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Abstract

In this article, we study a two point boundary value problem of non linear differential equation on a semi infinite
domain that describes the unsteady flow of gas through a porous medium. Under special transform, we convert this
problem to boundary value problem in compactly supported domain [0, 1]. An algorithm provided for obtaining
solution by Legendre wavelet collocation method. This method is effectively used to determine y (t) and its initial
slope at the origin. The convergence and stability analysis is provided. The results thus obtained are compared with
the those obtained from modified decomposition method [5], Variational iterational method [6], rational Chebyshev
functions method (RCM) [7] and radial basis function (RBF) collocation method [10]. It has been observed that
the proposed method provide better results with lesser computational complexity.
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1. Introduction

The nonlinear partial differential equation that describes the unsteady flow of gas through a semi-infinite porous
medium has been studied by H. T. Davis [1] in the form

52F 2 = A2 ∂F

∂t
, (1)

where F is the pressure within porous medium, A is a constant and 52 is Laplace operator.
In term of dimensionless variable ρ, ξ, and τ , the one dimensional problem from (1) come out to be

∂

∂ξ
(ρ
∂ρ

∂ξ
) =

∂ρ

∂τ
(2)

Under transform

ρ2 = 1− α, α ∈ (0, 1)

t =
ξ

2
√
τ
,
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the nonlinear partial differential equation (2) reduces to the nonlinear ordinary differential equation

y′′(t) + 2t
y′(t)

2
√

1− αy(t)
= 0. (3)

The boundary conditions required by the physical problem are as follows

y(0) = 1, (4)

lim
t→∞

y(t) = 0 (5)

R. P. Agarval, D. Regan studied the existence of solution [2], upper and lower solution [3] of the problem (3) - (5).
Kidder [4] solved the above problem (3) - (5), using perturbation technique. A perturbation series for the solution
is as follows

y(t) =

∞∑
i=0

αny(n)(t),

where y(n)(t) denotes nth derivative of y(t) with respect to x and the expainsion

2
√

1− αy(t) = 1 +
αy

2
+

3

8
α2y2 + ...

It is easily seen that the complexity of the calculations increases rapidly with increasing order of the terms [4].
Modified decomposition method [5] and Variational iteration method [6] have been used to solve problem (3) -
(5). After using these methods [5, 6], Pade Approximation is utilized to convert polynomial approximation in to
rational functions. K. Parand et al. [7, 8, 9, 10] solved problem (3) - (5) using generalized Laguerre polynomials
and rational Chebyshev collocation method, Lagrangian method, modified generalized Laguerre functions Pseudo -
spectral method, RBF collocation method.

The solution of ordinary differential equations by Tau method and application of Chebyshev polynomial refers
at least from time of Lenczos (1938) [11]. In the analytic study of differential equations, orthogonal function and
polynomials have been used by Canuto et al [12] and A. Finlayson, L. E. Scriven [13]. If the solution function
and coefficient functions are analytic on the close interval [a, b], spectral methods are very efficient and suitable
[12]. If at least one of the coefficient or solution function is not analytic on the close interval [a, b], the spectral
method does not work very well [12, 14, 15]. As described before, spectral (Collocation, Galerkin, Tau and Pseudo
spectral) methods do not work well for this kind of problem. F. Mohammadi et al [16] used Galerkin method with
Legendre wavelets, solved this problem with Dirichlet boundary conditions and obtained good results. To obtain
solution of Legendre and Bessel differential equations, M. Razzaghi and S. Yousefi [17] used Legendre wavelets and
its operational matrix of integration.

The Purpose of this paper is to solve equation (3) - (5), using collocation method with Legendre wavelet as
a basis functions. The paper is organized in following section. In section2, Legendre wavelet and its operational
matrix of integration are introduced. Present method and its convergence and stability analysis are provided in
section 3. The results and discussion is given in section 4. In section 5 we have concluding remarks.

2. Wavelet

Morlet (1982) first introduced the idea of wavelets as a family of functions constructed from translations and
dilations of a single function called mother wavelet and defined by

ψs,r(x) = |s|
−1
2 ψ

(
x− r
s

)
, s, r ∈ R, s 6= 0 (6)

where s is scaling parameter, r is the translation parameter and R denotes set of real numbers
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2.1. Legendre wavelets

The Legendre wavelets [16, 17], ψn,m (x) = ψ(k, n̂,m, x) we have four arguments
k = 1, 2, 3...,
n = 1, 2, . . . , 2k−1,
n̂ = 2n− 1,
m is the order of Legendre polynomial and x is the normalized time. They are defined on the closed interval [0,1]
by

ψn,m(x) =

{√
(m+ 1/2)2k/2Pm

(
2kx− n̂

)
, n̂−1

2k
≤ x ≤ n̂+1

2k

0 , otherwise.
(7)

Where the dilation parameter is s = 2−k and the translation parameter is r = n̂2−k. Pm(x) is denoted by Legendre
polynomial of order m, m = 0, 1, ...,M − 1 , which are orthogonal with respect to the weight function w(x) = 1 on
the interval [−1, 1], and satisfy the following recursive formula
P0(x) = 1,
P1(x) = x,
Pm+1(x) = 2m+1

m+1 xPm(x)− m
m+1Pm−1(x).

2.2. Fourier approximation:

A function defined in domain [0, 1] may be expressed as

f(x) =

∞∑
n=1

∞∑
m=0

cn,mψn,m (x) , (8)

where cn,m =< f(x), ψn,m (x) > in which <,> denotes the inner product. If the infinite series in (6) is truncated,
then it can be written as

f(x) ≈
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m (x) = CTψ(x) (9)

where C and ψ(x) are column matrices of order 2k−1M × 1, given by

C = [c10, c11, . . . , c1M−1, c20, c21, . . . , c2M−1, c2k−10c2k−11, . . . , c2k−1M−1]T (10)

ψ (x) = [ψ10(x), ψ11(x), . . . , ψ1M−1(x), ψ20(x), . . . , ψ2M−1(x), . . . (11)

ψ2k−10(x)ψ2k−11(x), . . . , ψ2k−1M−1(x)]T .

2.3. Operational matrix of integration

The integration of the wavelets ψ(x) can be obtained as

x∫
0

ψ(s)ds = Pψ(x). (12)

P is 2k−1M × 2k−1M operational matrix of integration [16, 17] defined by

P =
1

2k



L O O · · · O
0 L O · · · O
0 0 L · · · O
...

...
...

. . .
...

0 0 0 · · · O
0 0 0 · · · O


(13)
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where F and L are M ×M matrices given by

O =


2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


and

L =



1 1√
3

0 0 · · · 0 0 0
−1√
3

0 1√
15

0 · · · 0 0 0

0 −1√
15

0 1√
35
· · · 0 0 0

0 0 −1√
35

0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1√

(2M−3)(2M−1)
0 1√

(2M−3)(2M−5)
0 0 0 0 · · · 0 −1√

(2M−1)(2M−3)
0


respectively.

3. Algorithm of obtaining solution by Legendre wavelet collocation
method (LWCM (M,k) ) for Kidder’s equation

The algorithm of obtaining solution by LWCM (M,k) for Kidder’s equayion given below in following steps.
Step 1: The first step of algorithm is to transform independent variable t to a new variable x which is defined on
valid range [0, 1] of shifted ortho-normal Legendre polynomial through

x = exp(−t) (14)

After substitution of (14) in (3) - (5), the equation (3) - (5) is transformed to a new form as

x(
√

1− αy(x))y′′(x)− (2 loge (1/x)−
√

1− αy(x))y′(x) = 0, x ∈ (0, 1), (15)

y(0) = 0, (16)

y(1) = 1. (17)

Step 2: We assume that the unknown function y′′(x) is given

y′′(x) = CTψ(x), (18)

where C is an unknown vector and ψ(x) is vector which is defined in (10) and (11). We integrate equation (18) two
times from 0 to x and using equation (12), we get

y′(x) = y′(0) + CTPψ(x), (19)

y(x) = y′(0)x+ CTP 2ψ(x). (20)

From (17) and (20), we have

y′(0) = 1− CTP 2ψ(1). (21)

From (19), (20) and (21), we have

y′(x) = 1− CTP 2ψ(1) + CTPψ(x), (22)
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y(x) = (1− CTP 2ψ(1))x+ CTP 2ψ(x). (23)

Using (18), (22), and (23) in (15), we obtained residual R(C, x) as a function of C and x as follows

R(C, x) = x(
√

1− α((1− CTP 2ψ(1))x+ CTP 2ψ(x)))CTψ(x)−

(2 loge (1/x)− (
√

1− α((1− CTP 2ψ(1))x+ CTP 2ψ(x)))(1− CTP 2ψ(1) + CTPψ(x))

Step 3:

3.1. LWCM (M,k)

In collocation method, we choose 2k−1M collocation points as
x10, x11, . . . , x1M−1, x20, x21, . . . , x2M−1, x2k−10x2k−11, . . . , x2k−1M−1 in the open interval (0, 1) with

R(C, xn,m) = 0,m = 0, 1, 2, ...M − 1, n = 1, 2, ..., 2k−1. (24)

Step 4: The equations (24 represent systems of non linear equation for unknown vector C. The equation (24) can
be solved for vector C. Using Newton Raphson method, the systems can be solved for vector C. After finding the
unknown vector C, we can get the approximate solution of (15) - (17) by inserting C into (23) .
Step 5: Using inversion of transform (14) in obtained solution of (15) - (17), we have required solution.

3.2. Convergence Analysis

To compute approximation error, we introduce an orthonormal basis of L2(R), with 2k−1M vectors {ψn,m(x)}
defined in section 2.2 is an orthonormal basis of the some approximation space V2k−1M . Approximation error of
linear sampling processes is related to the error of linear approximation in an orthonormal basis. These errors are
computed from the decay of signal coefficients in this basis.
Theorem 3.2.1 Let y(x) is real valued function defined on [0, 1] and its mth derivative y(m)(x) is bounded on
[0, 1]. The following inequality holds

e(m, y) ≤ K
m! ,

where
e(m, y) =‖ y(x)− ym(x) ‖L2[0,1],

K = sup{y(m)(x) : x ∈ [0, 1]},
and ym(x) denotes the approximate solution of initial value problem (15) - (17).
Proof Equation (23) is representing approximate solution of boundary value problem (15) - (17). It can be written
in the form

ym(x) =

2k−1∑
n=1

M−1∑
m=0

dn,mψn,m (x) ,

with restriction that ym(x) is a polynomial of a degree m that approximate y∗(x) with minimum mean square error,
where {ψn,m(x)} is an orthonormal basis of the approximation space V2k−1M of L2(R).

‖ y(x)−
2k−1∑
n=1

M−1∑
m=0

dn,mψn,m (x) ‖2L2[0,1]
≤

1∫
0

[y(x)− y∗(x)]2dx, (25)

1∫
0

[y(x)− y∗(x)]2dx ≤
1∫

0

[
1

m!2mk
Sup

{
y(m)(x) : x ∈ [0, 1]

}
]2dx

≤ [
K

m!2mk
]2,
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where y∗(x) is interpolating polynomials of y(x) and we have used well known maximum error bound for interpo-
lation.

≤ [
K

m!
]2, for k > 0 , m ≥ 0. (26)

From (25) and (26), we have required result.

e(m, y) ≤ K

m!
. (27)

Equation (27), shows that e(m, y) approaches to zero as m tend to infinity.
Theorem 3.2.2 Let E(x) and ym(x) be real valued function lies in L2[0, 1] and < ym(x) + E(x), ym(x) + E(x) >
exist, where

L2[0, 1] =

{
f : [0, 1]→ C :

1∫
0

|f(x)|2 dx <∞
}

space,

ym(x) is an approximate solution of boundary value problem (15) - (17) given in equation (23). Then
D = −1 + CTP 2ψ(1)− CTP 2d.,

whenever D = sup {E(x) : x ∈ [0, 1]} and ψ(x) is defined (11), d denotes column matrix of order 2k−1M × 1. The
first entry of matrix d is one and remaining zeros.
Proof Since

< ym(x) + E(x), ym(x) + E(x) >=

1∫
0

y2m(x)dx+ 2

1∫
0

ym(x)E(x)dx+

1∫
0

E2(x)dx.

We have,

D2 + 2D

1∫
0

ym(x)dx+

1∫
0

y2m(x)dx ≥ 0,

then there is a constant K ≥ 0 such that

D2 + 2D

1∫
0

ym(x)dx+

1∫
0

y2m(t)dx−K = 0.

The root of above quadratic equation in D is

D = −
1∫

0

ym(x)dx±

√√√√√(

1∫
0

ym(x)dx)2 −
1∫

0

y2m(x)dx+K.

Since D is unique, then D will be

D = −
1∫

0

ym(x)dx,

when

K = −
1∫

0

ym(x)dx)2 +

1∫
0

y2m(x)dx.

Obtained unique D and from equation (23), we get

D = −1 + CTP 2ψ(1)− CTP 2d.
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Table 1: Exhibited the value y(t) at α = 0.5.

x yKidder y(2/2)][5, 6] y(3/3)[5, 6] RCF [7] yLWCM(9, 1)
0.1 0.8816588283 0.8633060641 0.8979167028 0.88042558 0.8814752903
0.2 0.7663076781 0.7301262261 0.7985228199 0.76963630 0.7666110186
0.3 0.6565379995 0.6033054140 0.7041129703 0.66402932 0.6572701887
0.4 0.5544024032 0.4848898717 0.6165037901 0.55870984 0.5556775254
0.5 0.4613650295 0.3761603869 0.5370533796 0.46068185 0.4632588205
0.6 0.3783109315 0.2777311628 0.4665625669 0.37504968 0.3807807670
0.7 0.3055976546 0.1896843371 0.4062426033 0.30320332 0.3085393048
0.8 0.2431325473 0.1117105165 0.3560801699 0.24431600 0.2464487274
0.9 0.1904623681 0.0432367323 0.3179966614 0.19666414 0.1940914931

1 0.1587689826 0.0164675084 0.2900255005 0.15835106 0.1587755564

Table 2: Exhibited the value y′(0).

α y(2/2)[5, 6] y(3/3)[5, 6] RCF [7] yLWCM(9, 1)
0.2 -2.441894334 -1.786475516 Not calculated -2.121683561
0.5 -1.373178096 -1.025529704 -1.26259357 -1.199258245
0.8 -0.863340021 -0.477669728 Not calculated -0.690065816

4. Results and discussion

Kidder’s equation is a highly non linear differential equation with semi infinite boundary condition. Because of
this its solution is very difficult task. The solution of Kidder’s equation is important because, it describe complex
physical phenomenon of the unsteady flow of gas through a porous medium. An algorithm of present method
provided in section 3. The steps of algorithm are easy to understand and implementable on MATLAB. From
Theorem 3.2.1, we observe that xm tend to x and e(m, y) tend to zero as m tend to infinity. In this results we
say that error can be minimize by taking large number of Legendre wavelet basis functions. From theorem 3.2.2,
we observe that maximum error of solution on the closed interval [0, 1] obtained by LWCM(M,k) is depending on
the column vector C. The elements of column vector C are the coefficients of Legendre wavelet series expansion
because of this the maximum error of solution on the closed interval [0, 1] is bounded.

In the physical observation of the unsteady gas problem, y′(0) has an important issue [1]. The solution y(t)
and its slope at origin y′(0) obtained by LWCM(9, 1) and those obtained by modified decomposition (y(2/2),
y(3/3)) [5], Variational iteration (y(2/2), y(3/3))[6] and RCF [7] methods given in Table 1 - 2. In solution y(t) of
Kidder’s equation by modified decomposition [5] and Variational iteration [6] methods containing its slope at origin
as a unknown constant. For removing this constant, they used Pade approximation because of this, these method
preserved large truncation errors and computations are very lengthy in comparison to present method. In RCF [7]
method, the solution also preserve large truncation error than present method. The comparative study of solution
by LWCM(9, 1), shooting Ronge kutta [10] method and RBF [10] method given in Fig. 1. Shooting Ronge kutta
method have large truncation error because of this present method provide better results than shooting Ronge kutta
[10] method and RBF [10].

5. Conclusion

The present method is easy to understand, no any complexity in computations and easy to implementable on MAT-
LAB. From Theorem 3.2.1 and 3.2.2; we conclude that L2 norm of error tends to zero as m tend to infinity and
maximum error on the closed interval [0, 1] is bounded The present method provided the physical observation of the
unsteady gas problem. From section 4, we conclude that the results obtained by present method provided better
accuracy than those obtained by others methods. The method can also used to highly non linear singular problem.
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Fig.1: Comarative study of solution of Kidder’s equation.
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