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Abstract

In this study, Legendre collocation method is presented to solve nu-
merically the Fredholm-Hammerstein integral equations. This method
is based on replacement of the unknown function by truncated series
of well known Legendre expansion of functions. The proposed method
converts the equation to matrix equation, by means of collocation points
on the interval [−1, 1] which corresponding to system of algebraic equa-
tions with Legendre coefficients. Thus, by solving the matrix equation,
Legendre coefficients are obtained. Some numerical examples are in-
cluded to demonstrate the validity and applicability of the proposed
technique.
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1 Introduction

In recent years, there has been a growing interest in the Fredholm and Volterra
integral equations. This is an important branch of modern mathematics and
arise frequently in many applied areas which include engineering, mechanics,
physics, chemistry, astronomy, biology [1]-[5]. There are several methods for
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approximating the solution of linear and non-linear integral equations [10]-[14].
We consider the Hammerstein integral equations in the forms

x(t) = f(t) + λ1

∫ 1

0

K1(t, s)F (x(s))ds + λ2

∫ t

0

K2(t, s)G(x(s))ds, (1)

where f(t), K1(t, s) and K2(t, s) are given functions, 0 ≤ t, s ≤ 1, and λ1, λ2

are arbitrary constants.
Orthogonal polynomials are widely used in applications in mathematics,

mathematical physics, engineering and computer science. One of the most
common set of the Legendre polynomials P0(t), P1(t), ..., PN(t) which are or-
thogonal on [−1, 1] with respect to the weight function w(t) = 1. The Legendre
polynomials Pn(t) satisfy the Legendre differential equation

(1− t2)u′′(t)− 2tu′(t) + n(n + 1)u(t) = 0, −1 < t < 1, n ≥ 0,

and are given by the following relation

Pn(t) =
1

2n

[n/2]∑

k=0

(−1)k (2n− 2k)!

(n− k)!(n− 2k)k!
tn−2k, n = 0, 1, 2, . . . . (2)

Also, the recurrence formula associated with Legendre polynomials is given
with the relations,

P0(t) = 1, P1(t) =
1

2
(3t2−1), (n+1)Pn+1(t) = (2n + 1)tPn(t)− nPn−1(t), n ≥ 1.

(3)
Legendre polynomials occur in the solution of Laplace equation of the po-
tential, ∇2Φ(x) = 0, in a charge-free region of space, using the method of
separation of variables, where the boundary conditions have axial symmetry,
the solution for the potential will be

Φ(r, θ) =
∞∑

l=0

[Alr
l + Blr

−(l+1)]Pl(cosθ),

Al and Bl are to be determined according to the boundary condition of each
problem. They also appear when solving Schrödinger equation in three dimen-
sions for a central force.

The Legendre and Chebyshev polynomials are mostly used to solve sev-
eral problems of differential equations or integral equations, for example, the
Legendre pesudo-spectral method is used to solve the delay and the diffu-
sion differential equations ([6], [7]). Chebyshev polynomials are used to intro-
duce an efficient modification of homotopy perturbation method [8]. Also, the
polynomial approximation is used to solve high-order linear Fredholm integro-
differential equations with constant coefficient [11] and others ([9], [15]-[17]).
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2 Procedure Solution using the Proposed

Numerical Method

We consider the Fredholm-Volterra integral equation (1). The function x(t)
may be expanded by infinite series of Legendre polynomials as follows

x(t) =
∞∑

n=0

cnPn(t), (4)

where cn = (x(t), Pn(t)). If we consider truncated series in Eq.(4), we obtain

x(t) '
N∑

n=0

cnPn(t) = CT P (t), (5)

such that C and P are matrices given by

C = [c0 c1 ... cN ], P (t) = [P0(t) P1(t) ... PN(t)]T . (6)

Then we substitute the approximation Eq.(5) into Eq.(1) we get

CT P (t) = f(t) + λ1

∫ 1

0

K1(t, s)F (CT P (s))ds + λ2

∫ t

0

K2(t, s)G(CT P (s))ds.

(7)
Now, to use the Legendre collocation method which is a matrix method based
on the Legendre collocation points depended by

ti = −1 +
2

N
i, i = 0, 1, ..., N, (8)

we collocate Eq.(7) with the points (8) to obtain

CT P (tj) = f(tj)+λ1

∫ 1

0

K1(tj, s)F (CT P (s))ds+λ2

∫ tj

0

K2(tj, s)G(CT P (s))ds.

(9)
The integral terms in Eq.(9) can be found using composite trapezoidal inte-
gration technique as:

∫ 1

0

K1(tj, s)F (CT P (s))ds ∼= h

2
(Ω1(s0) + Ω1(sm) + 2

m−1∑

k=1

Ω1(sk)), (10)

where Ω1(s) = K1(tj, s)F (CT P (s)), h = 1
m

, for an arbitrary integer m, si =
ih, i = 0, 1, ...,m and

∫ tj

0

K2(tj, s)G(CT P (s))ds ∼= hj

2
(Ω2(s̄0) + Ω2(s̄m) + 2

m−1∑

k=1

Ω2(s̄k)), (11)
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where Ω2(s) = K2(tj, s)G(CT P (s)), hj =
tj
m

, for an arbitrary integer m, s̄i =
ih.
Eq.(9) gives (N + 1) system of linear or non-linear algebraic equations, which
can be solved for ck, k = 0, 1, ..., N . So the unknown function x(t) can be
found.

3 Numerical Implementation

In this section, to achive the validity, the accuracy and support our theoreti-
cal discussion of the proposed method, we give some computational results of
numerical examples.

Example 1.
Consider Eq.(1) with the following functions and coefficients

f(t) = t3 − (6− 2e)et, λ1 = 1, λ2 = 1,

K1(t, s) = e(t+s), K2(t, s) = 0, F (x(s)) = x(s), G(x(s)) = 0.

Eq.(1) takes the form

x(t) = t3 − (6− 2e)et +

∫ 1

0

e(s+t)x(s)ds. (12)

We apply the suggested method with N = 4, and approximate the solution
x(t) as follows

xN(t) =
4∑

i=0

ciPi(t) = CT P (t). (13)

By the same procedure in the previous section and using Eq.(9) we have

4∑
i=0

ciPi(tj)− (t3j − (6− 2e)etj)− h

2
(Ω(s0) + Ω(sm) + 2

m−1∑

k=1

Ω(sk)) = 0, j = 0, 1, 2, 3, 4,

(14)

where Ω(s) = e(s+tj)
∑4

i=0 ciPi(s) and the nodes sl+1 = sl + h, l = 0, 1, ...,m,
s0 = 0 and h = 1

m
.

Eq.(14) represents linear system of N +1 algebraic equations in the coefficients
ci, by solving it using the conjugate gradient method, we obtain

c0 = −0.0048, c1 = 0.5955, c2 = −0.0015, c3 = 0.3998, c4 = −0.0001.

Therefore, the approximate solution of this example using Eq.(13) is given by

x(t) = −0.0048P0(t) + 0.5955P1(t)− 0.0015P2(t) + 0.3998P3(t)− 0.0001P4(t).
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The exact solution of this example is x(t) = t3.
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Fig.1. The behavior of the exact solution and the approximate solution at
N = 4.

The behavior of the approximate solution using the proposed method with
N = 4 and the exact solution are presented in Fig.1. From this Fig., it is clear
that the proposed method can be considered as an efficient method to solve
the linear integral equations.

Example 2.
Consider Eq.(1) with the following functions and coefficients

f(t) = 2tet − et + 1, λ1 = 1, λ2 = −1, K1(t, s) = 0,

K2(t, s) = (s + t), F (x(s)) = 0, G(x(s)) = ex(s).

Eq.(1) takes the following form

x(t) = 2tet − et + 1−
∫ t

0

(s + t)ex(s)ds. (15)
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We apply the suggested method with N = 4, and approximate the solution
x(t) as follows

xN(t) =
4∑

i=0

ciPi(t) = CT P (t). (16)

By the same procedure in the previous section and using Eq.(9) we have

4∑
i=0

ciPi(tj)− f(tj) +
hj

2
(Ω(s0) + Ω(sm) + 2

m−1∑

k=1

Ω(sk)) = 0, j = 0, 1, 2, 3, 4,

(17)
where the nodes sl+1 = sl + h, l = 0, 1, ..., m, s0 = 0 and hj =

tj
m

, Ω(s) =

(s + tj)e
CT P (s).

Eq.(17) presents non-linear system of N + 1 algebraic equations in the coef-
ficients ci. By solving it by using the Newton iteration method with suitable
initial solution we obtain

c0 = 0.0002, c1 = 0.9895, c2 = 0.0022, c3 = −0.0088, c4 = 0.0023.

Therefore, the approximate solution of this example can be found using (16)
as follows

x(t) = 0.0002P0(t) + 0.9895P1(t) + 0.0022P2(t)− 0.0088P3(t) + 0.0023P4(t).

The exact solution of this problem is x(t) = t.
The behavior of the approximate solution using the proposed method with
N = 4 and the exact solution are presented in Fig.2. From this Fig., it is clear
that the proposed method can be considered as an efficient method to solve
the nonlinear integral equations.
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Fig.2. The behavior of the exact solution and the approximate solution at
N = 4.

Example 3.
Consider Eq.(1) with the following functions and coefficients

f(t) = te + 1, λ1 = −1, λ2 = 1, K1(t, s) = s + t,

K2(t, s) = 0, F (x(s)) = ex(s), G(x(s)) = 0.

Eq.(1) takes the following form

x(t) = te + 1−
∫ 1

0

(s + t)ex(s)ds. (18)

The exact solution of this problem is x(t) = t.
We apply the suggested method with N = 3, and approximate the solution
x(t) as in (16), and by the same procedure in the previous section with using
Eq.(9) we have

3∑
i=0

ciPi(tj)−f(tj)+
h

2
(Ω(s0)+Ω(sm)+2

m−1∑

k=1

Ω(sk)) = 0, j = 0, 1, 2, 3, (19)
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where sl+1 = sl + h, l = 0, 1, ..., m, s0 = 0 and h = 1
m

and Ω(s) = (s + tj).

e(
∑3

i=0 ciPi(s)).
Eq.(19) presents non-linear system of algebraic equations. By solving it us-
ing the well known Newton iteration method with suitable initial solution we
obtain

c0 = −0.0023, c1 = 1.0013, c2 = 0.0 c3 = 0.0 .

Therefore, the approximate solution of this example can be found using (16)

x(t) = −0.0023P0(t) + 1.0013P1(t) + 0.0P2(t) + 0.0P3(t).
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Fig.3. The behavior of the exact solution and the approximate solution at
N = 3.

The behavior of the approximate solution using the proposed method with
N = 3 and the exact solution are presented in Fig.3.
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Example 4.
Consider Eq.(1) with the following functions and coefficients

f(t) =
t

2
− t4

12
− 1

3
, λ1 = 1, λ2 = −1, K1(t, s) = s + t,

K2(t, s) = s− t, F (x(s)) = x(s), G(x(s)) = x2(s).

Eq.(1) takes the following form

x(t) =
t

2
− t4

12
− 1

3
+

∫ 1

0

(s + t)x(s)ds +

∫ t

0

(s− t)x2(s)ds. (20)

We apply the suggested method with N = 4, and approximate the solution
x(t) as follows:

xN(t) =
4∑

i=0

ciPi(t) = CT P (t). (21)

By the same procedure in the previous section and using Eq.(9) we have

4∑
i=0

ciPi(tj)− f(tj)− h

2
(Ω1(s̄0) + Ω1(s̄m) + 2

m−1∑

k=1

Ω1(s̄k))− hj

2
(Ω2(s0) + Ω2(sm)

+ 2
m−1∑

k=1

Ω2(sk)) = 0,

(22)

where s̄l+1 = s̄l + h, sl+1 = sl + hj, l = 0, 1, ..., m, s0 = s̄0 = 0, h = 1
m

,

hj =
tj
m

, and Ω1(s) = (s + tj)(
∑4

i=0 ciPi(s)), Ω2(s) = (tj − s)(CT P (s))
2
.

Eq.(22) presents non-linear system of N +1 algebraic equations. By solving it
using Newton iteration method we obtain

c0 = −0.0012, c1 = 0.9987, c2 = −0.0039, c3 = 0.0007, c4 = −0.0017.

Therefore, the approximate solution of this example can be found using (21):

x(t) = −0.0012P0(t) + 0.9987P1(t)− 0.0039P2(t) + 0.0007P3(t)− 0.0017P4(t).

The exact solution of this problem is x(t) = t.
The behavior of the approximate solution using the proposed method using
N = 4 and the exact solution are presented in Fig.4. From Fig.4, it is clear
that the proposed method can be considered as an efficient method to solve
the nonlinear Hammerstein integral equations.
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Fig.4. The behavior of the exact solution and the approximate solution at
N = 4.

4 Conclusion

An approximate method for the solution of linear and non-linear Fredholm-
Volterra integral equations in the most general form has been proposed and
investigated. For this purpose, the presented method which is based on the
Legendre polynomials is proposed to find the approximate solution. A com-
parison of the exact solution reveals that the presented method is very effective
and convenient. The numerical results show that the accuracy improves with
increasing N , hence for better results, using number N is recommended. Also,
from the obtained approximate solution, we can conclude that the proposed
method gives the solution in an excellent agreement with the exact solution.
All computations are done using Matlab programming.
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