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Abstract 

In this paper, the reduced differential transform method (RDTM) is 
applied to various nonlinear evolution equations, Korteweg–de Vries 
Burgers' (KdVB) equation, Drinefel’d–Sokolov–Wilson equations, 
coupled Burgers equations and modified Boussinesq equation. 
Approximate solutions obtained by the RDTM are compared with the 
exact solutions. The present results are in good agreement with the 
exact solutions. Comparisons show that the RDTM is capable of 
solving effectively a large number of nonlinear evolution equations 
with high accuracy.  

Keywords: Reduced Differential Transform Method (RDTM), Korteweg–de 
Vries Burgers' (KdVB) equation, Drinefel’d–Sokolov–Wilson equations, coupled 
Burgers equations and modified Boussinesq equation. 

1 Introduction 

Nonlinear evolution equations (NLEEs) are widely used to describe many 

important phenomena and dynamic processes in physics, mechanics, chemistry, 

biology, etc. The investigation of exact solutions of NLEEs plays an important 

role in the study of nonlinear physical phenomena. There has been a great amount 

of activity aiming to find methods for solutions of NLEEs. Recently many new 

approaches to NLEEs have been proposed, for example, the variational iteration 

method [1-3], the homotopy perturbation method [3-6], various tanh function 
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methods [7-11],  the F-expansion method [12-13], the sine–cosine method [14-

17], Hirota method [18,19], Jacobi elliptic function method [20-22], homogeneous 

balance method [23-24], the (G′/G)-expansion method [25-27] and the exp-

function method [28-31]. 

Keskin in [32] introduced a reduced form of differential transform method (DTM) 

as reduced differential transform method (RDTM) and applied to approximate 

some PDEs and fractional PDEs [33-34]. Abazari and Ganji [35] extended RDTM 

to study the partial differential equation with proportional delay in t and shrinking 

in x, and shown that as a special advantage of RDTM rather than DTM. The 

reduced differential transform recursive equations produce exactly all the Poisson 

series coefficients of solutions, whereas the differential transform recursive 

equations produce exactly all the Taylor series coefficients of solutions. 

In this paper, we applied the RDTM to various nonlinear evolution equations and 

compared the obtained results with the exact solution. The main advantage of the 

RDTM is the fact that it provides its user with an analytical approximation, in 

many cases an exact solution. The solution procedure of the RDTM is simpler 

than traditional DTM, and the amount of computation required in RDTM is much 

less than traditional DTM. 

2 Reduced Differential Transform Method (RDTM) 

Consider a function of two variables ( , )u x t and suppose that it can be represented 

as a product of two single-variable functions, i.e., ( , ) ( ) ( )u x t f x g t . Based on the 

properties of one-dimensional differential transform, the function ( , )u x t  can be 

represented as follows: 

0 0 0

( , ) ( ) ( ) ( )i j k

k

i j k

u x t F i x G j t U x t
  

  

  
    
  
    (1) 

where ( )kU x  is called t -dimensional spectrum function ( , )u x t . 

The basic definitions of reduced differential transform method [32-34] are 

introduced as follows: 

Definition 2.1. If a function ( , )u x t  is analytic and differentiated continuously 

with respect to time t and space x in the domain of interest then let 

0

1
( ) ( , ) , 0,

!

k

k k

t

U x u x t k k N
k t



 
   

 
 (2) 

where the t -dimensional spectrum function ( )kU x  is the transformed function 

and ( , )u x t  is the original function. 
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Definition 2.2.  The differential inverse transform of  ( )kU x  is defined as 

follows: 

0

( , ) ( ). k

k

k

u x t U x t




  (3) 

From Eq.(2) and Eq.(3) , we get  

0 0

( , ) ( , )
!

k k

k
k t

t
u x t u x t

k t



 

 
  

 
  (4) 

The following theorems that can be deduced from Eqs.(2-4) are given below: 

Theorem 2.1. If ( , ) ( , ) ( , )f x t ag x t bh x t  , then 

 ( ) ( ) ( )
k k k

F x aG x bH x  ,where a and b are constant. 

Theorem 2.2. If ( , )
m n

f x t x t , then ( ) ( )
m

k
F x x k n   where 

1, 0
( )

0, 0

j
j

j











 . 

Theorem 2.3. If ( , ) ( , )
m n

f x t x t g x t , then ( ) ( )
m

k k n
F x x G x


   

Theorem 2.4. If ( , ) ( , ) ( , )f x t g x t h x t  , then 
0

( ) ( ) ( )
k

k l k l

l

F x G x H x




 
 

Theorem 2.5. If 1 2 1( , ) ( , ) ( , ) ( , ) ( , )n nf x t g x t g x t g x t g x t  L , then  

2 3 2

1 2 1 1 2 1

1 2 2 1

1, 2, 1, ,( ) ( ) ( ) ( ) ( )
n

n n n

n n

k

k k kk

k k k n k k n k k

k k k k

F x G x G x G x G x


  

 

      L L  

Theorem 2.6. If ( , ) ( , )

n

n
f x t g x t

t





, then 
( )!

( ) ( )
!

k k n

k n
F x G x

k



   

Theorem 2.7. If ( , ) ( , )

n

n
f x t g x t

x





, then ( ) ( )

n

k kn
F x G x

x



  

Theorem 2.8. If ( , ) ( , )

n m

n m
f x t g x t

x t





 

, then 
( )!

( ) ( )
!

n

k k mn

k m
F x G x

x k


 



 
 
 

 

3 Solution of The Nonlinear Evolution Equations By 
The RDTM 

In this section, the RDTM is used to find approximate solutions of some nonlinear 

evolution equations, namely, Korteweg–de Vries Burgers' (KdVB) equations, 

Drinefel’d–Sokolov–Wilson equations, coupled Burgers equations and modified 

Boussinesq equation.  
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3.1      RDTM for Korteweg-de Vries (KdV) and Korteweg-de 
Vries-Burgers (KdVB) Equations 

Let us first consider the KdVB equation has the form  

0,t x xx xxxu uu vu u      (5) 

where ,v  and   are constants. We will investigate the two cases, the first one is 

the KdV equation (in case of 0v  ) and the second one is the KdVB (in case of 

1  ). 

Case 1. We consider the KdV equation in Eq.(5) for 6, 0v    and 1    

6 0,t x xxxu uu u    (6) 

subject to the initial condition ; 

21
( ,0) sec ,

2 2

x
u x h

 
  

 
 (7) 

The exact solution of this problem is 

21 1
( , ) sec ( ) ,

2 2
u x t h x t

 
  

 
 (8) 

Applying the above theorems we obtain following recurrence relation for the KdV 

equation. 

3

1 3
0

( 1) ( ) 6 ( ) ( ) ( )
k

k l k l k

l

k U x U x U x U x
x x

 



 
    

 
  (9) 

Using Eq.(2), the initial condition given in Eq. (7) can be transformed as, 

2

0

1
( ) sec ,

2 2

x
U x h

 
  

   
(10) 

Substituting Eq.(10) into Eq.(9) and by straightforward iterative steps, we get the 

following ( )kU x  (for k=0,1,2,...,n) values. 

 

   

    

      

0

1

2

3

2

2 4

2 4

( ) ,

1
( ) 2 sec 2 ,

2

( )

( )

1
sec 2

2

tanh

1
2sec 2 3sec 2

8

1
tanh 2 sec 2 3sec 2

12

U x

U x x h x

U x

U x

h x

h x h x

x h x h x











  

 

(11) 
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and so on, in the same manner, the rest of components can be obtained using 

MAPLE. 

Using the inverse transformation Eq.(3), we get the approximate solution as, 

     

    

      

2

3

2 4

2 4

2

t

t

1
tanh 2 sec 2

2

1
2 sec 2 3sec 2

8

1
tanh 2 sec 2 3sec 2

12

( , )
1

sec 2
2

tx h x

h x h x

x h x h x

u x t h x







 


 

  
 

 
 
 

 
   

 

 (12)  

The behavior of the approximate solution obtained by RDTM with the exact 

solution (Eq.(8)) for different values of times is shown in Fig.1. The comparison 

shows that the two solutions obtained are in excellent agreement. 

 

 
(a) 

 
(b) 

Fig. 1.(a) The approximate solution ( , )u x t obtained by RDTM with different values of 

time.(b) The exact solution ( , )u x t  with different values of time. 

 

Case 2. Now, we consider the KdVB equation in Eq.(5) for 1   

0,t x xx xxxu uu vu u   
 

(13) 

subject to the initial condition ; 

2
26 1

( ,0) 1 tan sec
25 2

v
u x h h 



 
    

   
(14) 

where 
10

vx



 . 

The exact solution of this problem is 

http://www.sciencedirect.com/science/article/pii/S0377042706004663#fd9
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2

26 1
( , ) 1 tan sec

25 2

v
u x t h h 



 
    

   
(15) 

where 
2

6

10 25

v v
x t

 
 

 
 
 

. 

According to the above theorems, we have the following recurrence relation for 

the KdVB equation: 

2 3

1 2 3
0

( 1) ( ) ( ) ( ) ( ) ( )
k

k k l k l k

l

k U x v U x U x U x U x
x x x

 



  
   

  
  (16) 

From Eq.(2), the initial condition given in Eq. (14) can be transformed at 0t   as 

2
2

0

6 1
( ) 1 tan sec ,

25 2

v
U x h h 



 
    

   
(17) 

Substituting Eqs.(17) into Eq.(16), we get the following ( )kU x  (for k=0,1,2,...,n) 

values. 

 

 

 

2

2

0

5

2

1 3

8

2 2

2 5

11

2 2 2

3 7

6 1
( ) 1 tanh sec ,

25 2

18
( ) (1 tanh ) sec

3125

27
( ) (2 2 tanh 3sec ) sec ,

390625

54
( ) (2 2 tanh 6 tanh sec 3sec ) sec

48828125

v
U x h

v
U x h

v
U x h h

v
U x h h h

 


 


  


    


   

  

   

     

 
 
 

 

(18) 

where 
10

vx



 . 

Using the inverse transformation Eq.(3), we get the approximate solution as, 

 

 

 

8

2

5

11

7

2 5

2 2

3

2 2

2 2 2 3

27
+ t

390625

54

48828125

6 1 18
( , ) 1 tanh sec (1 tanh ) sec

25 2 3125

(2 2 tanh 3sec ) sec

(2 2 tanh 6 tanh sec 3sec ) sec t

t

v

v

v v
u x t h h

h h

h h h





   
 

  

    

      

  

     

 
 
 

 (19) 

The behavior of the approximate solution with the exact solution (Eq.(15)) for 

different values of times is shown in Fig.2. 

http://www.sciencedirect.com/science/article/pii/S0377042706004663#fig2
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(a) 

 
(b) 

Fig. 2. (a) The approximate solution ( , )u x t  obtained by RDTM with different values of 

time with fixed values ν = 1, μ = 1. (b) The exact solution ( , )u x t  with different values of 

time with fixed values ν = 1, μ = 1. 
 

3.2      RDTM for Drinefel’d–Sokolov–Wilson Equations 

In this section, we consider the Drinefel’d–Sokolov–Wilson equations 

0t xu pvv   (20) 

0t xxx x xv qv ruv svu     (21) 

where p, q, r, and s are arbitrary constants. For  1p q r   the initial conditions 

of ( , )u x t and ( , )v x t  are given by 

2( ,0) 2sec , ( ,0) 2secu x h x v x h x    (22) 

and the exact solutions are 

2( , ) 2sec ( ), ( , ) 2sec ( )u x t h x t v x t h x t      (23) 

Using above theorems we get following recurrence relations; 

1

0

( 1) ( ) ( ) ( )
k

k l k l

l

k U x p V x V x
x

 




  


   (24) 

3

1 3
0 0

( 1) ( ) ( ) ( ) ( ) ( ) ( )
k k

k k l k l l k l

l l

k V x q U x r U x V x s V x U x
x x x

  

 

  
    

  
    (25) 

From Eq.(2), the initial condition given in Eq. (22) can be transformed as 

2

0 0( ) 2sec , ( ) 2secU x h x V x h x    (26) 
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Substituting Eqs.(26) into Eqs.(24-25), we get the following ( )kU x  and
 

( )kV x  

(for k=0,1,2,...,n) values. 

2

0 0

2

1 1

2 4 2 3

2 2

4 2 3 2

3 3

( ) 2sec , ( ) 2sec ,

( ) 4sec tan , ( ) 2sec tan

( ) 4sec 6sec , ( ) sec 2sec

1
( ) sec tan (cosh 3), ( ) sec tan (cosh 6)

3

8

3

U x h x V x hx

U x h x h x V x hx h x

U x h x h x V x h x h x

U x h x h x x V x h x h x x

 

   

   

       

 

 (27) 

Then, using the inverse transformation Eq.(3), we obtain approximate solution as, 

    2

3

2 2 2 4

4 2

( , ) 2sec 4sec tan 4sec 6sec

sec tan (cosh 3)
8

3

t t

t

u x t h x h x h x h x h x

h x h x x



 

   

  
 
 
 

  
 (28) 

    2

3

2 3

3 2

( , ) 2sec 2sec tan sec 2sec

1
sec tan (cosh 6)

3

t t

t

v x t hx hx h x h x h x

h x h x x



 

   

  
 
 
 

         
(29) 

The graphical behavior of the approximate solutions obtained by RDTM with the 

exact solutions (Eqs.(26)) for different values of times is shown in Fig.3. 
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(a) 

 
 (b) 

Fig. 3. (a) The approximate solutions ( , )u x t  and ( , )v x t  obtained by RDTM with 

different values of time. (b) The exact solutions ( , )u x t  and ( , )v x t with different values of 

time. (For p=q=r=1) 

 

3.3      RDTM for coupled Burgers Equations  

Now, we will consider the system of Burgers’ equations in the operator form 

2 ( ) 0,t xx x xu u uu uv   
 

(30) 

2 ( ) 0,t xx x xv v vv uv     (31) 

subject to the initial conditions 

( ,0) sin( ), ( ,0) sin( ),u x x v x x   (32) 

The exact solutions of this system are 

( , ) sin( ), ( , ) sin( ),t tu x t e x v x t e x  
 
                               (33) 

According to the above theorems, we have the following recurrence relation for 

the system of Burgers’ equations: 

2

1 2
0 0

( 1) ( ) ( ) 2 ( ) ( ) ( ) ( )
k k

k k l k l l k l

l l

k U x U x U x U x U x V x
x x x

  

 

    
     

    
 

    
(34) 

2

1 2
0 0

( 1) ( ) ( ) 2 ( ) ( ) ( ) ( )
k k

k k l k l l k l

l l

k V x V x V x V x U x V x
x x x

  

 

    
     

    
          (35) 

From Eq.(2), the initial condition given in Eq. (32) can be transformed as; 

0 0( ) sin , ( ) sinU x x V x x    (36) 
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Substituting Eqs.(36) into Eqs.(34-35) and by straightforward iterative steps, we 

get the following ( )kU x  and
 

( )kV x  (for k=0,1,2,...,n) values. 

0 0 1 1

2 2 3 3

4 4

( ) ( ) sin , ( ) ( ) sin

1 1
( ) ( ) sin , ( ) ( ) sin

2 6

1
( ) ( ) sin ,...

24

U x V x x U x V x x

U x V x x U x V x x

U x V x x

    

    

 

  (37) 

Then, using the inverse transformation Eq.(3), we get approximate solution as, 

2 3

4 5

2 3 4 5

1 1
( , ) sin sin + t sin t sin

2 6

1 1
t sin t sin

24 120

1 1 1 1
(1 + t t t t )sin

2 6 24 120

u x t x t x x x

x x

t x

  

  

     

  (38) 

2 3

4 5

2 3 4 5

1 1
( , ) sin sin + t sin t sin

2 6

1 1
t sin t sin

24 120

1 1 1 1
(1 + t t t t )sin

2 6 24 120

v x t x t x x x

x x

t x

  

  

     

  (39) 

which are Taylor series of Eqs.(34). 

3.4      RDTM for Modified Boussinesq Equation 

Finally, we consider the following general equation  

( ) 0n

tt xxt xxxx xxu u u u       (40) 

where α,β,γ and n are constants. 

This equation is called the high-order modified Boussinesq equation with the 

damping term xxtu . It appears in several domains of mathematics and physics.  

 

Now, we will consider the cubic modified Boussinesq equation (α=1, β=2/9, γ=-1 

and n=3) 

32
( ) 0

9
tt xxt xxxx xxu u u u      (41) 

with initial conditions  
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23 3
( ,0) 1 tanh , ( ,0) 3sec

2 2
tu x x u x h x

   
      

   
  (42) 

The exact solution of this problem is 

3
( , ) 1 tanh 3

2
u x t x t

 
   

 
  (43) 

Using above theorems we obtain following recurrence relation; 

2 4

2 12 4

2

2
0 0

2
( 1)( 2) ( ) ( 1) ( ) ( )

9

( ) ( ) ( )

k k k

k l

r l r k l

l r

k k U x k U x U x
x x

U x U x U x
x

 

 

 

 
     

 

  
  
  


  (44) 

From Eq.(2), the initial conditions given in Eq. (42) can be transformed as 

0 1

2
( ) , ( )

3 3
1 tanh 3sec

2 2
U x U xx h x 

   
    

   
  (45) 

Substituting Eqs.(45) into Eq.(44) and by straightforward iterative steps, we get 

the following ( )kU x (for k=0,1,2,...,n) values. 

0 1

2

3

4

2

2

2 2

2 2

( ) , ( )

( ) 9 ,

( )

( ) ,...

3 3
1 tanh 3sec ,

2 2

3 3
tanh sech

2 2

3 3
sec 18 27sec ,

2 2

3 3 3
tanh sec 27 81sec

2 2 2

U x U x

U x

U x

U x

x h x

x x

h x h x

x h x h x

   
    

   

   
     

   

    
     

    

      
       

      

 

 

 

  (46) 

Then, using the inverse transformation Eq.(3), we get the approximate solution as, 

3

2 2 4

2 2 2

2 2

( , )

3 3 3
tanh sec 27 81sec

2 2 2

3 3 3 3
1 tanh 3sec 9 tanh sech

2 2 2 2

3 3
sec 18 27sec

2 2

u x t t

t

x h x h x t

x h x x x t

h x h x

       
        

       

    
    

    

      
        

      

    

  

 

 

 (47) 
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The behavior of the approximate solution with the exact solutions (Eq.(43)) for 

different values of times is shown in Fig.4. 

 

 
(a) 

 
(b) 

Fig. 4. (a) The approximate solution ( , )u x t obtained by RDTM with different values of 

time. (b) The exact solution ( , )u x t  with different values of time. 

 

4 Conclusion  

In this paper, the reduced transform method (RDTM) has been successfully 

applied to nonlinear evolution equations. The approximate solutions of Korteweg–

de Vries Burgers' (KdVB) equation, Drinefel’d–Sokolov–Wilson equations, 

coupled Burgers equations and modified Boussinesq equation are obtained. The 

approximate solutions obtained are in good agreement with the known exact 

solutions. The results show that the RDTM is an efficient approach for the 

solution of such type of nonlinear equations.The main advantage of the RDTM is 

to provide the user an analytical approximation to the solution, in many cases, an 

exact solution, in a rapidly convergent sequence with elegantly computed terms. 

The solution procedure of the RDTM is simple than other existing techniques.  
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