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Abstract

The aim of this paper is to prove a fixed point theorem via contraction mappings of a pair of weakly increasing
mappings using an altering function in a partially ordered complete separable metric spaces. Our theorem is useful
to determine a large of nonlinear problems. We discuss the existence of a common solution to a system of nonlinear
random integral equations.
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1. Introduction and Preliminary notes

The application of fixed point theory in different branches of mathematics, statistics, engineering and economics
relating to problems associated with approximation theory, theory of differential equations, theory of integral equa-
tions, etc. has been recognized in the existing literature [14, 17, 24] and [25]. Random or stochastic integral
equations are important in the study of many physical phenomena in life science, engineering and technology
[2, 7, 14, 28, 30, 31, 33, 35, 36, 38, 39] and [40].
Research of the direction of random fixed points was initiated by Prague School of Probabilistic in connection with
random operator theory [20, 21, 34]. Progress in the study on random fixed points of non-expansive mappings,
contractive mappings in various spaces has been saturated at large (see for instance) [8]- [13], [15, 24, 27, 29, 37]
and many others.
The Banach contraction mapping principle is one of the pivotal results of analysis. There are a lot of the generaliza-
tions of the Banach contraction mapping principle in the literature (see e.g.) [1, 3, 16, 19, 32] and others. Khan et
al. [26] addressed a new category of contractive fixed point problems for single self-map with the help of a control
function that alters distance between two points in a metric space which they called an altering distance.

Definition 1.1 [26] A function ψ : [0,∞) → [0,∞) is called an altering distance function if the following conditions
are satisfied:

1. ψ(t) = 0 ⇔ t = 0,

2. ψ is a continuous monotonically non-decreasing.
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Recently, Harjani and Sadarangani proved some fixed point theorems for weak contraction and generalized contrac-
tions in partially ordered metric spaces by using the altering distance function in [22, 23] respectively. Subsequently,
Amini-Harandi and Emami proved another fixed point theorem for contraction type maps in partially ordered met-
ric spaces in [5]. After that, Yan et al. [41] extended the results of Harjani and Sadarangani [22, 23] and proved
a new fixed point theorem of a contraction mapping principle in a complete metric space endowed with a partially
ordered set . They proved the following theorem:

Theorem 1.2 [41] Let X be a partially ordered set and suppose that there exists a metric d in X such that (X, d)
is a complete metric space. Let T : X → X be a continuous and nondecreasing mapping such that

ψ(d(Tx, Ty)) ≤ φ(d(x, y)), ∀x ≥ y,

where ψ is an altering distance function and φ : [0,∞) → [0,∞] is a continuous function with the condition
ψ(t) > φ(t) for all t > 0. If there exists x0 ∈ X such that x0 ≤ Tx0, then T has a fixed point.

Let (X, Σ) be a separable Banach space, where Σ is a σ-algebra of Borel subsets of X, and (Ω, Σ, µ) denote a
complete probability measure space with measure µ and Σ be a σ-algebra of subsets of Ω. For more details, see
Joshi and Bose [25].

Definition 1.3 A mapping x : Ω → X is called X-valued random variable if the inverse image under the mapping
x of every Borel set B of X belongs to Σ, that is, x−1(B) ∈ Σ for all B ∈ Σ.

Definition 1.4 A mapping x : Ω → X is said to be a finitely-valued random variable if it is constant on each finite
number of disjoint sets Ai ∈ Σ and is equal to 0 on Ω − (

⋃n
i=1 Ai). x is called a simple random variable if it is

finitely valued and µ{w, ‖x(w)‖ > 0} < ∞.

Definition 1.5 A mapping x : Ω → X is said to be a strong random variable if there exists a sequence {xn(w)} of
simple random variables which converges to x(w) almost surely, that is, there exists a set A0 ∈ Σ with µ(A0) = 0
such that limn→∞xn(w) = x(w), w ∈ Ω−A0.

Definition 1.6 A mapping x : Ω → X is said to be a weak random variable if the function x∗(x(w)) is a real-valued
random variable for each x∗ ∈ X∗, the space X∗ denoting the first normed dual space of X.

Remark 1.7 (1) In a separable Banach space X, the notions of strong and weak random variables x : Ω → X
coincide, and in respect of such a space X, x is termed as a random variable (see Corollary 1 of Joshi and
Bose [25]).

(2) If X is a separable Banach space, then every strong and also weak random variable is measurable in the sense
of Definition (1.3).

Let Y be another Banach space.We also need the following definitions as cited in Joshi and Bose [25].

Definition 1.8 Amapping F : Ω×X → Y is said to be a random mapping if F (w, x) = Y (w) is a Y-valued random
variable for every x ∈ X..

Definition 1.9 A mapping F : Ω×X → Y is said to be a continuous random mapping if the set of all w ∈ Ω for
which F (w, x) is a continuous function of x has measure one.

Definition 1.10 An equation of the type F (w, x(w)) = x(w), where F : Ω×X → X is a random mapping, is called
a random fixed point equation.

Definition 1.11 Any mapping x : Ω → X which satisfies the random fixed point equation F (w, x(w)) = x(w)
almost surely is said to be a wide sense solution of the fixed point equation.

Definition 1.12 Any X-valued random variable x(w) which satisfies µ{w : F (w, x(w)) = x(w)} = 1 is said to be a
random solution of the fixed point equation or a random fixed point of F.

Remark 1.13 A random solution is a wide sense solution of the fixed point equation, but the converse is not
necessarily true. This is evident from the example as found under Remark 1 in the work of Joshi and Bose [25].

In this paper, we extend the result of Yan et al. [41] and many others for a pair weakly increasing random mappings
satisfying a new contraction in a partially ordered metric space. As application, we establish the existence of a
common solution to system of nonlinear random integral equations.
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2. A common random fixed point theorem of weakly increasing map-
pings

We need the following notions in our work:

Definition 2.1 [18, 4] Let (X,≤) be a partially ordered set and f and g be two self maps on X. An ordered pair
(f, g) is said to be weakly increasing if fx ≤ gfx and gx ≤ fgx for all x ∈ X.

Lemma 2.2 (see [41]) If ψ is an altering distance function and φ : [0,∞) → [0,∞) is a continuous function with
the condition ψ(t) > φ(t)forallt > 0, then φ(0) = 0.

Now, we state our main results:

Theorem 2.3 Let (X,≤) be a partially ordered set and suppose that there exists a metric d in X such that (X, d)
is a complete separable metric space and (Ω, Σ, µ) is a complete probability measure space. Let T, S : Ω ×X → X
be two mappings such that

(i) T (w, .) and S(w, .) are continuous mappings for all w ∈ Ω;

(ii) T (., x) and S(., y) are measurable mappings for all x, y,∈ X;

(iii) The pair (T, S) is weakly increasing such that for all comparable x and y we have

ψ(d(T (w, x), S(w, y))) ≤ φ(d(x, y)), w ∈ Ω, (1)

where ψ is an altering distance function and φ : [0,∞) → [0,∞] is a continuous function with the condition

ψ(t) > φ(t), forall t > 0, (2)

also suppose either
(a) T or S is continuous or
(b) X has the following property:
If a non-decreasing sequence {xn} → x then xn ≤ x for all n,
then T and S have a common random fixed point.

Proof. Let the function ξ0(w) : Ω → X be an arbitrary measurable mapping. We can define a sequence of
measurable mappings {ξn(w)} from Ω to X as following:

ξ2n+1(w) = T (w, ξ2n(w)),
ξ2n+2(w) = S(w, ξ2n+1(w)), w ∈ Ω, n = 0, 1, 2, ... . (3)

Since the pair (T, S) is weakly increasing mappings, we have

ξ1(w) = T (w, ξ0(w)) ≤ S(w, T (w, ξ0(w))) = S(w, ξ1(w)) = ξ2(w),
ξ2(w) = T (w, ξ1(w)) ≤ S(w, T (w, ξ1(w))) = S(w, ξ2(w)) = ξ3(w),

....

Continuing this process, we get

ξ2n+1(w) = T (w, ξ2n(w)) ≤ S(w, T (w, ξ2n(w))) = S(w, ξ2n+1(w)) = ξ2n+2(w),
and

ξ2n+2(w) = S(w, ξ2n+1(w)) ≤ T (w, S(w, ξ2n+1(w))) = T (w, ξ2n+2(w)) = ξ2n+3(w).

Thus for all n ≥ 1, we have ξn(w) ≤ ξn+1(w)
Without loss of the generality, we can assume that ξn(w) 6= ξn+1(w) and since ξ2n(w) and ξ2n+1(w) are comparable,
then by (1), we obtain

ψ(d(ξ2n+1(w), ξ2n+2(w))) = ψ(d(T (w, ξ2n(w)), S(w, ξ2n+1(w))))
≤ φ(d(ξ2n(w), ξ2n+1(w))),

(4)
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using the condition (2) and since ψ non-decreasing, we get

d(ξ2n+1(w), ξ2n+2(w))) ≤ d(ξ2n(w), ξ2n+1(w)). (5)

Similarly, we can show that

d(ξ2n+2(w), ξ2n+3(w))) ≤ d(ξ2n+1(w), ξ2n+2(w)). (6)

From (5) and (6), we get

d(ξn+1(w), ξn+2(w))) ≤ d(ξn(w), ξn+1(w)). (7)

Hence, {d(ξn(w), ξn+1(w)))} is a nonnegative decreasing sequence, then there exists r(w) ≥ 0 such that

lim
n→∞

d(ξn(w), ξn+1(w))) = r(w), w ∈ Ω.

Letting n →∞ in (4)

ψ(r(w)) ≤ φ(r(w)), (8)

by the condition (2), we get r(w) = 0, w ∈ Ω, thus

lim
n→∞

d(ξn(w), ξn+1(w))) = 0, w ∈ Ω. (9)

Next, we will show that for w ∈ Ω, {ξn(w)} is a Cauchy sequence in X, it is sufficient to prove that {ξ2n(w)} is
a Cauchy sequence. We proceed by negation, suppose that {ξ2n(w)} is not a Cauchy sequence, then there exists
ε > 0 for which we can find two sequences of positive integers {m(k)}, {n(k)} such that for positive integer k we
have

m(k) > n(k) > k, d(ξ2n(k)(w), ξ2m(k)(w)) ≥ ε, k ≥ 1. (10)

Further, we can choose mk to be smallest integer with m(k) > n(k) for which (10) holds. Then

d(ξ2n(k)(w), ξ2m(k)−2(w)) < ε. (11)

From (10), (11) and the triangle inequality, we obtain

ε ≤ d(ξ2n(k)(w), ξ2m(k)(w)) ≤ d(ξ2n(k)(w), ξ2m(k)−2(w)) + d(ξ2m(k)−2(w), ξ2m(k)−1(w))
+ d(ξ2m(k)−1(w), ξ2m(k)(w))
< ε + d(ξ2m(k)−2(w), ξ2m(k)−1(w))
+ d(ξ2m(k)−1(w), ξ2m(k)(w)),

Letting k →∞ in the above inequality and using (9) we have

lim
n→∞

d(ξ2n(k)(w), ξ2m(k)(w)) = ε, w ∈ Ω. (12)

In addition, by the triangle inequality, we have

d(ξ2n(k)(w), ξ2m(k)(w)) ≤ d(ξ2n(k)(w), ξ2n(k)−1(w)) + d(ξ2n(k)−1(w), ξ2m(k)−1(w))
+ d(ξ2m(k)−1(w), ξ2m(k)(w))

and

d(ξ2n(k)−1(w), ξ2m(k)−1(w)) ≤ d(ξ2n(k)−1(w), ξ2n(k)(w)) + d(ξ2n(k)(w), ξ2m(k)(w))
+ d(ξ2m(k)(w), ξ2m(k)−1(w))

Letting k →∞ in the above two inequalities, using (9) and (12) we obtain

lim
n→∞

d(ξ2n(k)−1(w), ξ2m(k)−1(w)) = ε. (13)

Since m(k) > n(k) and ξ2n(k)−1(w) and ξ2m(k)−1(w) are comparable, then by (1), we obtain

ψ(d(ξ2n(k)(w), ξ2m(k)(w))) = ψ(d(T (w, ξ2n(k)−1(w)), S(w, ξ2m(k)−1(w))))
≤ φ(d(ξ2n(k)−1(w), ξ2m(k)−1(w))),
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Letting k →∞, using (12) and (13), we get

ψ(ε) ≤ φ(ε),

By the condition (2), we obtain ε = 0, which is a contradiction. It follows that {ξ2n} is a Cauchy sequence in X
and so is {ξn}, then there exists ξ(w) : Ω → X such that

lim
n→∞

ξn(w) = ξ(w), w ∈ Ω,

Now, if T is continuous, then

ξ(w) = lim
n→∞

ξ2n+1(w) = lim
n→∞

T (w, ξ2n(w)) = T (w, ξ(w)), (14)

also since ξ(w) ≤ ξ(w), using (1), (14) and Lemma 2.2, we obtain

ψ(d(ξ(w), S(w, ξ(w)))) = ψ(d(T (w, ξ(w)), S(w, ξ(w))))
≤ φ(d(ξ(w), ξ(w))) = 0.

Thus

ξ(w) = S(w, ξ(w)). (15)

From (14) and (15), we obtain

ξ(w) = T (w, ξ(w)) = S(w, ξ(w)).

Similarly, we obtain the same result if S is continuous.
Now, if the condition (b) is satisfied, since lim

n→∞
ξ2n−1(w) = ξ(w), then by the condition (b), we have ξ2n−1(w) ≤

ξ(w), thus we have by (1)

ψ(d(ξ2n(w), S(w, ξ(w)))) = ψ(d(T (w, ξ2n−1(w)), S(w, ξ(w))))
≤ φ(d(ξ2n−1(w), ξ(w)))

Letting k → ∞, and using Lemma 2.2, then we have ξ(w) = S(w, ξ(w)). Similarly, we can show that ξ(w) =
T (w, ξ(w)).
The proof of the theorem is completed.
Taking T = S in Theorem 2.3, we obtain the following Corollary:

Corollary 2.4 Let (X,≤) be a partially ordered set and suppose that there exists a metric d in X such that (X, d)
is a complete separable metric space and (Ω, Σ, µ) is a complete probability measure space. Let T : Ω×X → X be
such that

(i) T (w, .) is continuous mapping for w ∈ Ω;

(ii) T (., x) is measurable mapping for x ∈ X;

(iii) T is a non-decreasing mapping such that ξ0(w) ≤ T (w, ξ0(w)), w ∈ Ω for some measurable mappings ξ0(w) in
X, and for all comparable x and y we have

ψ(d(T (w, x), T (w, y))) ≤ φ(d(x, y)), w ∈ Ω,

where ψ is an altering distance function and φ : [0,∞) → [0,∞] is a continuous function with the condition

ψ(t) > φ(t), forall t > 0,

also suppose either
(a) T is continuous or
(b) X has the following property:
If a non-decreasing sequence {xn} → x then xn ≤ x for all n,
then T has a random fixed point.

Remark 2.5 In Corollary 2.4, a sufficient condition for the uniqueness of the fixed point is: for two measurable
mappings η(w), ζ(w) : Ω → X there exists a measurable mapping ξ(w) : Ω → X which is comparable with both η(w)
and ζ(w).
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3. Application

In this section, we give an application of Theorem 2.3 to prove the existence of a common solution to the following
random nonlinear integral equations:

x(t; w) = h(t; w) +
∫

S

k1(t, s;w)f1(s, x(s; w))dµ(s)

x(t; w) = h(t; w) +
∫

S

k2(t, s;w)f2(s, x(s; w))dµ(s), (16)

where

(i) S is a locally compact metric space with a metric d on S × S equipped with a complete σ-finite measure µ
defined on the collection of Borel subsets of S;

(ii) w ∈ Ω, the supporting set of the probability measure space (Ω,Σ, µ);

(iii) h(t;w) are stochastic free terms defined for t ∈ S;

(iv) x(t; w) is the unknown vector valued random variable for t ∈ S;

(v) ki(t, s; w), i = 1, 2 are stochastic kernels defined for t and s in S with k1 = k2 = k and

(vi) fi(s, x), i = 1, 2 are vector-valued functions for all s ∈ S and x.

The integrals in the two equations (16) are interpreted as Bochner integrals [42].
We will further assume that S is the union of a countable family of compact subsets {Cn} having the properties
that C1 ⊂ C2 ⊂ .... and that for any other compact set S there is a Ci which contains it [6].
We will follow the steps of Lee and Padgett [27] with necessary modifications as required for the more general
settings.

Definition 3.1 We define the space C(S, L2(Ω,Σ, µ)) to be the space of all continuous functions from S into
L2(Ω, Σ, µ) with the topology of uniform convergence on compact sets of S, that is, for each fixed t ∈ S, x(t;w) is a
vector-valued random variable such that

‖x(t; w)‖2L2(Ω,Σ,µ) =
∫

Ω

|x(t; w)|2dµ(w) < ∞.

Note that C(S, L2(Ω, Σ, µ)) is locally convex space (see [42]) whose topology is defined by a countable family of
semi-norms given by

‖x(t; w)‖n = sup
t∈Cn

‖x(t; w)‖L2(Ω,Σ,µ), n = 1, 2, ...

Moreover, C(S, L2(Ω, Σ, µ)) is complete relative to this topology since L2(Ω, Σ, µ) is complete.
We will consider the functions h(t; w) and fi(t, x(t;w)), i = 1, 2 to be in the space C(S, L2(Ω, Σ, µ)) with respect
to the stochastic kernel. We assume that for each pair (t, s), ki(t, s; w) ∈ L∞(Ω,Σ, µ) and denote the norm by

‖|k(t, s;w)|‖ = ‖k(t, s;w)‖L∞(Ω,Σ,µ) = µ− ess sup
w∈Ω

|k(t, s; w)|.

Also, we will suppose that k(t, s; w) is such that ‖|k(t, s;w)‖|.‖x(t; w)‖L2(Ω,Σ,µ) is µ-integrable with respect to s for
each t ∈ S and x(s;w) in C(S,L2(Ω, Σ, µ)) and that there exists a real-valued function G defined µ-a.e. on S so
that G(s)‖x(s;w)‖L2(Ω,Σ,µ) is µ-integrable and, for each pair (t, s) ∈ S × S,

|‖k(t, u; w)− k(s, u; w)‖|.‖x(t; w)‖L2(Ω,Σ,µ) ≤ G(u)‖x(t; w)‖L2(Ω,Σ,µ)

µ-a.e. Further, for almost all s ∈ S, k(t, s;w) will be continuous in t from S into L∞(Ω, Σ, µ).
We now define the integral operator (A) on C(S,L2(Ω, Σ, µ)) by

(Ax)(t;w) =
∫

S

k(t, s;w)x(s; w)dµ(s), (17)

where the integral is Bochner integral. From the conditions on k(t, s;w), we have that for each t ∈ S, (Ax)(t; w) ∈
L2(Ω, Σ, µ) and that (Ax)(t; w) is continuous in mean square by Lebesgue’s dominated convergence theorem. That
is, (Ax)(t;w) ∈ C(S, L2(Ω, Σ, µ)).
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Definition 3.2 [27, 30] Let B and D be Banach spaces. The pair (B, D) is said to be admissible with respect to a
linear operator A(w) if A(w)(B) ⊂ D.

Lemma 3.3 (see [30]) The linear operator (A) defined by equation (17) is continuous from C(S,L2(Ω, Σ, µ)) into
itself.

Lemma 3.4 (see [38, 30]) If (A) is a continuous linear operator from C(S,L2(Ω, Σ, µ)) into itself and B, D ⊂
C(S,L2(Ω, Σ, µ)) are Banach spaces stronger than C(S, L2(Ω, Σ, µ)) such that (B, D) is admissible with respect to
A, then (A) is continuous from B into D.

Remark 3.5 (1) From Lemmas 3.3 and 3.4, it follows that the operator (A) defined by equation (17) is a bounded
linear operator from B into D.

(2) By a common random solution of the equations (16) we will mean a function x(t;w) in C(S, L2(Ω, Σ, µ)) which
satisfies the equations µ-a.e.

We now present theorem concerning the existence of a common random solution of the equations (16).

Theorem 3.6 Consider the stochastic nonlinear integral equations (16) equipped with the following conditions:

(a) B and D are Banach spaces stronger than C(S, L2(Ω, Σ, µ)) such that (B, D) is admissible with respect to the
integral operator A defined by (17).

(b) x(t; w) → fi(t, x(t; w)), i = 1, 2 are operator from the set

Q(ρ) = {x(t; w) : x(t; w) ∈ D, ‖x(t;w)‖D ≤ ρ}

into the space B satisfying the following:

‖f1(t, x(t; w))− f1(t, y(t;w))‖B ≤ α(w)‖x(t;w)− y(t; w)‖D,

‖f2(t, x(t; w))− f2(t, y(t;w))‖B ≤ β(w)‖x(t;w)− y(t; w)‖D,

‖f1(t, x(t;w))− f2(t, y(t; w))‖B ≤ γ(w)‖x(t;w)− y(t; w)‖D, (18)

for x(t;w), y(t; w) ∈ Q(ρ), where ρ is a constant and α(w), β(w), γ(w) are real-valued random variables.

(c) h(t; w) ∈ D

(d) f1(s, x(s;w)) ≤ f2

(
s, h(t; w) +

∫
S

k(t, τ ; w)f1(τ, x(τ ; w)
)
dµ(τ)) and

(e) f2(s, x(s; w)) ≤ f1(s, h(t;w) +
∫

S
k(t, τ ;w)f2(τ, x(τ ; w))dµ(τ)).

Then, the system of the stochastic nonlinear integral equations (16) has a common solution in Q(ρ) provided
α(w)λ(w) < 1, β(w)λ(w) < 1 and γ(w)λ(w) < 1 and

‖h(t;w)‖D + k‖f1(t, 0)‖B ≤ ρ(1− α(w)λ(w)),
‖h(t; w)‖D + k‖f2(t, 0)‖B ≤ ρ(1− β(w)λ(w)), (19)

where K is the norm of the operator A.

Prrof. Define the operators U and V from Q(ρ) into D by

(Ux)(t; w) = h(t; w) +
∫

S

k(t, s; w)f1(s, x(s;w))dµ(s)

(V x)(t; w) = h(t; w) +
∫

S

k(t, s; w)f2(s, x(s;w))dµ(s).

Then from the conditions of this theorem

‖(Ux)(t; w)‖D ≤ ‖h(t, w)‖D +
∫

S

‖k(t, s, w)f1(s, x(s, w))dµ(s)‖
≤ ‖h(t; w)‖D + λ(w)‖f1(t, x(t, w))‖B

≤ ‖h(t; w)‖D + λ(w)‖f(t, 0)‖B + λ(w)‖f1(t, x(t;w))− f1(t, 0)‖B



78 International Journal of Applied Mathematical Research

Using the first condition of (18) and (19), we get

‖(Ux)(t; w)‖D ≤ ‖h(t; w)‖D + λ(w)‖f1(t, 0)‖B + λ(w)α(w)‖x(t; w)‖D

≤ ρ(1− α(w)λ(w)) + α(w)λ(w)ρ = ρ

Hence (Ux)(t; w) ∈ Q(ρ). Similarly, by using the second condition of (18) and (19), we can prove that (V x)(t; w) ∈
Q(ρ).
Next, we claim that the pair (U, V ) is weakly increasing. Indeed, by the condition (d), we get

(Ux)(t; w) = h(t;w) +
∫

S

k(t, s; w)f1(s, x(s; w))dµ(s)

≤ h(t, w) +
∫

S

k(t, s, w)f2(s, h(t, w) +
∫

S

k(t, τ ; w)f1(τ, x(τ ; w))dµ(τ))dµ(s)

= h(t;w) +
∫

S

k(t, s; w)f2(s, (Ux)(t; w))dµ(s)

= (V Ux)(t;w).

Similarly, by condition (e), we can show that (V x)(t; w) ≤ (UV x)(t;w).
Now, for x(t;w), y(t; w) ∈ Q(ρ) we see by the third condition of (18) that

‖(Ux)(t; w)− (V y)(t; w)‖D = ‖
∫

S

k(t, s; w)[f1(s, x(s; w))− f2(s, y(s; w))]dµ(s)‖D

≤ λ(w)‖f1(s, x(s;w))− f2(s, y(s;w))‖B

≤ λ(w)γ(w)‖x(t;w)− y(t;w)‖D. (20)

Putting ψ(x) = x and φ(x) = λ(w)γ(w)x, then clearly ψ is an altering distance function and φ is continuous
function satisfying ψ(x) > φ(x) for x > 0 and λ(w)γ(w) < 1. From (20), we obtain for comparable x, y that

ψ(‖(Ux)(t; w)− (V y)(t; w)‖D) ≤ φ(‖x(t; w)− y(t; w)‖D).

Hence all the required hypotheses of Theorem 2.3 are satisfied. Then U and V have a common random fixed point
x∗(t;w) which is a stochastic solution to the equations (16).

4. Conclusion

Applying Theorem 2.3, we can obtain a common solution to the equations (16) under certain conditions. Conse-
quently, we can also applying Corollary 2.4 to obtain a solution to a nonlinear random integral equation

x(t; w) = h(t;w) +
∫

S

k(t, s; w)f(s, x(s; w))dµ(s),

with some similar conditions to Theorem 3.6.
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