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Abstract 

 

This paper investigates the oscillation of a class of fractional difference equations with damping term of the form 
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where 
 denotes the Riemann-Liouville difference operator of order 0 1and >0    is a quotient of odd positive 

integers. Based on a generalized Riccati transformation and some inequalities, we establish some sufficient conditions 

of oscillation criteria for it. Some applications are also presented for the established results. 
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1. Introduction 

Recent years have witnessed the study of qualitative properties, especially oscillation of solutions, of fractional 

difference equations, [3], and [7]. In this paper, we investigate the oscillatory properties a class of fractional difference 

equations with damping term of the form 
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where 
 denotes the Riemann-Liouville difference operator of order 0 1   and 0  is a quotient of odd positive 

integers. 

(H). ( )and ( )p t q t are positive sequences on 00t   and :f R R  is a continuous function and 
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A solution x (t) of (1) is said to be oscillatory if it is neither eventually positive nor eventually negative; otherwise, 

it is nonoscillatory. Equation (1) is said to be oscillatory if all its solutions are oscillatory. 

2. Preliminaries and basic lemmas 

In this section, we introduce some preliminary results of discrete fractional calculus, which will be used throughout this 

paper. 

 

Definition 2.1: (See [8]) Let 0  . The  -th fractional sum f  is defined by 
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Where f is defined for s≡ a mod (1) and f is defined for ( )mod(1)t a    and 
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 The fractional sum 

f  maps functions defined on N a  to functions defined on N a  . 

 

Definition 2.2: (see [8]) let 0 and 1m m   where m denotes a positive integer  m=    . Set m   . The   - 

th fractional difference is defined as 

( ) ( ) ( ).m mf t f t f t      
 

 

Lemma 2.3: 
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Lemma 2.4: Let x (t) be a solution of (1) and let 
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which implies? 
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Now, we assume that ( ) ( )c t p t  and define a sequence 
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3. Main results  

Theorem 3.1: Suppose that (H) holds and
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, there exists a positive sequence b (t) such that 
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Then every solution of (1) is oscillatory. 

Proof: Suppose that x (t) is a nonoscillatory solution of (1). Without loss of generality, we may assume that x(t) is an 

eventually positive  of (1). Then there exists 1 0t t  such that 

( ) 0 and ( )>0 for ,1x t G t t t                                                                                                                                               (7) 

where G is defined as in (2). Therefore, it follows from (1) that 
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( ( ) ( )( ( )) ) ( 1) ( )( ( )) 0 for 1t c t x t t q t G t t t                                                                                                              (8) 
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Thus ( ) ( )( ( )) )t c t x t    is a strictly non-increasing sequence and is eventually of one sign on 1t t . First we show that 

( ) ( )( ( ))t c t x t    is eventually positive. Suppose there is an integer 1 0t t  such that 

( ) ( )( ( )) 0 for ,sothat1t c t x t t t       
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Summing both sides of the inequality (9) from to 11t t   yields 
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This contradicts the fact that G (t) > 0. Hence ( ) ( )( ( )) 0t c t x t     is eventually positive. Define the function (t) by 

the Riccati substitution 
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Then we have ( ) 0for 1t t t   . It follows that 
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Now using the following inequality (see [1]), we obtain 
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Using the above inequality, we obtain 
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Using Lemma 2.3, we get 
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From (12), we conclude that 
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Summing the above inequality from 1 to 1t t   , we have 
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This contradicts (6). The proof is complete. 

 

Theorem 3.2: Suppose that (H) holds. Furthermore, assume that there exists a positive sequence b (t) such that 
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where  2
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Then every solution of (1) is oscillatory. 

Proof: Suppose the contrary that x (t) is a nonoscillatory solution of (1). Without loss of generality, we may assume that 

x (t) is an eventually positive solution of (1). We proceed as in the proof of Theorem (3.1) to get (12) hold. 

Multiplying (12) by ( , )H t s  and summing from 1 to 1,t t   we obtain 
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Using summation by parts formula, we get 
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This is a contradiction to (13). The proof is complete. 

 

Example 3.3: Consider the fractional difference equation 
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we find that (H) holds. We will apply Theorem (3.1) and it remains to show condition (6) is satisfied. Taking b(s) = s, 

we obtain 
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which implies that (6) holds. Therefore, by Theorem (3.1) every solution of (17) is oscillatory. 
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