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Abstract

A mathematical model of an SIR epidemic model with constant recruitment and two control variables using control
terms and a deterministic system of differential equation is presented and analyzed mathematically and numerically.
We intend to control the susceptible and infected individuals with educational campaign and treatment strategies.
We analyzed the model by non-dimensionalizing the system of equations of our SIR epidemic model and derived
our basic reproduction number.We aim to minimize the total number of infective individuals and the cost asso-
ciated with the use of educational campaign and treatment on [0, T ]. We used Pontryagin’s maximum principle
to characterize the optimal levels of the two controls. The resulting optimality system is solved numerically. The
results show that the optimal combination of treatment and educational campaign strategy required to achieve the
set objective will depend on the relative cost of each of the control measures. The results from our simulation is
discussed.

Keywords: Computational simulations, Disease Free Equilibrium, Optimal control, Pontryagin’s Maximum Principle, stability the-

ory.

1. Introduction

One of the primary reasons for studying infectious diseases is to improve control and ultimately to eradicate the
infection from the population. Models can be a powerful tool in this approach, allowing us to optimize the use of
limited resources or simply to target control measures more efficiently. Several forms of control measure exist; all op-
erate by reducing the average amount of transmission between infectious and susceptible individuals. Which control
strategy (or mixture of strategies) is used will depend on the disease, the hosts, and the scale of the epidemic[20].
This generation have witnessed a rapid increase in the use of Mathematical models for better understanding of
epidemics and disease dynamics. Mathematical models takes into account main factors that govern development of
a disease, such as transmission and recovery rates, and predict how the disease will spread over a period of time.
Mathematical models have become important tools in analyzing the spread and control of infectious diseases. Some
examples on the use of mathematical model for the analyzes of treatment and control of infectious disease can be
found in [11, 13, 16, 17, 21, 27, 28], etc. For instance, [13], based on results from the analysis and simulations of their
HIV model, suggested universal HIV testing followed by an immediate commencement of antiretroviral therapy for
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those infected as a strategy to drive HIV epidemic towards elimination. Also, [35] proposed an improved Hepatitis
B virus (HBV) model for the treatment of the disease and they claimed that their model control strategy could help
reduce death due to HBV remarkably.Traditional epidemiological models divide the whole population into three
classes: susceptible, infective and recovered individuals and the spread of an epidemic is governed by the principle of
mass action [1], for certain disease, such as, for example, variety of sexually transmitted infectious [1, 6, 7, 9, 30].The
incidence rate with which individuals becomes infected is normally taken to be bi-linear with respect to susceptible
and infected population.The classical transmission S-I-R epidemic was proposed by cooke [8] for epidemics spread
in human population via a vector. It is well know that the spread of many infectious diseases can be prevented by
vaccination of the susceptible population. furthermore, some infectious provide recovered individuals with short or
long treatment against re-infection. This means that it is natural to include the effects of treatment into the math-
ematical model in order to better represent the actual dynamics of epidemic spread and predict future outbreak.
In each case of infectious, the treatment period will vary, as some diseases provide almost life long treatment while
others give only a very short-lived non-susceptibility. In most of the research literature, it was frequently assumed
that the disease incubation is negligible, in this case, once infected, each susceptible individual becomes infectious
instantaneously and later recovers with a temporary acquired immunity or treatment; an epidemic model based on
these assumption is called SIR model. An SIR model is essentially a model for an epidemic, it does not provide
an epidemiological relevant mechanism for disease epidemiology. The simplest forms of these models are ordinary
differential equations (O.D.E)[14,15]. In recent years, epidemic models described by ordinary differential equation
have been studied and extended by many authors ( see, for examples [5, 12, 18, 25, 26,30, 31, 32] and references
cited therein). In [23] a system of ODEs with a general incidence term f(S,I) is studied, conditions are found on f
under which the standard threshold behaviour occurs;the disease free equilibrium is globally asymptotically stable
for R0 < 1 and endemic equilibrium is globally asymptotically stable for R0 > 1. In [4], they studied the global
stability of an SIR model with vital dynamics first proposed by [14], in their analysis the used the kernel of [5] which
is γ- distribution.In [31], they studied the stability analysis of an SIR epidemic model with constant recruitment in
which the model is formulated under the assumption that all individuals are susceptible; a threshold parameterR0

was obtained to control the disease free and endemic equilibrium.
Optimal control theory is another area of mathematics that is used extensively in controlling the spread of infec-
tious diseases. It is a powerful mathematical tool that can be used to make decisions involving complex biological
situation[24]. It is often used in the control of the spread of most diseases for which either vaccine or treatment is
available. For example, [11] applied optimal control theory to a set of epidemiological models in their attempt to
find the most effective control strategy to minimize the number of individuals who become infected in the course
of an epidemic using both treatment and vaccination as control measures. [36] did a related work to the one by
[11] but concentrated on an SIR model using only vaccination as their control. Also, the work by [22] used optimal
control theory to determine the optimal treatment strategy for the administration of antiretroviral drug (Reverse
Transcriptase Inhibitors) in HIV positive individuals. [10] also used optimal control theory to determine the con-
dition for the elimination of tumor cells in an individuals under treatment for Cancer.[34] on the optimal control
of vaccination and treatment for an SIR epidemiological model.In their work, they considered an SIR model with
variable population size and formulate an optimal control problem to the model with vaccination and treatment as
controls. They showed that the disease-free equilibrium is globally asymptotically stable if the basic reproduction
number is less than unity while the endemic equilibrium exists and it is globally stable if R0 < 1. They also used the
Pontryagin’s Maximum Principle to characterize the optimal levels of the two controls. In this work, we included
the effect of infected immigrants on the population and also introduced the two control strategies(vaccination and
treatments) to reduce the number of Susceptible and infected individuals freely mixing in the population.[19]worked
on stability analysis and optimal control of an SIR epidemic model with vaccination.Their work focuses on the study
of a nonlinear mathematical SIR epidemic model with a vaccination program. They have discussed the existence
and the stability of both the disease free and endemic equilibrium.[2] proposed to study rigorously the optimal
control of vaccination and treatments for an SIR Epidemic model with infected immigrants. They included the
impact of infected immigrants in order to understand and assess its influence on the transmission dynamics for an
SIR Epidemic model. Their main goal is to find the optimal treatment and vaccination strategies in combination
that will minimize the cost of vaccination and treatment as well as the number of infectives and to measure the
influence of the flow of infected immigrants in the transmission of disease in a population. They perform both qual-
itative and quantitative analysis of the model with respect to stability of the disease free equilibrium and endemic
equilibrium where the two combine controls are in place. They realize that in the absence of infected immigrants
the disease free equilibrium exist and is locally asymptotically stable. They established the optimal interventions
for the disease control using Pontryagin’s Maximum Principle(PMP). Finally, our results on numerical simulations
are discussed.
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In this paper, we wish to investigate and analyze, and extended the SIR analysis of [17] and [29] by the
inclusion of two control variables to control the susceptible and infected individuals with treatment and educational
campaign strategies and the analysis are differs. We derived the dimensionless equations of our SIR epidemic
model to reduce the complexity of the problem; a basic reproduction numberR0 was also derived and establish to
control the equilibria(DFE and EE) while we apply the optimal strategies of disease control by using Pontryagin’s
Maximum Principle(PMP). The rest of the paper is organized as fellows: the next section, we present the general
mathematical frame work, notations, model equations including the basic reproduction number were derived and
the SIR model were analyzed. In the third and fourth section, the optimal control technique applied to the model
under consideration(SIR Epidemic model) and the numerical simulation results are discussed respectively while the
last section deals with a brief conclusion.

2. Mathematical framework

The system of equations describing the dynamics of a disease category of the type SIR is derived from the interaction
among the compartments: susceptible, infective, and recovered for the model equation.

2.1. The basic model equations

The model we presented in this paper is under the frame work of the following non-linear ordinary differential
equations.

dS
dt = AN − βS(t)− λI(t)S(t) + µR(t)
dI
dt = λI(t)S(t)− (α+ β + γ)I(t)
dR
dt = γI(t)− (β + µ)R(t)

(1)

The model (1) is related to a model studied in [17] which does not consider vaccination, as well as [15]. We introduce
our model through the incorporation of variable population and control strategies into the susceptible and infective
class into the classic model in (1). Thus proposed model

dS
dt = AN − βS(t)− λI(t)S(t) + µR(t)− u2S(t)
dI
dt = λI(t)S(t)− (α+ β + γ)I(t)− u1I(t)
dR
dt = γI(t)− (β + µ)R(t) + u1I(t) + u2S(t)
dN
dt = AN(t)− βN(t)− αI(t)

(2)

where N(t) = S(t) + I(t) + R(t). We note that the total population size N is a variable. The total population N
is stationary for A = β, declines for A < β and grows exponentially for A > β.
We consider in this work a standard SIR model with bilinear incidence and variable total population. let S represents
the number of susceptible, I represents the number of individuals who are infected, and R represents the number
of individuals who are removed as a result of vaccination or recovery from the diseases with partial immunity or
treatment. We note that this model can be applied to a sexually transmitted diseases (such as Gonorrhea).Also,
individuals can acquire immunity against the disease either through educational campaign or recovery after treat-
ment for the disease. A is the recruitment rate, β is the natural death, λ is the disease transmission rate, µ is the
rate of loss immunity, u1 is the fraction of infective that is treated per unit time, u2 is the fraction of susceptible
that is educational campaign per unit time, α is the disease-induced death rate and γ is the natural recovery rate.
The total population N(t) = S(t) + I(t) +R(t), it implies that

dN(t)

dt
= AN(t)− βN − αI

2.2. Non-dimensionalization of the system

For our own ease we rewrite these equation in terms of fractions of the individual class by defining s = S
N , i = I

N ,

r = R
N as the proportion for the classes S, I, R.For our own convinience we still use s = S, i = I and r = R. The

system becomes The model equation is now;

dS
dt = A− βS(t)− λI(t)S(t) + µR(t)− u2S(t)
dI
dt = λI(t)S(t)− (α+ β + γ)I(t)− u1I(t)
dR
dt = γI(t)− (β + µ)R(t) + u1I(t) + u2S(t)

(3)
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The SIR epidemic model (3) will be analyzed in a biologically feasible region as follows. This region should be
feasible for the total populations. If A is a constant then the feasible region for (3) in Ω is

Ω = {(S, I,R) ∈ R3
+ : S + I +R ≤ A

β
} (4)

Since by (3), lim supt→∞ S(t) ≤ A
β , thus the global attractor of (3) is contain in Ω. Thus the dynamical behaviour

of (3) in Ω and the fate of the disease are determine and control by the basic reproduction number. The basic
reproduction number,R0, is the average number of secondary infectious generated when one infected person is
introduced into a host population where everyone is susceptible. The basic reproduction number is a threshold
quantity thats helps to determine whether an outbreak of infectious disease dies out or spreads in a community.When
R0 ≤ 1, the disease vanishes without the need for any medical strategies. On another case when R0 > 1, the disease
becomes endemic and requires some forms of control strategies to come into place.
Hence,

R0 =
Aλ(β + µ)

β(β + µ+ u2)(α+ β + γ + u1)
(5)

2.3. Positivity of solution of model (3)

Theorem 1: Given S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0, the solutions (S(t), I(t), R(t)) of model (3) are positively invariant
for all t > 0. Let Z1 = sup{t > 0 | S > 0, I > 0, R > 0} for the first equation, dS

dt = A− βS − λIS + µR − u2S =
A+ µR− (λI + β + U2)S .

The integrating factor is, exp(
∫ t
0
λI(s)ds+ (β+u2)t.We multiply the inequality above by the integrating factor and

we obtain

dS(t) exp
∫ t
0
λI(s)ds+(β+u2)t

dt ≥ (A+µR) exp(
∫ t
0
λI(s)ds+(β+u2)t. We solve the inequality and obtain S(t) exp{

∫ t
0
λI(s)ds+

(β + u2)t} − S(0) ≥
∫ t
0
(A+ µR) exp{

∫ k
0
λI(v)dv + (β + u2)k}dk. Therefore, S(t) becomes

S(t) ≥ S(0) exp{−
∫ t
0
λI(v)dv + (β + u2)t} + exp{−

∫ t
0
λI(v)dv + (β + u2)t} ×

∫ t
0
(A + µR) exp{

∫ k
0
λI(v)dv + (β +

u2)k}dk > 0. Similarly, it can be shown that I(t) > 0, R(t) > 0 respectively.

2.4. Boundedness of the solution of model (3)

Theorem 2: All solutions (S(t), I(t), R(t)) of model (3) are Bounded:

Proof: Model(3) only refers to as the total human population from the model equation(3),we obtain

dN(t)
dt = A− β(S + I +R)− αI ≤ A− βN(t). Then lim supt→∞N(t) ≤ A

β .

Therefore all solutions of model (3) are bounded. The feasible region for the total population is Ω = {(S, I,R) |
S + I + R ≤ A

β , 0 ≤ S ≤ S(t), 0 ≤ I ≤ I(t), 0 ≤ R ≤ R(t)}. We defined Ω as the positively invariant region with

respect to the model equation(3), therefore the model equation(3) is mathematically and epidemiologically posed
in Ω. Let Ω̇ denote the interior of Ω.

Theorem 3: The region Ω ⊂ R3
+ is positively invariant for the model (3) with multiple intervention (educa-

tional campaign and treatment) with non-negative initial condition in R3
+.

3. Optimal Control Techniques applied to the model under consider-
ation

The control 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 1are the use of treatment and educational campaign. These controls are
bounded and our model equation is given below

dS
dt = A− βS(t)− λI(t)S(t) + µR(t)− u2S(t)
dI
dt = λI(t)S(t)− (α+ β + γ)I(t)− u1I(t)
dR
dt = γI(t)− (β + µ)R(t) + u1I(t) + u2S(t)

(6)
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with initial conditions
S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0
The Objective functional is defined as follows

J(u1, u2) =

∫ T

0

(A1Ih +A2
u21
2

+A3
u21
2

) dt (7)

Our goal is to minimize the total number of infective individuals and the cost associated with the use of educational
campaign and treatment on [0, T ].Now we define the objective functional as

J(u1, u2) =

∫ T

0

(A1Ih +A2
u21
2

+A3
u21
2

) dt (8)

subject to the system of equation (4) with appropriate state initial condition while the Lebesgue measurable control
set U is defined as

U = {(u1(t), u2(t)|0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, t ∈ [0, T ])} (9)

where u1(t) and u2(t) are measurable function such that: 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, t ∈ [0, T ]. A1, A2, A3 is a weight
parameter which describes the comparative importance of the two terms in the functional. We consider a quadratic
cost on the control, which is the simplest and widest used nonlinear representation of control cost.The quadratic
term is particularly chosen to describe the nonlinear behaviour of the cost of implementing the educational campaign
and treatments.

3.1. Formulation of an optimal control problem

We intend to find 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 for t ∈ [0, T ], to minimize

J(u1, u2) =

∫ T

0

(A1Ih +A2
u21
2

+A3
u21
2

) dt (10)

subject to the system of equation (4)

dS
dt = A− βS(t)− λI(t)S(t) + µR(t)− u2S(t)
dI
dt = λI(t)S(t)− (α+ β + γ)I(t)− u1I(t)
dR
dt = γI(t)− (β + µ)R(t) + u1I(t) + u2S(t)

(11)

and

S(0) ≥ 0 , I(0) ≥ 0 , R(0) ≥ 0 (12)

where u1(t), u2(t) are measurable function such that the control constraint

U = {(u1(t), u2(t))|0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, t ∈ [0, T ]}

Our goal is to minimize the total number of individuals who are infected while at the same time also minimizing
the cost of treatment and the cost of educational campaign of the population given the initial population sizes of
all three classes S(0), I(0) and R(0). The first term in the objective functional, A1I stands for the total number of

individuals who are infected and is taken as a measure of the death associated with the outbreak. The term A2
u2
1

2

represent the cost of treatment while the term A3
u2
2

2 represent the cost associated with the educational campaign.
We consider in this paper a quadratic cost on the control because the cost follows a non-linear representation.
Hence u1,u2 are Lebesgue integrable .They are piecewise continuous and integrable where A1, A2, and A3 are
relative weights fixed to the cost of minimizing the total number of infected individual, cost of treatment and
educational campaign respectively.Hence, we seek an optimal control pair (u∗1, u

∗
2) such that

J(u∗1, u
∗
2) = min{J(u1, u2) : (u1, u2) ∈ U} (13)

U is the control set defined by above.
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3.2. Existence and uniqueness of the control

Theorem 4.: Suppose the objective functional J(u1, u2) = min{J(u1, u2) =
∫ T
0

(A1Ih + A2
u2
1

2 + A3
u2
1

2 ) dt where
u = {u1, u2 : ui measurable 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, t ∈ [t0, T ] ∈ R+ for i = 1, 2...} subject to the dynamic
constraints of system equations (6) and (9) with S(0) = S0, I(0) = I0 and R(0) = R0, then there exists an optimal
control u∗ = (u∗1, u

∗
2) such that minu1,u2∈u J(u1, u2) = J(u∗1, u

∗
2)

Subject to the control system (6) with the initial conditions
Proof.:
To prove the existence of an optimal control pair we use the result in [16] and [Fleming and Rishel (1975)].The
control and the state variables are non-negative values and are non-empty. In the minimization problem, the
necessary convexity of the objective functional in u1 is satisfied. The control variable u1, u2 ∈ U is also convex and
closed by definition. The optimal system is bounded which determines compactness needed for the existence of the

optimal control. Furthermore, the integrand in the objective functional which is (A2
u2
1

2 + A3
u2
2

2 ) is convex on the
control set U . There exists constants b1, b2 > 0 and β > 1 such that the integrand of the objective functional J

is convex and satisfies J(u1, u2) ≥ b1(|u
2
1

2 |
2 + |u

2
2

2 |
2)

β
2 − b2. By standard control arguments involving the bounds on

the control, we conclude

u∗1 =



0 if m∗1 ≤ 0,

m∗1 if 0 < m∗1 < 1,

1 if m∗1 ≥ 1

(14)

where

m∗1 =
(λI − λR)I

A2

u∗2 =



0 if m∗2 ≤ 0,

m∗2 if 0 < m∗2 < 1,

1 if m∗2 ≥ 1

(15)

where

m∗2 =
(λS − λR)S

A3

By the apriori boundedness of the state system, adjoint system and the resulting Lipschitz structure of the
ODEs, we obtain the uniqueness of the optimal control for small T.The uniqueness of the optimal control follows
from the uniqueness of the optimality system, which consist of (23), (24) and (25) with characterization (27) and
(28). We impose a bound on the length of time interval in order to guarantee the uniqueness of the optimality
system. The smallness restriction of the length on the state problem has initial values and the adjoint problem has
final values. This restriction is very common in control problems(See 17,24).

3.3. Necessary conditions of the control

We use the Pontryagin’s Maximum Principle(Pontryagin’s et. al; 1962) because it is a constrained control problem.
Hence, we give the minimized pointwise Hamiltonian as follows. The necessary conditions that an optimal control
must satisfy come from Pontryagin’s Maximum Principle(Pontryagin’s et. al(1962)). This principle converts the
system(1) and equation(3) objective functional into a problem minimizing pointwise a Hamiltonian H,with respect
to u1 and u2.
Theorem 5.: Given an optimal control pair U∗(t) = (u∗1, u

∗
2) and a solution X∗(t) = (S∗(t), I∗(t), R∗(t)) of the

corresponding state system (6) there exist adjoint variables λS(t), λI(t) and λR(t) which satisfies the following:
We first derive the Hamiltonian which is given by

H(S, I,R) = (A1Ih+A2
u2
1

2 +A3
u2
1

2 )+λS(A−βS(t)−λI(t)S(t)+µR(t)−u2S(t))+λI(λI(t)S(t)− (α+β+γ)I(t)−
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u1I(t)) + λR(γI(t)− (β + µ)R(t) + u1I(t) + u2S(t))

λ́S = −[λS(−β − λI − u2) + λI(λI) + λR(u2)]

= λS(β + λI + u2)− λIλI − λR(u2)

λ́I = −[A1 + λS(−λS) + λI(λS − (α+ β + γ + u1) + λR(γ + u1))]

= −A1 + λSλS − λIλS + λI(α+ β + γ + u1)− λRγ − λRu1

λ́R = −[λS(−µ) + λR(−(β + µ))]

= µλS + (β + µ)λR

with the final conditions

λS(T ) = λI(T ) = λR(T ) = 0 (16)

Furthermore, we find the optimal control u∗1 and u∗2

u∗1 = min{max(0,
λI − λRI

A2
, 1} (17)

u∗2 = min{max(0,
λS − λRS

A3
, 1} (18)

Proof.
We form the Hamiltonian H given by

H(S, I,R) = (A1Ih +A2
u2
1

2 +A3
u2
1

2 ) +
u2
1

2 + λS(A− βS(t)− λI(t)S(t) + µR(t)− u2S(t)) + λI(λI(t)S(t)− (α+ β +
γ)I(t)− u1I(t)) + λR(γI(t)− (β + µ)R(t) + u1I(t) + u2S(t))
and the transversality conditions

λS(T ) = λI(T ) = λR(T ) = 0 (19)

Therefore we differentiate the Hamiltonian with respect to u1 and u2 in the interior of u1 and u2 we obtain the
optimality condition that follows

∂H
du1

= A2u1 − λII(t) + λRI(t) = 0
∂H
du2

= A3u2 − λSS(t) + λRS = 0
(20)

From these equations, we obtain the optimal control pair (u∗1, u
∗
2) as stated below

u∗1 =
(λI − λR)I

A2
(21)

u∗2 =
(λS − λR)S

A3
(22)

We impose some bounds on the control variables: 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 1 to yield(21) and (22) as required.
Therefore our resulting optimality system is given in the next section.
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3.4. Optimality system

Therefore, our resulting optimality system is given by:
State equations:

dS
dt = A− βS(t)− λI(t)S(t) + µR(t)− u2S(t)
dI
dt = λI(t)S(t)− (α+ β + γ)I(t)− u1I(t)
dR
dt = γI(t)− (β + µ)R(t) + u1I(t) + u2S(t)

(23)

and

S(0) ≥ 0 , I(0) ≥ 0 , R(0) ≥ 0 (24)

Adjoint equations:

λ́S = −∂H∂S = −[λS(−β − λI − u2) + λI(λI) + λR(u2)]

λ́I = −∂H∂I = −[A1 + λS(−λS) + λI(λS − (α+ β + γ + u1) + λR(γ + u1))]

λ́R = −∂H∂R = −[λS(−µ) + λR(−(β + µ))]

(25)

Transversality equations:

λS(T ) = λI(T ) = λR(T ) = 0. (26)

Characterization of the optimal control u∗1 and u∗2:
∂H
∂u1

= ∂H
∂u2

= 0 at u1 = u∗1,u2 = u∗2 on the set {t ∈ [0, T ] : 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1}. That is:

u∗1 =



0 if m∗1 ≤ 0,

m∗1 if 0 < m∗1 < 1,

1 if m∗1 ≥ 1

(27)

where m∗1 = (λI−λR)I
A2

and

u∗2 =



0 if m∗2 ≤ 0,

m∗2 if 0 < m∗2 < 1,

1 if m∗2 ≥ 1

(28)

where m∗2 = (λS−λR)S
A3

4. Numerical simulations results and discussions

Here, we provide some numerical simulations of the epidemiological models which describes the theoretical results
and predict the evolution of infectious diseases in the population and we also studied the dynamical behaviour of
the models. The model we present here is very general as it can suit any model of diseases like H1N1(Influenza),
measles, chicken pox, mumps, etc.
We use the forward-backward sweep method and solved the optimality system numerically. This consists of 6
ordinary differential equations arriving from the state and adjoint equations, coupled with the two controls. In our
choices of upper bound for the controls, we supposed that the two controls would not be 100percent effective, so
the upper bounds for u1 and u2 were selected to be between 0 and 1 respectively. The weights in the objective
functional are A1, A2 and A3 respectively. The parameters in Table 1 were choosen based on other literatures and
used for our simulations.
We simulate the model in different scenarios.Figure 1 shows scenarios for the state variables of the model for the
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case when the cost differs for the two controls. We observed that the susceptible population with control strategy
decreases from the first day of the disease outbreak, while the population of recovered individuals increases from
the first day after vaccination. From day 70 the population of susceptible become stable. At day 100 the disease
dies out and only susceptible and recovered remains in the population. We also observe that the population of
infected individuals with treatment control increases very slowly showing that the treatment control has little effect
in reducing the proportion of the infective in the population because the infective grows slowly, the contact rate will
be very low and so the diseases will die out in the population. Hence, the proportion of recovered individuals in the
system is very large with vaccination control, this implies that there are few infected individuals in the population.
This depicts that when educational campaign control was introduced in the population, the proportion of recovered
individuals increases. This also shows the effect of educational campaign on the population. Figure 2, represent
the three adjoint variables λS , λI and λR in the population and we solve these adjoint by a backward fourth-order
Runge-kutta techniques.
Figure 3, represent the optimal control variables u1 and u2 at a time t play a significant role in minimizing the
probability that infected population spread the disease in the host population.
Figure 4(a) depicts scenarios for the infected individuals varying the disease induced death rate. When the disease
induced death rate is high the infective population drops gradually and when the disease induced death rate is low
the infectious population increases.
Figure 4(b) shows the infected population with varying weight parameter C1. We observe that when the weight
parameter is high the infected population increases at first and then maintain a steady state and when the weight
parameter is low the population of infected individuals grows increasingly.
Figure 4(c) represent the control variables u1 with varying weight parameter(C3 = 2, C3 = 0). We observe that
when the weight parameter is high the control decreases very fast and when the weight parameter is low the control
decreases very slowly.
Figure 5(a) shows the control variable u2 with varying disease transmission rate. This depicts that when the disease
transmission rate is high, the control variable u2 drops gradually from the upper bound to zero after time t = 0.5
to its lower bound and when the disease transmission rate is low, the control variable u2 drops gradually from the
upper bound to zero after time t = 0.65 to its lower bound.
Figure 5(b). This represent the susceptible population with varying disease induced death rate both decreases very
fast at the same rate for the susceptible population.Note that we display the quantity S, I and R as proportions
instead of numbers themselves.
The simulation which we carried out were carried out by using the following values: b = 0.02, α = 0.1, µ = 0.00137,
A = 0.03, d = 0.75,g = 0.005, γ = 0.00137, S(0) = 0.55, I(0) = 0.05, R(0) = 0.35, A1 = 10, A2 = 1, A3 = 2

u∗1 = (λI−λR)I
A2

u∗2 = (λS−λR)S
A3

Considering 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, u∗1 and u∗2 are given by u∗1 = (λI−λR)I
A2

u∗2 = (λS−λR)S
A3

Table 1: Table showing numerical values of parameters used in the simulations.

Parameter Symbol Value Source

disease induced death rate α 0.1 [34]
disease transmission rate d 0.75 [34]
rate of loss of immunity µ 0.00137 [estimate]
recruitment rate A 0.03 [34]
Natural death rate b 0.02 [34]
natural recovery rate g 0.005 [assumed]

5. Conclusion

In this paper, we have derived and analyzed a system of deterministic differential equation SIR Epidemic model
with constant recruitment. We analyze the model by deriving a non-dimensional system of equation from our
original model because it helps to reduce the number of time we might have to solve the equation numerically and
also gives us insight into what might be small parameters that could be ignored or treated approximately[Issam
Sinjab]. We further verify the positivity and boundedness of the solution of our model where we discovered that our
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(a)

Figure 1: Simulation showing the Optimal states

(a)

Figure 2: Simulation showing the Optimal control

model equation is mathematically and epidemiologically well posed in ω. We applied the optimal control theory to
our model.In particular, we investigate the stability properties by paying more attention to the basic reproduction
number.
We also studied and determined the optimal treatment and educational campaign strategies for our model. We
were able to expand on the existing work by putting the missing detail and making reasonable contributions.
We realized that in the course of applying the optimal control, we derived and analyzed the conditions for optimal
control of the disease with preventive and treatment measures. From our numerical results, we found that prevention
and treatment have a strong impact on the disease control.At this point, we recognized that the objective functional
used in the optimization problem can be interpreted or adapted to reflect the actual cost associated with the public
health effort in combating any infectious disease.This work can be further extended by introducing stochasticity
and partial differential equation(time and space).
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Figure 3: Simulation showing the Adjoint equations
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