

International Journal of Applied Mathematical Research, 3 (2) (2014) 93-96 © Science Publishing Corporation www.sciencepubco.com/index.php/IJAMR doi: 10.14419/ijamr.v3i2.1936 Research Paper

On the Mazur-Ulam problem in fuzzy anti-normed spaces

Majid Abrishami-Moghaddam

Department of Mathematics, Birjand Branch, Islamic Azad University, Birjand, Iran E-mail: m.abrishami.m@gmail.com

Copyright ©2014 Majid Abrishami-Moghaddam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The aim of this article is to proved a Mazur-Ulam type theorem in the strictly convex fuzzy anti-normed spaces.

Keywords: Fuzzy anti-normed space, Mazur-Ulam theorem, strictly convex.

1. Introduction and preliminaries

The theory of fuzzy sets was introduced by L. Zadeh [11] in 1965 and thereafter several authors applied it different branches of pure and applied mathematics. Many mathematicians considered the fuzzy normed spaces in several angels (see [1], [4], [10]). In [6] Iqbal H. Jebril and Samanta introduced fuzzy anti-norm on a linear space depending on the idea of fuzzy anti-norm was introduced by Bag and Samanta [2] and investigated their important properties. In 1932, the theory of isometric mappings was originated in the classical paper [8] by Mazur and Ulam. They proved that every isometry f of a normed real vector space X onto another normed real vector space X is a linear mapping up to translation, that is, $x \mapsto f(x) - f(0)$ is linear, which amounts to the definition that f is affine. We call this the Mazur-Ulam theorem. The property is not true for normed complex vector spaces. The hypothesis of surjectivity is essential. Without this assumption, Baker [3] proved that every isometry from a normed real space into a strictly convex normed real space is linear up to translation. A number of mathematicians have had deal with the Mazur-Ulam theorem; see [7, 9] and references therein. In this paper, we prove that the Mazur-Ulam theorem holds under some conditions in the fuzzy anti-normed spaces. We establish a Mazur-Ulam type theorem in the framework of strictly convex normed spaces by using some ideas of [5]. Now we recall some notations and definitions used in this paper.

Definition 1.1 [6] Let X be a linear space over a real field F. A fuzzy subset N of $X \times \mathcal{R}$ is called a fuzzy anti-norm on X if the following conditions are satisfied for all $x, y \in X$

 $(a - N_1)$ For all $t \in \mathcal{R}$ with $t \leq 0, N(x, t) = 1$,

 $(a - N_2)$ For all $t \in \mathcal{R}$ with t > 0, N(x, t) = 0 if and only if $x = \overline{0}$,

 $(a - N_3)$ For all $t \in \mathcal{R}$ with $t > 0, N(\alpha x, t) = N(x, t/|\alpha|)$, for all $\alpha \neq 0, \alpha \in F$,

 $(a - N_4)$ For all $s, t \in \mathcal{R}, N(x + y, t + s) \leq \max\{N(x, s), N(y, t)\},\$

 $(a - N_5) N(x, t)$ is a non-increasing function of $t \in \mathcal{R}$ and $\lim_{t \to \infty} N(x, t) = 0$.

Then the pair (X, N) is called a fuzzy anti-normed linear space.

Example 1.2 Let $(X, \|.\|)$ be a normed space. If for all $k, m, n \in \mathbb{R}^+$ we define

$$\mathcal{N}(x,t) = \begin{cases} \frac{m\|x\|}{kt^n + m\|x\|} & if \quad t > 0\\ 1 & if \quad t \le 0. \end{cases}$$

In particular if k = m = n = 1 we have

$$\mathcal{N}(x,t) = \begin{cases} \frac{\|x\|}{t+\|x\|} & \text{if } t > 0\\ 1 & \text{if } t \le 0. \end{cases}$$

which is called the standard fuzzy anti-norm induced by the norm $\|.\|$.

Definition 1.3 A fuzzy anti-normed space X is called strictly convex if $N(x + y, s + t) = \max\{N(x, s), N(y, t)\}$ and N(x, s) = N(y, t) implies that x = y and s = t.

Definition 1.4 Let (X, N) and (Y, N) be two fuzzy anti-normed spaces. We call that $f : (X, N) \to (Y, N)$ is a fuzzy isometry if N(x - y, s) = N(f(x) - f(y), s) for all $x, y \in X$ and s > 0.

Definition 1.5 Let X be a real linear space and x, y, z mutually disjoint elements of X. Then x, y and z are said to be collinear if y - z = k(x - z) for some real number k.

2. Main results

In this section we will prove that the MazurUlam theorem under some conditions in the fuzzy real anti-normed strictly convex spaces. First, we prove the following lemma that is require for the main theorem of our paper.

Lemma 2.1 Let X be a fuzzy anti-normed space which is strictly convex and let $y, z \in X$ and s > 0. Then $x = \frac{y+z}{2}$ is unique element of X such that

$$N(y-x,s) = N(y-z,2s)$$

and

$$N(z-x,s) = N(y-z,2s)$$

Proof. There is nothing to prove if y = z. Let $y \neq z$. Then by $(a - N_3)$, we have

$$N(y - x, s) = N(y - \frac{y + z}{2}, s) = N(y - z, 2s)$$

and

$$N(z - x, s) = N(z - \frac{y + z}{2}, s) = N(y - z, 2s),$$

that is the existence holds. For the uniqueness, we may assume that u and v are two elements of X such that

N(y - u, s) = N(y - v, s) = N(z - u, s) = N(z - v, s) = N(y - z, 2s).

Then

$$N(y - \frac{u + v}{2}, s) \le \max\{N(y - u, s), N(y - v, s)\}$$

= N(y - z, 2s) (1.2)

and

$$N(z - \frac{u + v}{2}, s) \le \max\{N(z - u, s), N(z - v, s)\}$$

= N(y - z, 2s). (2.2)

If both of inequalities (2.1) and (2.2) were strict we would have

$$N(y-z,2s) = N(y - \frac{u+v}{2} + \frac{u+v}{2} - z,2s)$$

$$\leq \max\{N(y - \frac{u+v}{2}), N(z - \frac{u+v}{2},s)\}$$

$$< N(y-z,2s),$$

which is a contradiction. So at least one of the equalities holds in (2.1) and (2.2). Without lose of generality assume that equality holds in (2.1). Then

$$N(y - \frac{u + v}{2}, s) = \max\{N(y - u, s), N(y - v, s)\}.$$

The strict convexity of X implies that, N(y-u,s) = N(y-v,s), and so, u = v. Therefore the proof is completed.

Theorem 2.2 Let X and Y be real fuzzy anti-normed spaces and let Y be strictly convex. Suppose $f : X \to Y$ be a fuzzy isometry satisfies f(x), f(y) and f(z) are collinear when x, y and z are collinear. Then f is affine.

Proof. Let g(x) := f(x) - f(0). Then g is fuzzy isometry and g(0) = 0. It is easy to check that if x, y and z are collinear, then g(x), g(y) and g(z) are also collinear. So it suffices to show that g is linear. We have

$$N(g(\frac{y+z}{2}) - g(y), s) = N((\frac{y+z}{2}) - y, s) = N(y-z, 2s)$$

and similarly

$$N(g(\frac{y+z}{2}) - g(z), s) = N((\frac{y+z}{2}) - z, s) = N(y-z, 2s)$$

for all $y, z \in X$ and s > 0. By lemma (2.1) we have

$$g(\frac{y+z}{2}) = \frac{1}{2}g(y) + \frac{1}{2}g(z).$$

Since g(0) = 0, we can easily show that g is additive. It follows that g is Q-linear. We have to show that g is \mathcal{R} -linear.

Let $r \in \mathcal{R}^+$ with $r \neq 1$ and $y \in X$. Since 0, y and ry are collinear g(0), g(y) and g(r)y are also collinear. Since g(0) = 0, there exists $r' \in \mathcal{R}$ such that g(ry) = r'g(y). Now, we will proved that r = r'. Since y and z are collinear, then $y \neq z$. Hence,

$$N(r(y - z), s) = N(g(ry) - g(rz), s)$$

= $N(g(r'y) - g(r'z), s)$
= $N(r'(g(y) - g(z)), s)$
= $N(r'(y - z), s).$

By the strict convexity we obtain r(y-z) = r'(y-z). Thus g(ry) = rg(y) for all $y \in X$ and all $r \in \mathcal{R}$. Therefore g is affine and the proof is complete.

References

- [1] C. Felbin, "Finite dimensional fuzzy normed linear spaces", Fuzzy Sets and Systems, Vol.48, No.2, (1992), pp.239-248.
- [2] T. Bag, S.K. Samanta, "A comparative study of fuzzy norms on a linear space", Fuzzy Sets and Systems, Vol.159, No.6, (2008), 670-684.
- [3] J.A. Baker, "Isometries in normed spaces", Amer. Math. Monthly, Vol.78, No.6, (1971), 655-658.
- [4] S.C. Cheng, J.N. Mordeson, "Fuzzy linear operator and fuzzy normed linear spaces", Bull. Calcutta Math. Soc. Vol.86, (1994), 429-436.

- [5] M. Eshaghi Gordji, N. Ghobadipour, "On the Mazur-Ulam theorem in fuzzy normed spaces", arXiv:0905.2166 (2009).
- [6] Iqbal H. Jebril, T.K. Samanta, "Fuzzy anti-normed linear space", J. math. & Tech., February (2010), 66-77.
- [7] D. Kangb, H. Kohb, I. G. Choa, "On the Mazur-Ulam theorem in non-Archimedean fuzzy normed spaces", Appl. Math. Let. Vol.25, No.3, (2012), 301-304.
- [8] S. Mazur, S. Ulam, "Sur les transformation isomtriques despaces vectoriels norms", C. R. Acad. Sci. Paris, Vol.194 (1932), 946-948.
- M. S. Moslehian and Gh. Sadeghi, "A Mazur-Ulam theorem in non-Archimedean normed spaces", Nonlinear Anal. Vol.69 (2008), 3405-3408.
- [10] R. Saadati, S.M. Vaezpour, "Some results on fuzzy Banach spaces", J. Appl. Math. Computing, Vol.17, No. 1-2, (2005), 475-484.
- [11] L.A. Zadeh, "Fuzzy sets", Inf. & Cont., Vol.8 (1965), 338-353.