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Abstract

A semi-linear reduced-order state estimator is presented to reconstruct approximately the state variable initially
unknown of a class of nonlinear tubular reactors models, namely the exothermal plug-flow tubular reactor involving
sequential reactions for which the kinetics depends on both the temperature and the reactant concentration. Our
conception is based on bounded observations and the analysis of the nonlinear set of partial differential equations. It
is shown that the given observer design admits a global unique solution and ensures asymptotic state estimator with
exponentially decay error, when only the temperature is available for measurement at the reactor outlet. Simulation
results are also presented showing the effectiveness of the proposed observer design.
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1 Introduction

An intensive research activity has been dedicated to the study of the observability and controllability of (bio)-
chemical process in the last decades (see [1], [2], [3], [4], [5], [6] and all the references within). This interest can
be explained by the potential of these process to improve the productivity. In such systems, the states, inputs,
and outputs depend on a spatial variable. This dependance, along with additional aspects such as the boundary
conditions and nonlinearities caused by the kinetics of the reactants involved in the process, increase the complexity
of the state estimation problem and of the design methods.
For system analysis as well as for control design problems, many surveys has been dedicated to a large class of
partial differential equations in linear models. However, an important number of questions remained unsolved so
far in the case of nonlinear models. In particular, for the state control of the nonlinear tubular reactor model, the
state must be estimated using state estimators (observers).
In this direction, this paper investigates the question of the conception of a exponential reduced-order observer
for a class of a chemical non-isothermal tubular reactor for which kinetics is characterized by first-order kinetics
with respect to the reactant concentration C(mol/l) and by an Arrhenius-type dependence with respect to the
temperature T (K), when only the measurements of the temperature may occur at the reactor output. The dynamics
of the process are described by the following two energy and mass balance partial differential equations (PDEs) (see
[2]):

∂T

∂τ
= −υ∂T

∂ζ
− 4h

ρCpd
(T − Tc)−

∆H

ρCp
k0Ce

−E
RT , (1)

∂C

∂τ
= −υ∂C

∂ζ
− k0Ce

−E
RT , (2)

where the boundary conditions are given, for τ ≥ 0, by:

T (0, τ) = Tin, C(0, τ) = Cin (3)
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and the initial conditions are given, for 0 ≤ ζ ≤ L, by:

T (ζ, 0) = T0(ζ), C(ζ, 0) = C0(ζ) (4)

In the equations above, the following parameters υ, ∆H, ρ, Cp, k0, E, R, h, d, Tc hold for the superficial
fluid velocity, the heat of reaction, the density, the specific heat, the kinetic constant, the activation energy, the
ideal gas constant, the wall heat transfer coefficient, the reactor diameter, the coolant temperature. Tin and Cin
are respectively the inlet temperature and the inlet reactant concentration. τ, ζ and L denote the time and space
independent variables, and the length of the reactor, respectively. Finally T0 and C0 denote the initial temperature
and reactant concentration profiles.
From a physical point of view it is expected that for all (z, t) ∈ [0, 1]× [0,+∞),

0 ≤ T (z, t) ≤ Tmax and 0 ≤ C(z, t) ≤ Cin

where Tmax could possibly be equal to +∞. Let consider the following dimensionless state transformation:

x1 =
T − Tin
Tin

, xc =
Tc − Tin
Tin

, x2 =
Cin − C
Cin

,

Let us consider also dimensionless time t and space z variables:

t =
τυ

L
, z =

ζ

L
.

We shall assume in the rest of the paper that the coolant temperature Tc is equal to the inlet temperature Tin (
i.e xc ≡ 0), since xc will be eliminated in the equation of the reconstruction error between the plan state and the
observer state.
Then we obtain the following equivalent representation of the model (1)-(4):

∂x1

∂t
= −∂x1

∂z
− βx1 + αδ(1− x2) exp(

µx1

1 + x1
) (5)

∂x2

∂t
= −∂x2

∂z
+ α(1− x2) exp(

µx1

1 + x1
) (6)

with the boundary conditions:

x1(z = 0, t) = 0, x2(z = 0, t) = 0 (7)

and the initial conditions:

x1(z, t = 0) = x0
1, x2(z, t = 0) = x0

2 (8)

The parameters α, β, δ and µ are related to the original parameters as follows:

µ =
E

RTin
, α =

k0L

υ
exp(−µ), β =

4hL

ρCpdυ
, δ = −∆H

ρCp

Cin
Tin

.

The real constants α, β and µ are strictly positive, and the constant δ is strictly positive (∆H < 0) for of exothermic
reaction and strictly negative (∆H > 0) for the endothermic reactions. In this paper, we investigate the case of
exothermic reaction (i.e., T ≥ Tin), or equivalently the case when 0 ≤ x1(z, t) ≤ x1,max.
This paper is organized as follows: The notations and preliminaries are given in Section 2. The existence of the
global solution of the semi-linear state estimator of System (1)-(4) is proved in Section 3, and with additional
assumption, we state the main result of the estimation error convergence. In Section 3, we present some simulation
results. Finally, the main conclusions are outlined in Section 4. The background of our approach can be found in
[7], [8] and [9].

2 Notations and preliminaries

Let (X, ‖‖) be a real Banach space, (T (t))t≥0 is a C0−semigroup of linear operators such that ‖ T (t) ‖≤ exp(wt),
for all t ≥ 0, for some w ∈ IR, A is the infinitesimal generator of (T (t))t≥0, N is a continuous function from a
closed subset D of X into X and I is the identity operator on X. Recall that

d(x;D) = inf ‖ x− y ‖, y ∈ D.
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For the following uncontrolled abstract Cauchy problem{
ẋ(t) = Ax(t) +N(x(t)),
x(0) = x0 ∈ D.

(9)

we sate this important theorem that ensure the existence of the global unique solution .

Theorem 2.1 ([7], p. 355) If the following conditions are satisfied:

i) D is (T (t))t≥0−invariant, i.e. T (t)D ⊂ D, for all t ≥ 0;

ii) for all x ∈ D,

lim
h→0+

1

h
d(x+ hN(x);D) = 0,

iii) N is continuous in D and there exists lN ∈ IR+ such that the operator N − lNI is dissipative on D ( i.e.
< (N − lNI)(x− y), x− y >≤ 0, ∀x, y ∈ D.

Then, (9) has a unique mild solution x(t, x0) on [0,+∞[, for all x0 ∈ D. Furthermore, if (S(t))t≥0 is defined on D
by S(t)x0 = x(t, x0), for all t ≥ 0 and x0 ∈ D, it is a nonlinear semigroup on D, with (A+N) as its generator.

We state also the following Theorem that will be needed to prove the exponential convergence of the estimation
error.

Theorem 2.2 ([9], p. 109) Let A be the infinitesimal generator of a C0−semigroup (TA(t))t≥0 and D is linear
bounded operator on H. The operator A+D is the infinitesimal generator of a C0-semigroup (TA+D(t))t≥0 which
is the unique solution of the equation

TA+D(t)x0 = T (t)x0 +

∫ t

0

T (t− s)DTA+D(s)x0ds, ∀x0 ∈ H.

If in addition, ‖ T (t) ‖≤Meωt, then

‖ TA+D(t) ‖≤Me(ω+M‖D‖)t

Throughout the sequel, we assume H = L2[0, 1]× L2[0, 1], the Hilbert space with the usual inner product

< (x1, x2), (y1, y2) >=< x1, y1 >L2 + < x2, y2 >L2

and the induced norm

‖ (x1, x2) ‖= (‖ x1 ‖2L2 + ‖ x2 ‖2L2)
1
2

for all (x1, x2)T and (y1, y2)T in H.
Clearly the Hilbert space H is a real Banach Lattice (for more details, see [10]) where, for all given x = (x1, x2) ∈ H,
y = (y1, y2) ∈ H,

x ≤ y if and only ifx1 ≤ y1 andx2 ≤ y2 for almost all z ∈ [0, 1].

And H+ = {x ∈ H : 0 ≤ x} is a positive cone. Let Γ be a linear operator on H, then Γ is said to be positive linear
operator if 0 ≤ Γx, for all 0 ≤ x, or equivalently ΓH+ ⊂ H+.
As a useful criterion for the invariance condition given by (ii) of Theorem 2.1, we have the following lemma.

Lemma 2.3 [2] Let T (t) be a strongly continuous semigroup of bounded linear operators on a real Banach lattice
X, generated by A, such that ‖ T (t) ‖≤Mexp(wt) for all t ≥ 0, for some M ≥ 1 and w ∈ IR, then: T (t)is positive
if and only if the resolvent operator R(λ,A) := (λI −A)−1 is a positive linear operator for all λ > w.
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3 Semi-linear state estimator

The (PDEs) (5)-(8) describing the exothermic reactor dynamics can be written on its compact form as{
ẋ(t) = Ax(t) +N(x(t))
x(0) = x0 ∈ D

(10)

where, A is the linear operator defined by:

D(A) := {x =

(
x1

x2

)
∈ H : x absolutely continuous, dxdz ∈ H andxi=1,2(0) = 0} (11)

A

(
x1

x2

)
:=

(
A1 0
0 A2

)(
x1

x2

)
=

(
− d.
dz − βI 0

0 − d.
dz

)(
x1

x2

)
.

(12)

It is shown in [1] that the linear operator A is the infinitesimal generator of a C0-semigroup of bounded linear
operators on H, given by

TA(t) =

(
TA1(t) 0

0 TA2
(t)

)
where (TA1

(t) and (TA2
(t) are the C0-semigroups generated, respectively, byA1 andA2, such that for all (x01, x02)T ∈

L2(0, 1)× L2(0, 1), for all (z, t) ∈ [0, 1]× IR,

(TA1
(t)x01)(z) =

{
exp(−βt)x01(z − t) if z ≥ t,
0 if z < t,

(13)

(TA2(t)x02)(z) =

{
x02(z − t) if z ≥ t,
0 if z < t,

(14)

Remark 3.1 i) It is easy to see from (13)-(14) that:
- For all t ≥ 0, TA(t)H+ ⊂ H+, which is equivalent to R(λ,A)H+ ⊂ H+, ∀λ ∈ IR (by Lemma 2.3).
- And ‖ TA(t) ‖≤ 1 = exp(wt), for all t ≥ 0 (i.e. w = 0).

ii) The C0-semigroup (TA(t))t≥0 is exponentially stable (see [1]), i.e. there exist constants M,ρ in IR∗+ such that

‖ TA(t) ‖≤M exp(−ρt), ∀t ≥ 0,

In particular, there exists a time t̄, such that

‖ TA(t) ‖≤ exp(−βt), ∀t ≥ t̄,

The nonlinear operator N is defined on

D := {x =

(
x1

x2

)
∈ H : 0 ≤ x1(z) and 0 ≤ x2(z) ≤ 1, for almost all z ∈ [0, 1]},

for all x =

(
x1

x2

)
in D,

N(x) =

(
N1(x)
N2(x)

)
:=

(
αδ(1− x2) exp( µx1

1+x1
)

α(1− x2) exp( µx1

1+x1
)

)
(15)
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3.1 State estimator conception

Hereafter we consider measurements of the state vector x(t) are available at the reactor output only. In this case,
the output function y(.) is defined as follows: we consider a (very small) finite interval with window width w at the
reactor output [1− w, 1]:

y(t) = (Cx)(t)

:=
∫ 1

0
X[1−w,1](a)x(a, t)da, ∀t ∈ IR+ (16)

where, X[1−w,1](a) = 1, if a ∈ [1− w, 1] and X[1−w,1](a) = 0, elsewhere
The observer operator C : H → IR2 is linear bounded and for all x, y ∈ H × IR2,

< Cx, y >IR2 =<
∫ 1

0
X[1−w,1](a)x(a, .)da, y >IR2

=
∫ 1

0
< x(a, .),X[1−w,1](a)y >IR2 da

The adjoint operator C∗ of C is then defined for all (z, t) ∈ [0, 1]× IR+ by:

(C∗y)(z) = X[1−w,1](z)y

It is easy to see that for all x ∈ H,

‖ C∗Cx ‖2 ≤ w ‖ X[1−w,1] ‖2‖ x ‖2

what implies,

‖ C∗C ‖≤ w.

An observer design for the system (5)-(8), when only the temperature state is available for measurement, at the
given reactor outlet, is given by

∂x̂1

∂t
= −∂x̂1

∂z
− βx̂1 + αδ(1− x̂2) exp(

µx̂1

1 + x̂1
) + gC∗1 (C1x1 − C1x̂1) (17)

∂x̂2

∂t
= −∂x̂2

∂z
+ α(1− x̂2) exp(

µx̂1

1 + x̂1
) (18)

with the boundary conditions:

x̂1(z = 0, t) = 0, x̂2(z = 0, t) = 0 (19)

and the initial conditions:

x̂1(z, t = 0) = x̂0
1, x̂2(z, t = 0) = x̂0

2 (20)

The system (17)-(20) can be written on its compact form as{
˙̂x(t) = (A−GC∗C)x̂(t) +N(x̂(t)) +GC∗Cx(t)
x̂(0) = x̂0 ∈ D

(21)

where, x(t) = (x1(., t), x2(., t))T is the state variable of (10) and x̂(t) = (x̂1(., t), x̂2(., t))T . The linear operator G

satisfy: G :=

(
G1 0
0 0

)
= gI, with g is real number and I is the identity operator of the Hilbert H.

The initial state (x1(0), x2(0))T of (8) is unknown while the initial state (x̂1(0), x̂2(0))T of the observer can be
assigned arbitrarily. Thus, the error between (x1(0), x2(0))T and (x̂1(0), x̂2(0))T is still an unknown quantity even
if we know (x̂1(0), x̂2(0))T .

3.2 Existence of the global solution

Let consider the following coupled system, given for all (x(0), x̂(0))T ∈ D ×D, by(
ẋ(t)
˙̂x(t)

)
=

(
A 0

GC∗C A−GC∗C

)(
ẋ(t)
˙̂x(t)

)
+

(
N(x(t))
N(x̂(t))

)
, (22)

In order to investigate the asymptotic behavior of the estimation error x(.) − x̂(.), we need to prove the existence
of the solution of the augmented system (22), which remains in D×D, on the whole interval [0,+∞), by applying
Theorem 2.1. For this end we state the following lemmas concerning the nonlinearity involved in the dynamics (22).
The proofs are similar to that given in [2].
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Lemma 3.2 Consider the nonlinear operator (15). Then there exist lN ∈ IR+ such that the operator

(
N − lNI
N − lNI

)
is dissipative on D ×D.

Where lN := αexp(µ)(1 + µ)(1+ | δ |) with µ exp(µ) is a Lipschitz constant of the function exp( µs
1+s ) on [0,+∞).

Let define on H ×H, the distance

d0(

(
x
x̂

)
, D ×D) = inf

(y,ŷ)T∈D×D
d(

(
x
x̂

)
,

(
y
ŷ

)
) (23)

Lemma 3.3 For all (x, x̂)T ∈ D ×D,

lim
h→0+

1

h
d0(

(
x
x̂

)
+ h

(
N(x)
N(x̂)

)
, D ×D) = 0 (24)

From the Theorem 2.2, the operator A−GC∗C is the infinitesimal generator of a C0-semigroup (TA−GC∗C(t))t≥0(:=

(

(
TA1−G1C∗

1C1
(t) 0

0 TA2
(t)

)
))t≥0, where (TA1−G1C∗

1C1
(t))t≥0 is the C0-semigroup generated by the operator A1−

G1C
∗
1C1.

In order to study the invariance condition (i) of Theorem 2.1, it is useful to have the following Lemma:

Lemma 3.4 The C0-semigroup (TA−GC∗C(t))t≥0, is D1 ×D2 invariant.

Proof 3.5 From Remark 3.1, we have ‖ TA1(t) ‖≤ exp(ωt) for all t ≥ 0 with ω = 0, it follows by Theorem 2.2 that,

‖ TA1−G1C∗
1C1

(t) ‖≤ exp((ω+ ‖ G1C
∗
1C1 ‖)t), ∀t ≥ 0.

Now, in order to prove that the semigroup (TA1−G1C∗
1C1

(t))t≥0 is D1 invariant, it is sufficient to prove that the
operator A1 − G1C

∗
1C1 is positif (i.e., R(λ,A1 − G1C

∗
1C1)H+ ⊂ H+, for all λ >‖ G1C

∗
1C1 ‖, according the

Proposition 2.3).
Consider that λ >‖ G1C

∗
1C1 ‖ and (x, y) ∈ H+ ×D(A1), such that:

R(λ,A1 −G1C
∗
1C1)x = y (i.e., (λI −A1 +G1C

∗
1C1)−1x = y)

Let prove that y ∈ H+. We have,

x = (λI −A1)y +G1C
∗
1C1y,

whence,

(λI −A1)−1x = y + (λI −A1)−1G1C
∗
1C1y,

then, for almost all z ∈ [0, 1],

y(z) = ((λI −A1)−1x)(z)− g(

∫ 1

1−w
y(a)da)((λI −A1)−1X[1−w,1](.))(z),

it follows that,

y(z) = (R(λ,A1)x)(z)− g(

∫ 1

1−w
y(a)da)

∫ z

0

exp−(λ+υ)t X[1−w,1](z − t)dtX[1−w,1](z).

From Remark 3.1, for all λ ≥ 0, R(λ,A1)H+ ⊆ H+, whence,
-y(z) ≥ 0 for almost all z ∈ [0, 1] \ [1− w, 1],
- and for almost all z ∈ [1− w, 1], there is tree cases:

• if
∫ 1

1−w y(a)da = 0, thus y(z) ≥ 0, for almost all z ∈ [1− w, 1] .

• if
∫ 1

1−w y(a)da < 0, thus y(z) ≥ 0, for almost all z ∈ [1− w, 1].

• if
∫ 1

1−w y(a)da > 0, suppose that there exist a subset non negligible V ⊆ [1−w, 1] such that y(z) < 0, pp. z ∈ V .
We can suppose [1− w, 1] \ V negligible in the size, since w is very small number, it follows,∫ 1

1−w
y(a)da(=

∫
V

y(a)da+

∫
[1−w,1]\V

y(a)da) < 0
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what is contradictory. Thus, y(z) ≥ 0 for almost all z ∈ [0, 1], and so TA1−G1C∗
1C1(t)H+ ⊂ H+ for all t ≥ 0.

It follows that, TA1−G1C∗
1C1(t)D1 ⊂ D1. Besides, it is proved in [2] that TA2(t)D2 ⊂ D2.

Therefore,

TA−GC∗C(t)D1 ×D2 ⊂ D1 ×D2, ∀t ≥ 0

The following proposition demonstrates the existence of the unique mild solution on [0,+∞) of the coupled nonlinear
system (22):

Proposition 3.6 For all (x0, x̂0)T ∈ D×D, the dynamic system (22) has a unique mild solution (x(t, x0), x̂(t, x̂0))T ∈
D ×D, for all t ≥ 0.

Proof 3.7 The linear bounded operator

(
A 0

GC∗C A−GC∗C

)
is the generator of a C0-semigroup defined for

all t ≥ 0 by

TA(t) =

(
TA(t) 0
S(t) TA−GC∗C(t)

)
;

S(t)

(
x1

x2

)
=

( ∫ t
0
TA1−G1C∗

1C1
(t− s)G1C

∗
1C1TA1

(s)x1ds 0
0 0

)
.

(see ([9], p. 30) for more details). In particular the C0-semigroup (TA(t))t≥0 satisfy,

TA(t)D ×D ⊂ D ×D, for all t ≥ 0 (25)

In deed, it is proved in [2] that TA(t)(=

(
TA2

(.) 0
0 TA2(.)

)
)D1 ×D2 ⊆ D1 ×D2.

Besides, from Lemma 3.4, for all x(= (x1, x2)T , x̂(= (x̂1, x̂2)T in D, and for all t ≥ 0, we have

TA−GC∗C(t)x̂ =

(
TA1−G1C∗

1C1
(t) 0

0 TA2
(t)

)(
x̂1

x̂2

)
∈ D1 ×D2

Since 0 ≤ TA1−G1C∗
1C1(.)G1C

∗
1C1TA1(.)x1, for all x1 ∈ D1.

Then,

S(t)x ∈ D, ∀x ∈ D.

Hence, for all t ≥ 0,( ∫ t
0
TA1−G1C∗

1C1(t− s)G1C
∗
1C1TA1(s)x1ds+ TA1−G1C∗

1C1(t)x̂1 0
0 TA2(t)x̂2

)
∈ D1 ×D2

It follows that,

S(t)x+ TA−LC(t)x̂ ∈ D, ∀t ≥ 0

Therefore, for all (x, x̂)T ∈ D ×D,

TA(t)

(
x
x̂

)
∈ D ×D, ∀t ≥ 0

The condition (i) of Theorem 2.1 is thus satisfied. Conditions (ii) and (iii) of Theorem 2.1 follows respectively by
Lemma 3.2 and Lemma 3.3. Finally by applying Theorem 2.1, the augmented system (22) admits a unique mild
solution (x, x̂)T ∈ D ×D on the whole interval [0,+∞).
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3.3 Convergence of the estimation error

Now, we are ready to state the main result of this section,

Proposition 3.8 : Given the Plug Flow Reactor model (5)-(8). Suppose that there exists a bounded linear operator

G = g

(
I1 0
0 0

)
with g is a positif number, such that g < β−lN

ω , then the dynamic system (17)-(20) is an

exponential observer for the system (5)-(8).

Proof 3.9 From Lemmas 3.2,3.3 and 3.4, we prove by applying Theorem 2.1 that the evolution of the estimation
error, given by

ẋ(t)− ˙̂x(t) = (A−GC∗C)(x(t)− x̂(t)) +N(x(t))−N(x̂(t)),

admit for all (x(0), x̂(0))T ∈ D ×D an unique mild solution on the whole interval [0,+∞), satisfying

x(t)− x̂(t) = TA−GC∗C(t)(x(0)− x̂(0))

+
∫ t

0
TA−GC∗C(t− s)(N(x(s))−N(x̂(s)))ds,

such that, (x(t), x̂(t))T ∈ D ×D, for all t ≥ 0.
It follows, for all t ≥ 0, that

‖ x(t)− x̂(t) ‖ ≤‖ TA−GC∗C(t) ‖‖ x(0)− x̂(0) ‖
+
∫ t

0
‖ TA−GC∗C(t− s) ‖‖ N(x(s))−N(x̂(s)) ‖ ds,

From Remark 3.1, there exists a time t̄ such that ‖ TA(t) ‖≤ exp(−βt) for all t ≥ t̄. Consider α = β − gω. It
follows from Theorem [8],

‖ TA−GC∗C(t) ‖≤ exp(−αt), ∀t ≥ t̄
thus, for all t ≥ t̄,

‖ exp(αt)(x(t)− x̂(t)) ‖≤‖ x(0)− x̂(0) ‖ +lN

∫ t

0

‖ exp(αs)(x(s)− x̂(s)) ‖ ds,

By applying Gronwall’s Lemma ([9], p., 639),

‖ x(t)− x̂(t) ‖≤M ‖ x(0)− x̂(0) ‖ exp((−α+ lN )t), ∀t ≥ t̄
Therefore, the estimation error converges exponentially to zero if g < β−lN

ω .

4 Simulation result

In order to test the performance of the proposed observers, the equations have been integrated by using a backward

finite difference approximation for the first-order space derivative (∂x∂z '
x(zi,t)−x(zi−1,t)

∆z ), where ∆z is the spatial
step (equal to 0.001), with the following set of parameter values (see [6], [5]):

Table 1: Process Parameters
υ 0.1 m.s−1

L 1 m
δ 0.25
E 11.250 cal ·mol−1

k0 106 s1

β 0.2 s1

Cin 0.02 mol · L−1

R 1.986 cal ·mol−1 · L−1

Tin 340 K

The measurements are taken on the length interval [3 ∗ L/4, L] i.e., w = 3 ∗ L/4, and the process model has been
arbitrary initialized with the constant profiles x1(0, z) = 1, x2(0, z) = 0, x̂1(0, z) = 0, and x̂2(0, z) = 1. In order to
response to the assumption of the Propositions 3.8, we set g = β−lN

ω for the observer design parameter.
Figure 1 shows respectively the time evolution of the temperature and concentration errors x1 − x̂1 and x2 − x̂2

related to the exponential reduced-order observer (17)-(20).
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Figure 1: Evolution in time and space of the error on temperature in the left plot and of the error on reactant
concentration in the right.

5 Conclusions and prospects

In this paper we present an exponential ”Reduced-Order” observer to estimate the state variables initially unknown
of a class of tubular reactor nonlinear models, namely exothermal Plug-Flow reactors involving sequential reactions
for which the kinetics depends on temperature and reactant concentration. The given observer is based on measure-
ments of the temperature at the reactor output only, and performed by a simulation study in which the parameters
can be tuned by the user to satisfy specific needs in terms of convergence rate. It is shown in the simulations
that the observer design is effective and satisfactory since it answers to difficulties of the reactant concentration
measurements for a wide range of (bio)-chemical reactors.
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PROTARS III, initiated by the Moroccan ”Centre National de la Recherche Scientifique et Technique” (CNRST).
The scientific responsability rest with its authors. The work is also supported by the Belgian Programme on
Interuniversity Poles of Attraction (PAI).

References

[1] J. Winkin, D. Dochain, P. Ligarius, ”Dynamical Analysis of Distributed Parameter Tubular Reactors”, Automatica 36
(2000) 349–361.

[2] M., Laabissi, M. E., Achhab, J., Winkin, D., Dochain,, ”Trajectory analysis of nonisothermal tubular reactor nonlinear
models”, Syst. Control Lett 42 (2001) 169-184.

[3] C. Antoniades, P. D. Christofides, ”Studies on nonlinear dynamics and control of tubular reactor with recycle”, Nonlinear
Anal 47, (2001) 5933–5944.

[4] S. Renou, M. Perrier, D. Dochain, S. Gendron, ”Solution of the convection-dispersion-reaction equation by a sequencing
method”, Comput. Chem. Eng 27 (2003) 615–629.

[5] Y. Orlov, D. Dochain, ”Discontinuous Feedback Stabilisation of Minimum-Phase Semilinear Infinite-Dimensional Sys-
tems With Application to Chemical Tubular Reactor Models”, IEEE Trans. Aut., Vol.47, (2002), pp.1293-1304.

[6] I.Y. Smets, D. Dochain, J.F. Van Impe, ”Optimal Temperature Control of a Steady-State Exothermic Plug-Flow
Reactor”, AIChE Journal, Vol.48, No.2, (2002), pp.279-286.

[7] R.H, Martin, Nonlinear operators and differential equations in Banach spaces, John Wiley and Sons, (1976).



International Journal of Applied Mathematical Research 485

[8] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York,
(1983).

[9] R. F. Curtain, J. Zwart, An Introduction to Infinite Dimentional Linear Systems Theory, Springer, New York. (1995).

[10] R., NAGEL, One-Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, vol. 1184, Springer, New

York, (1986).


