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Abstract

In this paper we established the Hyers-Ulam stability of a nonlinear

differential equation of second order with initial condition. We also

proved the Hyers -Ulam stability of a linear differential equation of

second order with initial condition.
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1 Introduction

In [1], Ulam posed the basic problem of the stability of functional equations:
Give conditions in order for a linear mapping near an approximately linear
mapping to exist . This problem was partially solved by Hyers in 1941, for
approximately additive mappings on Banach spaces [2]. In 1978 Rassias in his
work [3], has generalized that result obtained by Hyers.

After then, many mathematicians have extensively investigated the stabil-
ity problems of functional equations (see [4, 5, 6]).

Alsina and Ger [7] were the first mathematicians who investigated the
Hyers-Ulam stability of the differential equation g′ = g.They proved that if
a differentiable function y : I → R satisfies |y′ − y| ≤ ε for all t ∈ I ,then
there exists a differentiable function g : I → R satisfying g′(t) = g(t) for any
t ∈ I such that |g − y| ≤ 3ε,for all t ∈ I. This result of Alsina and Ger has
been generalized by Takahasi et al. [8] to the case of the complex Banach space
valued differential equation y′ = λy.
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Furthermore, the results of Hyers-Ulam stability of differential equations of
first order were also generalized by Miura et al. [9], Wang et al. [10], and Jung
[11]. In the paper [12] Jung proved the Hyers-Ulam stability for Legendre’s
differential equation (1 − x2)y′′ − 2xy + p(p + 1)y = 0 when the function
y(x) has a power series form. In his paper Li [13] has established the Hyers-
Ulam stability of the equation y′′ = λ2y , while Gavruta et al. [14] proved the
Hyers-Ulam stability of the equation y′′ +β(x)y = 0 with boundary and initial
conditions. Li and Shen [15] proved the stability of the nonhomogeneous linear
differential equation of second order y′′ +p(x)y′ + q(x)y +r(x) = 0 in the sense
of the Hyers and Ulam . In the paper [16] Javadian et al. have proved the
Hyers and Ulam stability of the nonhomogeneous linear differential equation
of second order y′′ + p(x)y′ + q(x)y = f(x) in a complex Banach space with
the condition that there exists a solution of the corresponding homogeneous
equation.

In this paper we investigate the Hyers-Ulam stability of the following non-
linear differential equation of second order

z′′ + p(x)z′ + q(x)z = h(x) |z|β e(
β−1

2 )
∫

p(x)dxsgnz , β ∈ (0, 1) (1)

with the initial conditions

z(x0) = 0 = z′(x0) (2)

where q ∈ C0(I) , , h , p ∈ C1(I), I = [x0, x] ⊆ R , x0 > 0 , p(x) > 0, and
h(x) is a bounded for all sufficiently large x in R . Moreover we proved the
Hyers-Ulam stability of the linear differential equation of second order

z′′ + p(x)z′ + (q(x) − α(x)) z = 0 (3)

with the initial conditions

z(x0) = 0 = z′(x0) (4)

where α(x) is a bounded function for all sufficiently large x in R .

It should be note here that we may assume that z > 0 in equation (1) because
if z < 0 we set z = −u , u > 0. So we will consider in future the equation

z′′ + p(x)z′ + q(x)z = h(x)zβe(
β−1

2 )
∫

p(x)dx , β ∈ (0, 1) (5)

2 Preliminaries and Auxiliary Results

Definition 2.1: We will say that the equation (3) has the Hyers -Ulam sta-
bility with the initial conditions (4) if there exists a positive constant K > 0
with the following property:
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For every ε > 0, z ∈ C2(I) where x is sufficiently large in R, if

|z′′ + p(x)z′ + (q(x) − α(x)) z| ≤ ε (6)

then there exists some solution w ∈ C2(I) of the equation (5), such that
|z(x) − w(x)| ≤ Kε and satisfies the initial conditions

w(x0) = 0 = w′(x0) (7)

Definition 2.2: We say that equation (5) has the Hyers -Ulam stability with
initial conditions (4) if there exists a positive constant K > 0 with the following
property:

For every ε > 0, z ∈ C2(I) where x is sufficiently large in R, if

|z′′ + p(x)z′ + q(x)z − h(x)zβe(
β−1

2 )
∫

p(x)dx | ≤ ε (8)

then there exists some solution w ∈ C2(I) of the equation (5) and

w(x0) = w′(x0) = 0 (9)

such that |z(x) − w(x)| ≤ Kε.

Definition 2.3: We will say that the equations (3),(5) have the Hyers -Ulam
asymptotic stability with the initial conditions (4) if the equation is stable in
the sense of Hyers and Ulam and lim

x→∞
(z(x) − w(x)) = 0.

The author in his work [17] has proved the following Lemma and Theorem.

Lemma 2.1: (see [17]) A substitution z(x) = y(x) exp(−1
2

∫

p(x)dx) reduces
the equations (3) and (5) to the equations (10) and (11), respectively

y′′ + y = α(x)y (10)

y′′ + y = h(x)yβ , β∈ (−1, 1)\{0} (11)

where

q(x) − 1

4
p2(x) − 1

2
p′(x) = 1. (12)

Theorem 2.1(see [17]) Suppose that h(x) is a continuously differentiable

function, bounded for all sufficiently large x ∈ R, and that the integral
∫ ∞

x0
|h′(x)| dx is convergent then any solution of the equation (11) is bounded

as x → ∞.
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Proof. Multiplying both sides of the equation (11) by y′ and integrate the
result we get

y′2(x) + y′2(x) = y′2(x0) + y2(x0) −
2h(x0)y

β+1(x0)

β + 1

+
2h(x)yβ+1(x)

β + 1
− 2

β + 1

∫ x

x0

h′(t).yβ+1(t)dt

Hence

y2(x) ≤ y′2(x) + y2(x) ≤ Ax0
+

2 |h(x)| |y(x)|β+1

β + 1
+

2

β + 1

∫ x

x0

|h′(t)| . |y(t)|β+1

dt

where Ax0
≥ 0 is an expression dependent only on x0.

Let M = max
x0≤t≤x

|y(t)|, and without loss of generality we may assume that

M ≥ a0 > 0, otherwise the theorem is proved. Since h(x) is bounded we get

M1−β ≤ Ax0

M
β+1

+
2B0

β + 1
+

2

β + 1

∫ x

x0

|h′(t)| dt ≤ Ax0

a0

+
2B0

β + 1

+
2

β + 1

∫ ∞

x0

|h′(t)| dt

Since the integral
∫ ∞

x0
|h′(x)| dx converges , we obtain

|y(x)| ≤ M ≤ C
1

1−β , β∈ (−1, 1)\{0}
Therefore y(x) is bounded for x → ∞.

In the following theorem the author has established sufficient conditions for
boundedness of the solutions of the equation (10) which are similar to those
obtained in [18].

Theorem 2.2 Suppose that |α(x)| ≤ L for all x ≥ x0. If L < 1 then
any solution of the equation (10) is bounded as x → ∞.

Proof. Multiplying both sides of the equation (10) by y′ and integrating
the result, we obtain

∫ x

x0

y′(t).y′′(t)dt +

∫ x

x0

y(t).y′(t)dt = 2

∫ x

x0

α(t).y(t)y′(t)dt
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Since α(x) is bounded we get

y2(x) ≤ y′2(x) + y2(x) ≤ Ax0
+2

∫ x

x0

α(t).y(t)y′(t)dt

≤ Ax0
+Ly2(x)

It follows that

y2 ≤ Ax0

(1 − L)

Therefore y(x) is bounded for x → ∞.

3 Main Results on Hyers-Ulam stability

Theorem 3.1 Suppose |α(x)| ≤ L < 1 for all x ≥ x0, and that y ∈ C2(I) ,
such that satisfies the inequality

|y′′ + y − α(x) y| ≤ ε (13)

with the initial condition
y(x0) = 0 = y′(x0) (14)

Then the equation (10) has the Hyers-Ulam stability with initial condition (14).

Proof. suppose that ε > 0 and y ∈ C2(I) satisfies the inequation (13) with
the initial conditions (14) and M = max

x≥x0

|y(x)| .
We will show that there exists a function w(x) ∈ c2(I) satisfying the equation
(10) and the initial condition (7) such that |z(x) − w(x)| ≤ kε .

From the inequality (13) we have

−ε ≤ y′′ + y − α(x) y ≤ ε (15)

Multiply the inequality (15) by y′ and then integrate we obtain

−2εy ≤ y′2(x) + y2(x) − 2

x
∫

x0

α(t) yy′dt ≤ 2εy

From which we get that

y2(x) ≤ 2εy + 2

x
∫

x0

α(t) yy′dt = 2εy + α(x∗) y2 ≤ 2εy + α(x∗) y2

≤ 2εM + L M2
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Therefore

M ≤ 2ε

1 − L

Hence |y(x)| ≤ kε, for all x ≥ x0. Obviously , w0(x) = 0 satisfies
the equation (10) and the zero initial condition (14) such that

|y(x) − w0(x)| ≤ kε

Hence the equation (10) has the Hyers-Ulam stability with initial condition
(14).

Corollary 3.1: Suppose |α(x)| ≤ L < 1 for all x ≥ x0, z ∈ C2(I) and
satisfies the inequality (6) with the initial condition (4) . If the integral
∫ ∞

x0
p(x)dx converges then the equation (3) has the Hyers-Ulam stability with

initial condition (4).
Proof. Suppose that z ∈ C2(I) satisfies the inequality

|z′′ + p(x)z′ + (q(x) − α(x)) z| ≤ ε

From the Theorem 3.1 it follows that the equation (10) has the Hyers-Ulam
stability with initial condition (14) and according to the substitution in Lemma
2.1 it follows that the equation (3) has the Hyers-Ulam stability with initial
condition (4).

Corollary 3.2 Suppose |α(x)| ≤ L < 1 for all x ≥ x0, z ∈ C2(I) and
satisfies the inequality (6) with the initial condition (4) and

∫ ∞
x0

p(x)dx = ∞
, then the equation (3) has the Hyers-Ulam asymptotic stability with initial
condition (4).

Proof. From the Corollary 3.1 it follows that the equation (3) has the
Hyers-Ulam stability with initial condition (4). Since

∫ ∞
x0

p(x)dx = ∞ then
according to the substitution in Lemma 2.1 it follows that the equation (3)
has the Hyers-Ulam asymptotic stability with initial condition (4).

Theorem 3.2 Suppose |h(x)| ≤ A for all x ≥ x0, and that y ∈ C2(I) ,
such that satisfies the inequality

|y′′ + y − h(x) yβ| ≤ ε , β ∈ (0, 1) (16)

with the initial condition
y(x0) = 0 = y′(x0) (17)

If A <
(β+1)

2

(

max
x≥x0

|y(x)|
)−β

,for x ≥ x0,then the equation

y′′ + y = h(x) yβ , β ∈ (0, 1) (18)

has the Hyers-Ulam stability with initial condition (17).
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Proof. suppose that ε > 0, y ∈ C2(I) satisfies the inequation (16) with the
initial conditions (17) and that M = max

x≥x0

|y(x)| .
We will show that there exists a function w(x) ∈ c2(I) satisfying the equation

(18) and the initial condition (17) such that |z(x) − w(x)| ≤ kε .
From the inequality (16) we have

−ε ≤ y′′ + y − h(x) yβ ≤ ε (19)

Multiply the inequality (19) by y′ and then integrate we obtain

−2εy ≤ y′2(x) + y2(x) − 2

x
∫

x0

h(x) yβy′dt ≤ 2εy

From which we get that

y2(x) ≤ 2εy + 2

x
∫

x0

h(t) yβy′dt = 2εy +
2h(x∗) yβ+1

β + 1
≤ 2εM +

2A Mβ+1

β + 1

Therefore

M ≤ 2ε

1 − 2AMβ

β+1

Hence |y(x)| ≤ kε, for all x ≥ x0. Obviously , w0(x) = 0 satisfies the equation
(18) and the zero initial condition (17) such that

|y(x) − w0(x)| ≤ kε

Thus the equation (18) has the Hyers-Ulam stability with initial condition
(17).

Corollary 3.3 Assume that h(x) and z(x) satisfy the conditions of Theo-
rem 3.2, and the inequality (8) with the initial condition (2).

If A <
(β+1)

2

(

max
x≥x0

|y(x)|
)−β

,for x ≥ x0 and the integral
∫ ∞

x0
p(x)dx

converges then the equation (5) has the Hyers-Ulam stability with initial con-
dition (2). Moreover, if the integral

∫ ∞
x0

p(x)dx = ∞ then the equation (5) has
the Hyers-Ulam asymptotic stability with initial condition (2).

Proof. Suppose that z ∈ C2(I) satisfies the inequality (8) with the initial
condition (2).

Then from the Theorem 3.2 it follows that the equation (18) has the Hyers-
Ulam stability with initial condition (17), and according to the substitution
used in Lemma 2.1 it follows that the equation (5) has the Hyers-Ulam stability
with initial condition (2). Now if

∫ ∞
x0

p(x)dx = ∞ , then the equation (5) has
the Hyers-Ulam asymptotic stability with initial condition (2).
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Now we illustrate the Theorem by the following example.

Example 3.1 Consider the equation

z′′ +
2

x
z′ + z =

e−x/2z1/2

√
x

(20)

with the initial condition

z(x0) = 0 = z′(x0) (21)

If we set z(x) = y(x)
x

in the the equation (20) we obtain

y′′(x) + y(x) = e−x/2y1l2 (22)

We let y(x) = (x − x0)
2
e−x and estimate the difference

∣

∣y′′(x) + y(x) − e−x/2y1l2
∣

∣ =

∣

∣

∣

∣

∣

2 − 5 (x − x0) + 2 (x − x0)
2

ex

∣

∣

∣

∣

∣

≤ ε (23)

Now we may choose the number x0 sufficiently large such that the inequality
(23) will satisfy for any x ≥ x0 and for any ε > 0.

Hence y(x) = (x − x0)
2
e−x is an approximate solution of the equation (20)

satisfying the zero initial condition

y(x0) = 0 = y′(x0) (24)

Now we have

h(x) = e−x/2 ≤ 1 <
3e

8
<

3

4

(

max
x≥x0

|y(x)|
)− 1

2

=
3e1+

x0
2

8
.

Therefore

M ≤ kε , where
6e(1+

x0
2

)

3e(1+
x0
2

) − 8
> 0

It is clear that z0 ≡ 0 satisfies the zero initial condition and the inequality
|y(x) − z0(x)| ≤ kε. Thus the equation (20) has the Hyers-Ulam stability.
Moreover, since lim

x→∞
|y(x) − z0(x)| = 0,then it also is asymptotically stable in

the sense of Hyers and Ulam as x→ ∞. Now since the integral
∫ ∞
1

p(x)dx =
∫ ∞
1

2
x
dx = ∞ , then by Lemma it follows that the equation (20) has the Hyers-

Ulam stability with zero initial condition (21). Moreover the equation (20) is
asymptotically stable in the sense of Hyers and Ulam as x → ∞.
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4 Special Case of the equation (5)

Now consider a special case of the equation (5)

x2z′′ + 2λxz′ + [x2 + λ(λ − 1)]z = h(x)x2+λ(β−1)zβ (25)

where λ > 0, β∈ (0, 1), and it satisfies the initial condition

z(x0) = 0 = z′(x0) (26)

It should be note that the equation (25) is a special case of the equation

(5) with p(x) = 2λ
x

and q(x) = x2+λ(λ−1)
x2 . So if we let z(x) = y(x)

xλ , λ ≻ 0,
then the equation (25) is reduced to the equation (18) with y(x0) = 0 = y′(x0).

Theorem 4.1 Suppose that the conditions of the Theorem 3.2 hold, the inte-
gral

∫ ∞
x0

p(x)dx converges and that z ∈ C2(I) and satisfies the inequality

∣

∣x2z′′ + 2λxz′ + [x2 + λ(λ − 1)]z − h(x)x2+λ(β−1)zβ
∣

∣ ≤ ε

then the equation (25) has the Hyers-Ulam stability with initial condition
(26). Moreover, if the integral

∫ ∞
x0

p(x)dx = ∞ then the equation (25) has the
Hyers-Ulam asymptotic stability with the initial condition (26).

Proof. It follows from the Theorem 3.2 and Corollary 3.3

Example 4.1 Consider the equation

x2z′′ + xz′ +

(

x2 − 1

4

)

z = x7/4e−x/2z1/2 (27)

with the initial condition

z(x0) = 0 = z′(x0) (28)

Setting z(x) = y(x)√
x

in the equation (27) we get

y′′(x) + y(x) = e−x/2y1l2 (29)

If we apply the same argument used in Example 3.1 for the function y(x) =
(x − x0)

2
e−x we can show that it satisfies the inequality

∣

∣y′′(x) + y(x) − e−x/2y1l2
∣

∣ < ε

with initial condition y(x0) = 0 = y′(x0), and the inequality

M ≤ kε , where k =
6e(1+

x0
2

)

3e(1+
x0
2

) − 8
> 0

Therefore, we get the Hyers-Ulam stability and asymptotic stability for the
equation (27).
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5 Conclusion

In this paper we obtained sufficient criteria for Hyers-Ulam stability of linear
and nonlinear differential equations of second Order with zero initial condi-
tions.

ACKNOWLEDGEMENTS
The author is deeply grateful to the editor professor Belal Batiha for useful

comments.

References

[1] S.-M. Ulam, Problems in Modern Mathematics , Science Edition, John
Wiley & Sons, New York, USA, 1964.

[2] D. H . Hyers, On the stability of the linear functional equation, Proceed-
ings of the National Academy of Sciences of the United States of America,
27 (1941) 222–224.

[3] T. M . Rassias, On the stability of the linear mapping in Banach spaces,
Proceedings of the American Mathematical Society, 72 (2) (1978) 297–
300.

[4] T. Miura, S.-E. Takahasi, H. Choda, On the Hyers-Ulam stability of real
continuous function valued differentiable map, Tokyo J. Math. 24 (2001)
467–476.

[5] S. M. Jung, On the Hyers-Ulam-Rassias stability of approximately
additive- mappings, J. Math. Anal. Appl. 204 (1996) 221-226.

[6] C. G. Park, On the stability of the linear mapping in Banach modules ,
J. Math. Anal. Appl. 275 (2002) 711-720.

[7] C. Alsina, R. Ger, On some inequalities and stability results related to
the exponential function, J. Inequal Appl. 2 (4) (1998) 373-380.

[8] E. Takahasi , T. Miura, S. Miyajima, On the Hyers-Ulam stability of the
Banach space-valued differential equation y′ = λy , Bulletin of the Korean
Mathematical Society 39(2002) 309–315.

[9] T. Miura, S. Miyajima, S.-E. Takahasi, A characterization of Hyers-Ulam
stability of first order linear differential operators, J. Math. Anal. Appl.
286 (2003) 136-146.



432 Maher Qarawani

[10] G. Wang, M. Zhou, L. Sun, Hyers-Ulam stability of linear differential
equations of first order, Appl. Math. Lett. 21(2008) 1024-1028.

[11] S.-M. Jung, Hyers-Ulam stability of linear differential equations of first
order, J. Math. Anal. Appl. 311(2005) 139-146.

[12] S.-M. Jung, Legendre’s differential equation and Its Hyers-Ulam stability,
Abstract and Applied Analysis (2007) doi:10.1155/2007/56419.

[13] Y. Li, Hyers-Ulam Stability of Linear Differential Equations, Thai Journal
of Mathematics 8 (2) (2010) 215–219.

[14] P. Gavruta, S. Jung, Y. Li, Hyers-Ulam Stability For Second-
Order Linear Differential Equations With Boundary Conditions, EJDE
http://ejde.math.txstate.edu/Volumes/2011/80/gavruta.pdf

[15] Y. Li and Y. Shen, Hyers-Ulam Stability of Nonhomogeneous Linear Dif-
ferential Equations of Second Order, Int. J. Math. Math. Sci. (2009)
doi:10.1155/2009/576852.

[16] A. Javadian, E. Sorouri, G. Kim, M. E. Gordji, Generalized Hyers-Ulam
stability of the second-order linear differential equations, J of Applied
Mathematics (2011) doi:10.1155/2011/813137.

[17] M. N. Qarawani, Boundedness and asymptotic behaviour of solutions of a
second order nonlinear differential equation, J. of Mathematics Research
4(3) (2012) 121-128.

[18] A. Bucur, About asymptotic behaviour of solutions of differential equa-
tions as x → ∞,General Mathematics 14 (2) (2006) 55-58.


