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Abstract

The aim of this article is to proved a Mazur-Ulam type theorem in the strictly convex fuzzy anti-normed spaces.
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1. Introduction and preliminaries

The theory of fuzzy sets was introduced by L. Zadeh [11] in 1965 and thereafter several authors applied it different
branches of pure and applied mathematics. Many mathematicians considered the fuzzy normed spaces in several
angels (see [1], [4], [10]). In [6] Iqbal H. Jebril and Samanta introduced fuzzy anti-norm on a linear space depending
on the idea of fuzzy anti-norm was introduced by Bag and Samanta [2] and investigated their important properties.
In 1932, the theory of isometric mappings was originated in the classical paper [8] by Mazur and Ulam. They
proved that every isometry f of a normed real vector space X onto another normed real vector space X is a linear
mapping up to translation, that is, x 7→ f(x)− f(0) is linear, which amounts to the definition that f is affine. We
call this the Mazur-Ulam theorem. The property is not true for normed complex vector spaces. The hypothesis of
surjectivity is essential. Without this assumption, Baker [3] proved that every isometry from a normed real space
into a strictly convex normed real space is linear up to translation. A number of mathematicians have had deal
with the Mazur-Ulam theorem; see [7, 9] and references therein. In this paper, we prove that the Mazur-Ulam
theorem holds under some conditions in the fuzzy anti-normed spaces. We establish a Mazur-Ulam type theorem
in the framework of strictly convex normed spaces by using some ideas of [5]. Now we recall some notations and
definitions used in this paper.

Definition 1.1 [6] Let X be a linear space over a real field F . A fuzzy subset N of X × R is called a fuzzy
anti-norm on X if the following conditions are satisfied for all x, y ∈ X
(a−N1) For all t ∈ R with t ≤ 0, N(x, t) = 1,
(a−N2) For all t ∈ R with t > 0, N(x, t) = 0 if and only if x = 0̄,
(a−N3) For all t ∈ R with t > 0, N(αx, t) = N(x, t/|α|), for all α 6= 0, α ∈ F ,
(a−N4) For all s, t ∈ R, N(x + y, t + s) ≤ max{N(x, s), N(y, t)},
(a−N5) N(x, t) is a non-increasing function of t ∈ R and limt→∞N(x, t) = 0.
Then the pair (X, N) is called a fuzzy anti-normed linear space.
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Example 1.2 Let (X, ‖.‖) be a normed space. If for all k, m, n ∈ R+ we define

N (x, t) =

{
m‖x‖

ktn+m‖x‖ if t > 0
1 if t ≤ 0.

In particular if k = m = n = 1 we have

N (x, t) =

{
‖x‖

t+‖x‖ if t > 0
1 if t ≤ 0.

which is called the standard fuzzy anti-norm induced by the norm ‖.‖.

Definition 1.3 A fuzzy anti-normed space X is called strictly convex if N(x + y, s + t) = max{N(x, s), N(y, t)}
and N(x, s) = N(y, t) implies that x = y and s = t.

Definition 1.4 Let (X, N) and (Y, N) be two fuzzy anti-normed spaces. We call that f : (X, N) → (Y, N) is a
fuzzy isometry if N(x− y, s) = N(f(x)− f(y), s) for all x, y ∈ X and s > 0.

Definition 1.5 Let X be a real linear space and x, y, z mutually disjoint elements of X. Then x, y and z are said
to be collinear if y − z = k(x− z) for some real number k.

2. Main results

In this section we will prove that the MazurUlam theorem under some conditions in the fuzzy real anti-normed
strictly convex spaces. First, we prove the following lemma that is require for the main theorem of our paper.

Lemma 2.1 Let X be a fuzzy anti-normed space which is strictly convex and let y, z ∈ X and s > 0. Then x = y+z
2

is unique element of X such that

N(y − x, s) = N(y − z, 2s)

and

N(z − x, s) = N(y − z, 2s).

Proof. There is nothing to prove if y = z. Let y 6= z. Then by (a−N3), we have

N(y − x, s) = N(y − y + z

2
, s) = N(y − z, 2s)

and

N(z − x, s) = N(z − y + z

2
, s) = N(y − z, 2s),

that is the existence holds. For the uniqueness, we may assume that u and v are two elements of X such that

N(y − u, s) = N(y − v, s) = N(z − u, s) = N(z − v, s) = N(y − z, 2s).

Then

N(y − u + v

2
, s) ≤max{N(y − u, s), N(y − v, s)}

= N(y − z, 2s) (1.2)

and

N(z − u + v

2
, s) ≤max{N(z − u, s), N(z − v, s)}

= N(y − z, 2s). (2.2)
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If both of inequalities (2.1) and (2.2) were strict we would have

N(y − z, 2s) = N(y − u + v

2
+

u + v

2
− z, 2s)

≤ max{N(y − u + v

2
), N(z − u + v

2
, s)}

< N(y − z, 2s),

which is a contradiction. So at least one of the equalities holds in (2.1) and (2.2). Without lose of generality assume
that equality holds in (2.1). Then

N(y − u + v

2
, s) = max{N(y − u, s), N(y − v, s)}.

The strict convexity of X implies that, N(y − u, s) = N(y − v, s), and so, u = v. Therefore the proof is completed.

Theorem 2.2 Let X and Y be real fuzzy anti-normed spaces and let Y be strictly convex. Suppose f : X → Y be
a fuzzy isometry satisfies f(x), f(y) and f(z) are collinear when x, y and z are collinear. Then f is affine.

Proof. Let g(x) := f(x) − f(0). Then g is fuzzy isometry and g(0) = 0. It is easy to check that if x, y and z are
collinear, then g(x), g(y) and g(z) are also collinear. So it suffices to show that g is linear. We have

N(g(
y + z

2
)− g(y), s) = N((

y + z

2
)− y, s) = N(y − z, 2s)

and similarly

N(g(
y + z

2
)− g(z), s) = N((

y + z

2
)− z, s) = N(y − z, 2s)

for all y, z ∈ X and s > 0. By lemma (2.1) we have

g(
y + z

2
) =

1
2
g(y) +

1
2
g(z).

Since g(0) = 0, we can easily show that g is additive. It follows that g is Q-linear. We have to show that g is
R−linear.
Let r ∈ R+ with r 6= 1 and y ∈ X. Since 0, y and ry are collinear g(0), g(y) and g(r)y are also collinear. Since
g(0) = 0, there exists r′ ∈ R such that g(ry) = r′g(y). Now, we will proved that r = r′. Since y and z are collinear,
then y 6= z. Hence,

N(r(y − z), s) = N(g(ry)− g(rz), s)
= N(g(r′y)− g(r′z), s)
= N(r′(g(y)− g(z)), s)
= N(r′(y − z), s).

By the strict convexity we obtain r(y − z) = r′(y − z). Thus g(ry) = rg(y) for all y ∈ X and all r ∈ R. Therefore
g is affine and the proof is complete.
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