is stable and there is a number 𝛿 > 0 such that 

any solution 𝑦(𝑡) with ‖𝜑‖ < 𝛿satisfies 𝑙𝑖𝑚𝑡→∞‖𝑦(𝑡)‖ = 0 . 

The following theorem is essential for stability result and is a 

basic tool for our results. 

 

Theorem 2.1: [9]. If there exists a functional𝑉(𝑡, 𝜑(. )), defined 

whenever 𝑡 ≥ 𝑡0 ≥ 0and 𝜑 ∈ 𝐶([0, 𝑡], 𝑅𝑛) such that  

 

i) V(t, 0) ≡ o, Vis continuous in t and locally Lipschitz in φ 

ii) V(t, φ(t)) ≥ W(|φ(t)|), W: [0, ∞) → [0, ∞) is a continuous 

function with W(0) = 0, W(r) > 0, if r > 0 and W is strict-

ly increasing (positive definiteness), and 

iii) V′(t, φ(. )) ≤ 0 

Then the zero solution of eq. (2.1) is stable and  

 

V(t, φ(. )) = V(t, φ(s)): 0 ≤ s ≤ t  

 

Is called a Lyapunov function of eq. (2.1) 

 

Theorem 2.2: (Lyapunov-Krasovskii stability) Suppose that 

𝑓: 𝑅 × 𝐶 → 𝑅𝑛given in eq. 2.1 map every {𝑅 × (. . . )}𝑅 ×
(𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑖𝑛 𝐶)into a bounded set in 𝑅𝑛, and that 𝑢, 𝑣, 𝑤: 𝑅+ →
𝑅+ are continuously non decreasing functions, where additionally 

𝑢(𝑠) 𝑎𝑛𝑑 𝑣(𝑠) are positive for 𝑠 > 0 𝑎𝑛𝑑 𝑢(0) = 0. If there ex-

ists a continuous differentiable function 𝑉: 𝑅 × 𝐶 → 𝑅 such that 

𝑢(‖𝜙(0)‖) ≤ 𝑉(𝑡, 𝜙) ≤ 𝑣(‖𝜙‖𝐶) and 𝑉′(𝑡, 𝜙) ≤ −𝑤(‖𝜙(0)‖), 

then the trivial solution of eq. 2.1 is uniformly stable. If𝑤(𝑠) >
0 𝑓𝑜𝑟 𝑠 > 0, then it is uniformly asymptotically stable. If in addi-

tion 𝑙𝑖𝑚
𝑥→∞

𝑢(𝑠) = ∞, then it is globally uniformly asymptotically 

stable, [12]. 

3. Main result 

Theorem 3.1: 𝐼𝑓 𝐵(𝑡) < 0 , 𝐺(𝑡, 𝑠, 𝑦(𝑠)) > 0 𝑎𝑛𝑑  

 

B(t)g(y(t)) + ∫ G(t, s, y(s)) ds ≠ 0
t

0
                                      (3.1) 

 

Then the statements below are equivalent. 

i) The solution of eq. (2.1) tends to zero. 

ii) B(t)g(y(t)) + ∫ G(t, s, y(s)) ds < −ξ, ξ > 0 
t

0
 

iii) Every solution of (2.1) is a Lebesgue integrable function 

with respect to the vector spaceRn. For the proof see, [13]. 

 

Theorem 3.2: Suppose 𝑚, 𝑛: 𝑅𝑛  →  𝑅+ are continuous increasing 

function, 𝑚(𝑠) 𝑎𝑛𝑑 𝑛(𝑠)  are positive for 𝑠 ≥  0, 𝑚(0)  =

 𝑛(0)  =  0. suppose there exist a function 𝑉(𝑡, 𝑠, 𝑦(𝑠)) satisfying 

the following condition. 

 

C1 ∶  m(|s|)  ≤  V(t, s, y(s))  ≤  n(|s|)

C2: V′(t, sy, (t, s0, t0))  ≤  0 f or t >  t0.
  

 

Then the steady sate solution y = 0 is uniformly stable 

Proof 

Given ε >  0 such that |y|  ≤  ε.since V(t, s, y(s))is positive defi-

nite and continuous, then the function m and n satisfy condi-

tionC1, that is m(|s|)  ≤  V(t, s, y(s))  ≤  n(|s|) for t ∈

 R and y ∈  R+.Taking δ(ε)  >  0such that 0 <  δ(ε)  <  εand  

 

m(ε)  <  n(δ)                                                                            (3.2) 

 

Assume that |y0|  ≤  δ 

y(t, s0, y0)  = y(t) Being the solution of eq. (2.1) and 
|y(t, s0, y0)|  <  ε , for 0 ≤  t <  t2,so thatm(ε)  ≤

 V(t2, s2, y(t0)). From condition C1, it means that y(t, s0, y0)is a 

solution for 0 ≤  t <  t2.If the estimate, 

 

V(𝑡𝑠, 𝑦(𝑡𝑠)  ≤  𝑉(0, 𝑦0))                                                           (3.3) 

 

Now using C1 and our choice of 𝛿(𝜀), leads to the contradiction, 

 

𝑚(𝜀)  ≤  𝑉(𝑡2, 𝑠2, 𝑦(𝑡0)  ≤  𝑉(0, 𝑠0, 𝑦0)  ≤  𝑛(|𝑠0|)  ≤  𝑚(𝜀)  <
𝑛(𝛿).  
 

Since 𝑚is increasing, we have that |𝑦(𝑡2)|  <  𝜀,a contradiction. 

Then,  

 

𝑉(𝑡2, 𝑠2, 𝑦(𝑡0)  ≥  𝑉(0, 𝑠0, 𝑦0) 

 

Since 𝑉(𝑡, 𝑠, 𝑦)is continuous in t, there exist t such that 0 <  𝑡1  <

 𝑡2.
 

this implies that 

 

𝑉(𝑡, 𝑠, 𝑦(𝑡))  ≤  𝑉(𝑡1, 𝑠1, 𝑦(𝑡1)  =  𝑉(𝑡2, 𝑠2, 𝑦(𝑡2) 𝑓𝑜𝑟 0 ≤  𝑡 <

 𝑡1.  
 

If there exist a sequence 𝛼1  for 𝑜 ≤  𝛼𝑖  <  𝑡1  such that 𝑖 →
 ∞,then 

 

𝑉′(𝛼𝑖 , 𝑠𝑖𝑦(𝑡𝑖))  >  0, 𝑓𝑜𝑟 𝑖 = 0,1,2,                                          (3.4) 

 

Assuming the derivative above is not true, then 𝑉′(𝑡, 𝑠, 𝑦(𝑡))  ≤  0 

for all𝑡𝑖.  

Hence,  

 

𝑉(𝑡1, 𝑠1, 𝑦(𝑡1)  ≤  𝑉(𝑡, 𝑠, 𝑦(𝑡))  

 

This completes the proof of uniform stability. 

 

Theorem 3.3: Assuming all the conditions of theorem (3.2) are 

satisfied and in addition 𝑞(𝑠)  >  0if s > 0. If condition C2, is 

strengthened to 𝑉′(𝑡, 𝑠, 𝑦(𝑡))  ≤  −𝑞(|𝑦(𝑡)|) for 𝑡 >  0. Then the 

solution y = 0 of eq. (2.1) is uniformly asymptotically stable. 

 

Proof Continuing with the proof of theorem (3.2), we need to 

show that the solution y = 0 of eq. (2.1) is uniformly asymptotical-

ly stable. Let 𝑦(𝑡)  =  𝑦(𝑡, 𝑠, 𝑦) be any solution of equation (2.1) 

which is bounded on [0, ∞ ). We may define 

 

𝑆𝑢𝑝
𝑡≥0

|𝑦(𝑡)|  =  𝛿𝑖    

 

Then, 

 

𝑚(𝜀)  <  𝑛(𝛿𝑖).  
 

Assuming that 𝑃 (𝑉(𝑡, 𝑠, 𝑦(𝑡)))  >  𝑉(𝑠, 𝑦(𝑠)) 𝑓𝑜𝑟 0 ≤  𝑠 ≤  𝑡 

Which is continuous for s > 0, if there exist a number 𝛼 =
 𝛼(𝜀)  >  0such that 𝑠 +  𝛼 <  𝑝(𝑠) For 𝑛(𝛿𝑖)  ≤  𝑠 ≤  𝑚(𝜀).Al-

so if there exist a positive integer 𝑁(𝜀)  =  𝑁 >  0 such that 

𝑛(𝛿𝑖)  −  𝑁𝛼 ≤  𝑚(𝜀) for some 𝑡 ≥  0 , we have 𝑉(𝑡, 𝑠, 𝑦(𝑡))  ≥

 𝑚(𝜀). It follows that 𝛿𝑗  =  𝛿𝑗(𝜀)  >  0 such that|𝑦(𝑡)|  >  𝛿𝑗 . 

This implies from C1 of theorem 3.2 that 𝑞(𝑦(𝑡))  ≥  𝑞(𝛿𝑗)  ≡

 𝛿𝑘 It is evident that 𝛿𝑘 rely on 𝜀. We can define a number 𝑡𝑝 =

 𝑡𝑠(𝑡0, 𝜀)such that 𝑡0(𝑡0, 𝜀)  = 𝑡0, 𝑡𝑝+1(𝑡0, 𝜀)  + 
𝛼

𝛿𝑘
, this then gives 

𝑡𝑝(𝑡0, 𝜀) = 𝑡0 + 𝑠
𝛼

𝛿𝑘
. Assuming 𝑢(𝜀)  =
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 𝑁 (
𝛼

𝛿𝑘
) , 𝑡ℎ𝑒𝑛 𝑡𝑁(𝑡0, 𝜀)  =  𝑡0  +  𝑢(𝜀). To prove the uniform as-

ymptotic stability, we must prove that,  

 
|𝑦(𝑡, 𝑠0, 𝑦0)|  <  𝜀 𝑓 𝑜𝑟 𝑡 ≥  𝑡𝑜  +  𝑢(𝜀) 𝑤ℎ𝑒𝑟𝑒 |𝑦0|  <  𝛿𝑖  

 

Suppose, 𝑉(𝑡, 𝑠, 𝑦(𝑡))  <  𝑚(𝜀)  + (𝑁 −  𝑃)𝛼, 𝑡 ≥  𝑡𝑠 𝑓𝑜𝑟 𝑝 =

 0,1,2, . . . , 𝑁  . For 𝑝 = 0 , we have 𝑉(𝑡, 𝑠, 𝑦(𝑡)) < 𝑚(𝜀) + 𝑁𝛼  , 

and for 𝑝 = 1 , 𝑉(𝑡, 𝑠, 𝑦(𝑡)) < 𝑚(𝜀) + (𝑁 − 1)𝛼  , hence for 

some 𝑝 , we have 𝑉(𝑡, 𝑠, 𝑦(𝑡)) <  𝑚(𝜀)  + (𝑁 − 𝑃)𝛼, 𝑠 ≥  𝑡𝑝  . 

This possibly gives the inequality  

 

𝑉(𝑡, 𝑠, 𝑦(𝑡)) ≥  𝑚(𝜀)  +  (𝑁 − 𝑃 − 1)𝛼, 𝑡 ∈  [𝑡𝑝, 𝑡𝑝+1]         (3.5) 

 

Which follows from C1 of theorem 3.2 that 𝑚(𝜀)  ≤

 𝑉(𝑡, 𝑠, 𝑦(𝑡))  ≤  𝑛(𝛿𝑖) , here, we can show that 

 

𝑉(𝑡, 𝑠, 𝑦(𝑡)) <  𝑚(𝜀)  +  (𝑁𝑃 − 1)𝛼 ≤  𝑉(𝑡, 𝑠, 𝑦(𝑡))  +  𝛼 

<  𝑃 (𝑉(𝑡, 𝑠, 𝑦(𝑡)))  𝑓𝑜𝑟 𝑡𝑝 ≤ 𝑠 ≤ 𝑡, 𝑡 ∈ [𝑡𝑝, 𝑡𝑝+1]
  (3.6) 

 

We can also obtain  

 

𝑉 (𝑡𝑝+1, 𝑠𝑝+1, 𝑦(𝑡𝑝+1)) ≤ 𝑉 (𝑡𝑝, 𝑠𝑝, 𝑦(𝑡𝑝))

− ∫ 𝑞(|𝑦(𝑠)|)𝑑𝑠
𝑝+1

𝑝
< 𝑚(𝜀) + (𝑁 − 𝑝)𝛼 − 𝛿𝑘(𝑡𝑝+1 − 𝑡𝑝)

< 𝑚(𝜀) + (𝑁 − 𝑝)𝛼 < 𝑉 (𝑡𝑝, 𝑠𝑝, 𝑦(𝑡𝑝))

    (3.7) 

 

This contradiction shows that if there exist 𝑡′ ∈ [𝑡𝑝′𝑡𝑝+1] , then  

 

𝑉(𝑡, 𝑠, 𝑦(𝑡))  ≥  𝑚(𝜀)  + (𝑁 −  𝑃 −  1) 𝛼 

 

This implies that  

 

𝑉(𝑡, 𝑠, 𝑦(𝑡))  ≥  𝑚(𝜀)  + (𝑁 −  𝑃 −  1) 𝛼 

 

Assuming it is false, given 𝑡1  >  𝑡′ such that𝑉(𝑡1, 𝑠1, 𝑦(𝑡1)) <

 𝑚(𝜀)  + (𝑁 − 𝑃 − 1)𝛼, for an integer𝑤 <

0,𝑉(𝑡1, + 𝑤, 𝑠1, 𝑦(𝑡1  +  𝑤)) <  𝑚(𝜀)  + (𝑁 − 𝑃 − 1)𝛼. Then we 

have 

 

𝑉′(𝑡1, 𝑠1𝑦(𝑡1))  ≥  0 

 

Assuming it is not true, we prove that 𝑉(𝑡, 𝑠, 𝑦(𝑡))  ≤

 𝑃 (𝑉(𝑡, 𝑠, 𝑦(𝑡)))  𝑓𝑜𝑟 t′ ≤  s ≤  t1 and so we have 

V′(t1, s1, y(t1))  ≤  −q(|y(t)|)  ≤  −δk  <  0 , which shows the 

asymptotic stability and V(t, s, y(t))  <  m(ε)  + (N −  P −

1)α for t >  tp+1 , and also contradicts 

 

V′(t, s, y(t))  ≥  0 

 

This completes the proof. 

4. Conclusion 

A kind of nonlinear Volterra integro-differential equation has been 

considered. By defining an appropriate Lyapunov-Krasovskii 

functional some asymptotic stability/uniform asymptotic stability 

results has been discussed which extends known results in the 

literature. 
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