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Abstract

The aim of this article is to minimises the stored energy function, of two dimensional elasticity with mixed boundary
condition, in order, that the Euler’s equilibrium equations of the Saint-Venant-Kirchhoff problem, has one and only
one solution.

Keywords: Elasticity, Saint-Venant, Stored Energy.

1. Introduction

A special physical case, occurring an important place in nonlinear elasticity, is the Saint-Venant-Kirchhoff material
whose the response function is given by the second Piola-Kirchhoff stress tensor,
Σ(E) = λ(trace(E))I + 2µE.
where λ and µ are two constants, known as the Lamé coefficients, and
E := E(∇u) = 1/2((∇u)t(∇u) + (∇u)t + (∇u))
is the nonlinear Green-Saint-Venant strain tensor, ∇u is the displacement gradient.
The mathematical problem consists in solving a nonlinear boundary value problem, with mixed Dirichlet and
Neuman conditions, for the displacement u such that

(S)




−div((I +∇u)Σ(E(∇u))) = f in Ω,

(I +∇u)Σ(E(∇u)).~n = g on Γ1,
u = 0 on Γ0.

.

The linearized mixed problem of (S) is

(Sl)




−div(Σ(ε(∇u))) = f in Ω,

Σ(ε(∇u)).~n = g on Γ1,
u = 0 on Γ0.

where ε(u) = 1/2((∇u)t + (∇u)) is the linear Green-Saint-Venant strain.
In [1], J.M.Ball introduces the notion of polyconvexity and minimizes the stored energy to study the existence of
solutions to the mixed boundary value problem of nonlinear elasticity for a wide class of hyperelastic materials, which
does not include the Saint-Venant-Kirchhoff material, because its stored energy function, as shown by A.Raoult,
is not polyconvex(then neither convex). The assumptions λ > 0 and µ > 0 satisfied by the Lamé coefficients are
two physical conditions as shown by an experimental evidence. But many authors(see[3] for example) included the
case λ = 0 corresponding to ” limit ” of Saint-Venant-Kirchhoff material in the sense that λ is physically very small
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(λ ≈ 0). Mathematically, this ” limit ” case plays an important part for the two next reasons: Firstly, the Ciarlet’s
existence theory for the pure displacement problem(i.e. Γ1 = ∅) still hold under the weaker assumptions µ > 0
and λ + 2µ > 0, see [2, chapter6] and [5, Section6.1]. The second reason is explained by the fact that the study of
the nonlinear problem (S) for λ = 0 is more difficult than other cases, since M.Atteia and M.Raissouli showed, see
[2, 7], that the associated stored energy function for λ = 0 defined by: J(u) = 1/4

∫
Ω
|E(∇u)|2 − ∫

Ω
fu− ∫

Γ1
gu

can’t be convex. For the previous arguments, we limit our attention throughout the following, not to lengthen the
paper, to the case λ = 0 and µ = 1/2 that corresponds to Σ(E) = E.
The fundamental goal of this work is to prove, existence and uniqueness solution to the problem of minimizing the
stored energy, in two dimensional case.
The paper is organized as follows. In section 1 describes the formulation of the problem which we will study later.
Section 2 is devoted to introduce some preliminary results. In the final Section, we state our fundamental theorem
concerning the local existence, uniqueness of solution for the nonlinear mixed problem.

2. Formulation of the problem

In this paper, Ω denotes a nonempty bounded open domain in IR2, with its boundary Γ = ∂Ω of C∞ -regularity.
We assume that Γ = Γo ∪ Γ1 where Γ0 and Γ1 are two measurable portions of Γ with Γo ∪ Γ1 = ∅.
Let f ∈ (L2(Ω))2 and g ∈ (H1/2(Γ1))2. Let us consider the following problem:
Fund u ∈ (W 1,4(Ω))2 such that

(P )




−div((I +∇u)E(∇u) = f in Ω,

(I +∇u)E(∇u).~n = g on Γ1,
u = 0 on Γ0.

Where I is the identity matrix, ~n is the exterior normal vector to Γ and
E(∇u) = 1/2(∇ut∇u +∇ut +∇u),
is the nonlinear Green-Saint-Venant strain tensor.
The linearized problem of (P ) is the following:
Fund u ∈ (H1(Ω))2 such that

(Pl)




−div(ε(u)) = f in Ω,

ε(u).~n = g on Γ1,
u = 0 on Γ0.

Where ε(u) = (εi,j(u))1≤i,j≤2 = 1/2(∇ut +∇u),
is the linearized strain tensor.
Let u and v in (W 1,4(Ω))2, we defined by,[7]
< ∇u/∇v >=

∑2
i,j=1 ∂jui∂jvi

is an inner scalar product with its associated norm:
|∇u| =< ∇u/∇v >1/2= (

∑2
i,j=1(∂jui)2)1/2

We shall study the problem (P ): Existence and uniqueness solution, by considering the following problem [7]
(Q) J(u) = inf

{
J(v), v ∈ (W 1,4(Ω))2, v = 0 on Γ0, det(I +∇v) > 0

}

Where J(u) = 1/4
∫
Ω
|E(∇u)|2 − ∫

Ω
fu− ∫

Γ1
gu

is the stored energy function of mixed elasticity problem [7].

3. Existence and uniqueness solution of problem (P )

In this short section, we recall some standard notation and results. For some details, one can consult [4]
V =

{
u ∈ (W 1,4(Ω))2, u = 0 on Γ0

}
clearly V is a closed vector subspace of (W 1,4(Ω))2.
For every u ∈ (W 1,4(Ω))2 we define
|ε(u)|20.Ω =

∑2
i,j=1

∫
Ω
(ε(u)ij)2.

Proposition 3.1 The semi-norm |ε(u)|0.Ω is a norm in V ∩(H1(Ω))2 equivalent to the norm usual, ‖.‖ of (H1(Ω))2.
Proof. Since |ε(u)|0.Ω is a norm in V ∩ (H1(Ω))2 and equivalent to the norm of (H1(Ω))2 [4], is a norm in
V ∩ (H1(Ω))2.

Lemma 3.2 [2] Let F be a normed vector space, G is a Banach space and: B F × G 7−→ IR be a continuous
bilinear maping. Then for all sequences vn strongly converges to v in F and wn weakly converges to w in G we have,
B(vn, wn) converge to B(v, w).
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Theorem 3.3 [4] Let F be a reflexif, Banach space and j : F 7−→ IR is a lower semi-continuous, convex, coercive
functional, then the problem j(u) = inf {j(v); v ∈ F} has one and only one solution.

Theorem 3.4 [7] Let f ∈ (L2(Ω))2 and g ∈ (H1/2(Γ1))2 then, u is a uniqueness solution of (P ) if and only if u is
also a uniqueness solution of (Q) in V .

Lemma 3.5 [6] the following map:
p (W 1,4(Ω))2 7−→ IR

u 7−→ 1/16(
∫
Ω
|∇ut∇u|2)1/4

is a lower semi-continuous, convex and satisfying the triangular inequality(see[6, , chapter2, page69]).

Lemma 3.6 Let W be a neighborhood of 0 in (W 1,4(Ω))2, then there exists 0 < C1 < 1 such that for evry u ∈ W
and v ∈ W we have: ‖F (u)− F (v)‖1 ≤ C1 ‖u− v‖(H1(Ω))2 ,

where F (u) = ∇uE(∇u) + 1/2((∇u)t∇u).

Proof. Let u, v in (W 1,4(Ω))2 such that ‖u‖(W 1,4(Ω))2 ≤ C, ‖v‖(W 1,4(Ω))2 ≤ C where C > 0 is small. We have

‖F (u)− F (v)‖1 =
∑2

i=1

∥∥∥∑2
j=1(Fij(u)− Fij(v))

∥∥∥
1
≤ ∑2

i,j=1 ‖Fij(u)− Fij(v)‖1
and Fij = (1/2)

∑2
k=1 ∂iuk∂juk + (1/2)

∑2
k,r=1 ∂kui∂ruk∂ruj + (1/2)

∑2
k=1 ∂kui∂kuj + (1/2)

∑2
k=1 ∂kui∂juk

For i,j=1,2
‖∂iuk∂juk − ∂ivk∂jvk‖1 ≤ ‖∂iuk(∂juk − ∂jvk)‖1 + ‖∂jvk(∂iuk − ∂ivk)‖1
Since for i,j=1,2 , ∂jui ∈ (L4(Ω))2, we deduce that:
‖∂iuk∂juk − ∂ivk∂jvk‖1 ≤ ‖∂iuk‖2 ‖∂juk − ∂jvk)‖2 + ‖∂jvk‖2 ‖∂iuk − ∂ivk)‖2
It becomes that:
‖∂iuk∂juk − ∂ivk∂jvk‖1 ≤ 2KC ‖u− v‖(H1(Ω))2 ,
where K > 0 is a constant.
By an analogous method (see[9]), we prove that for i,j,k,r=1,2
‖∂iuk∂juk∂ruk − ∂ivk∂jvk∂rvk‖1 ≤ 3KC2 ‖u− v‖(H1(Ω))2 ,
Then for i,j=1,2
‖Fij(u)− Fij(v)‖1 ≤ 6KC ‖u− v‖(H1(Ω))2 + 12KC2 ‖u− v‖(H1(Ω))2 ,
In summary, we have proved
‖F (u)− F (v)‖1 ≤ max

{
24KC, 46KC2

} ‖u− v‖(H1(Ω))2 ,

Put that C1 = max
{
24KC, 48KC2

}
If C is sufficiently small then 0 < C1 < 1 and
‖F (u)− F (v)‖1 ≤ C1 ‖u− v‖(H1(Ω))2 .

Remark 3.7 .
1. In the space V, the norm:
‖u‖1,Ω = (

∫
Ω
|ε(u)|2)1/2 + 1/16(

∫
Ω
|(∇u)t∇u|2)1/4,

is equivalent to the classical norm of (W 1,4(Ω))2.
2. For all u ∈ V we have
|E(∇u)|2 = |ε(u)|2 + 1/4 |(∇u)t∇u|2 + < ε(u)/(∇u)t∇u > .

New we shall study the problem (Q) by considering the following iterative problem:
Let n ≥ 0 , 0 6= u0 ∈ (W 1,4(Ω))2 is given, un ∈ (W 1,4(Ω))2 is constricted, when un−1 is known, as a solution of the
following problem (Qn):
(Qn) Jn(un) = inf

{
Jn−1(u); u ∈ (W 1,4(Ω))2

}
,

where Jn(u) =
∫
Ω
|ε(u)|2 + 1/16(

∫
Ω
|(∇u)t∇u|2) + 1/2

∫
Ω

< ε(u)/(∇un−1)t∇un−1 > − ∫
Ω

fu− ∫
Γ1

gu

Theorem 3.8 Let f ∈ (L2(Ω))2 and g ∈ (H1/2(Γ1))2, then the functional:.
Jn (W 1,4(Ω))2 7−→ IR is lower semi-continuous, convex and coercive.

Proof. Since the following maps:
u 7−→ ∫

Ω
|ε(u)|2 + 1/16(

∫
Ω
|(∇u)t∇u|2), and u 7−→ 1/2

∫
Ω

< ε(u)/(∇un−1)t∇un−1 > − ∫
Ω

fu− ∫
Γ1

gu,
are semi-continuous and convex, then Jn is semi-continuous and convex.
Let u ∈ (W 1,4(Ω))2 we have:∣∣∫

Ω
< ε(u)/(∇un−1)t∇un−1 >

∣∣ ≤ K1 ‖ε(u)‖2 ‖∇un−1‖24 ,∣∣∣
∫
Ω

fu +
∫
Γ1

gu
∣∣∣ ≤ K2(‖f‖2 + ‖g‖(H1/2(Γ1))2

) ‖ε(u)‖2 , hence Jn(u) ≥ ‖ε(u)‖22 −K1 ‖ε(u)‖2 ‖∇un−1‖24 −K2(‖f‖2 +
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‖g‖(H1/2(Γ1))2
) ‖ε(u)‖2 + 1/16(

∫
Ω
|(∇u)t∇u|2).

If ‖u‖ 7−→ +∞, the quantity
‖ε(u)‖2 (‖ε(u)‖2 −K1 ‖∇un−1‖24 −K2(‖f‖2 + ‖g‖(H1/2(Γ1))2

) converge to +∞,

also Jn(u) 7−→ +∞, when ‖u‖ 7−→ +∞, lastly the functional Jn(u) is coercive.

Theorem 3.9 Let f ∈ (L2(Ω))2 and g ∈ (H1/2(Γ1))2, the problem (Qn) has one and only one solution un in V.

Proof. Since the space V is closed in the reflexif space (W 1,4(Ω))2 and Jn(u) is lower semi-continuous, convex and
coercive, afterward Theorem 2.1. the problem (Qn) has one and only one solution un in V.

Theorem 3.10 Let f ∈ (L2(Ω))2 and g ∈ (H1/2(Γ1))2, the problem (Q) has one and only one solution in V.

Poof. We divide this proof in three steps:
First step:. We will prove that for C > 0
∀n ∈ IN,

∫
Ω
|ε(un)|2 ≤ C and 1/16(

∫
Ω
|(∇un)t∇un|2)1/2 ≤ C,

We assume that for all
k = 0, 1, ...., n− 1, C > 0,

∫
Ω
|ε(uk)|2 ≤ C, 1/16(

∫
Ω
|(∇uk)t∇uk|2)1/2 ≤ C,

un is a solution of the problem (Qn) then Jn(un) ≤ Jn(0) = 0
hence ‖ε(un)‖22 ≤ 1/2

∫
Ω

< ε(un)/(∇un−1)t∇un−1 > +
∫
Ω

fun +
∫
Γ1

gun

then ‖ε(un)‖22 ≤ 1/2 ‖ε(un)‖2 ‖(∇un−1)t∇un−1‖2 + K(f, g) ‖ε(un)‖2
where K(f, g) = K2(‖f‖2 + ‖g‖H1/2(Γ1)2

)
Since ‖(∇un−1)t∇un−1‖2 ≤ 16C
then ‖ε(un)‖2 ≤ 8C + K(f, g)
if we choose 0 < C < 1/64 and K(f, g) ≤ (1− 8C1/2)C1/2 we obtain that
‖ε(un)‖22 ≤

∫
Ω
|ε(u)|2 ≤ C

by virtue of the inequality Jn(un) ≤ 0, we have
‖ε(un)‖22 + 1/16(

∫
Ω
|(∇un)t∇un|2) ≤ 1/2 ‖ε(un)‖2 ‖(∇un−1)t∇un−1‖2 + K(f, g) ‖ε(un)‖2

and ‖(∇un)t∇un‖22 ≤ 128C3/2 + 16K(f, g)C1/2 − 16C = 16C1/2(8C + K(f, g)− C1/2)
if we choose K(f,g) satisfying 8C + K(f, g)− C1/2 ≤ 16C3/2

is equivalent to have C > 0 and K(f, g) ≤ C1/2(4C1/2 − 1)2

we have 1/16(
∫
Ω
|(∇un)t∇un|2)1/2 ≤ C

then for all n ∈ IN , ‖un‖1,Ω ≤ C1/2 + (16C)4/16
and the sequence (un)n≥0 is borned in the reflexif space (W 1,4(Ω))2 , hence we can extract a subsequence (um)m≥0

weakly convergent to u in V.
Second step: We show that Jm(um) converge to J(u) or
Jm(u) =

∫
Ω
|ε(u)|2 + 1/16(

∫
Ω
|(∇u)t∇u|2) + 1/2

∫
Ω

< ε(u)/(∇um−1)t∇um−1 > − ∫
Ω

fum − ∫
Γ1

gum

Since the functional
u 7−→ ∫

Ω
|ε(u)|2 + 1/16(

∫
Ω
|(∇u)t∇u|2)− ∫

Ω
fu− ∫

Γ1
gu

is lower semi-continuous and convex, then the quantity∫
Ω
|ε(um)|2+1/16(

∫
Ω
|(∇um)t∇um|2)−

∫
Ω

fum−
∫
Γ1

gum converge to
∫
Ω
|ε(u)|2+1/16(

∫
Ω
|(∇u)t∇u|2)−∫

Ω
fu−∫

Γ1
gu

If we have
∫
Ω

< ε(um)/(∇um)t∇um−1 > converge to
∫
Ω

< ε(u)/(∇u)t∇u >
then Jm(um) converge to J(u), or
2

∫
Ω

< ε(um)/∇ut
m∇um−1 > − < ε(u)/∇ut∇u >=

∫
Ω

< ∇um/∇ut
m−1∇um−1 > − < ∇u/∇ut∇u >︸ ︷︷ ︸

(1)

.

+
∫
Ω

< ∇ut
m/∇ut

m−1∇um−1 > − < ∇ut/∇ut∇u >︸ ︷︷ ︸
(2)

if we show that (1) converge to zero then, (2) is also convergent to zero because the proof is similarly to the (1)
(1) =

∫
Ω

< (∇um)t −∇u/(∇um−1)t∇um−1 >︸ ︷︷ ︸
A

+
∫
Ω

< (∇u)t/(∇um−1)t∇um−1 − (∇u)t∇u >︸ ︷︷ ︸
B

Since the map:
u 7−→ 1/16(

∫
Ω
|(∇u)t∇u|2) is semi-continuous, convex and the subsequence (um)m≥0 converge weakly to u in

(W 1,4(Ω))2.
Then

∫
Ω
|(∇um−1)t∇um−1|2 converge to

∫
Ω
|(∇u)t∇u|2 ,

hence the sequence |(∇um−1)t∇um−1| is strongly convergent to |∇ut∇u| in (L2(Ω))4 and the sequence ∇um con-
verge weakly to ∇u afterware the Lemma 2.1 we have A converge to zero.
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we have B =
∫
Ω

< ∇ut/∇ut
m−1∇um−1 −∇ut∇u >≤ ‖∇ut‖2

∥∥∇ut
m−1∇um−1 −∇ut∇u

∥∥
2

then, B converge to zero. finally, Jm(um) converge to J(u) and for all v ∈ V , Jm(um) ≤ Jm(v)
Since, Jm(um) converge to J(u) and Jm(v) converge to J(v)
then, for all v in V J(u) ≤ J(v)
hence, u is a solution of the problem (Q).
Third step: Uniqueness of the problem (Q).
Let u1 and u2 are two solutions of (Q), then u1 and u2 are also solutions of (P ).
we have −div((I +∇u)E(∇u) = −div(ε(u))− div(F (u)),
where F (u) = ∇uE(∇u) + 1/2∇ut∇u.
We have


−div(ε(u1 − u2)) = −div(F (u2)− F (u1)) in Ω,

ε(u1 − u2).~n = (F (u2)− F (u1)).~n on Γ1,
u1 − u2 = 0 on Γ0.

We put by f1 = −(div(F (u2)− F (u1)) and g1 = (F (u2)− F (u1)).~n
we consider the linear operator
div : L1(Ω))2 −→ (W−2,4(Ω))2

u 7−→ div(u)
is continuous, And
trace : (W−2,4(Ω))2 −→ (W−2/3,4(Γ1))2

u 7−→ trace(u) = u.~n

is linear and continuous, Because, let u ∈ L1(Ω))2 and for all v ∈ (W 2,4
0 (Ω))2 we have∫

Ω
−div(u)v =

∫
Ω

udiv(v) ≤ ‖u‖1 sup︸︷︷︸
Ω

|div(u)|

since (W 2,4
0 (Ω))2 ↪→ (C1(Ω))2, then there exist a K

′
> 0 such that sup︸︷︷︸

Ω,|α|≤1

|Dαu| ≤ K
′ ‖u‖(W 2,4

0 (Ω))2

and also we have, for all v in (W 2,4
0 (Ω))2

∫
Ω

div(u)v ≤ K
′ ‖u‖1 ‖v‖(W 2,4

0 (Ω))2

then ‖div(u)‖(W−2,4(Ω))2 = sup︸︷︷︸
v∈(W 2,4

0 (Ω))2

∫
Ω div(u)v

‖v‖ ≤ K
′ ‖u‖1

We conclude that the operator div is continuous, for the operator trace there is also continuous.
by similarly next proof we can show that L1(Ω))2 ↪→ (W−2,4(Ω))2

Now we put by:
A : V −→ (W−2,4(Ω))2 × (W−3/2,4(Γ1))2

u 7−→ A(u) = (−div((I +∇u)E(∇u)), (I +∇u)E(∇u).~n)
A is, defined , infinitely Frechet differentiable and A(0)=0 and the linear operator:
A
′
(O) : V −→ (W−2,4(Ω))2 × (W−3/2,4(Γ1))2

u 7−→ A
′
(0)(u) = (−div(ε(u)), ε(u).~n)

is infinitely Frechet differentiable.
afterware, [4, 8] the problem A

′
(O) = (f1, g1) has one and only one solution u in (H1(Ω))2, since u1 − u2 is a

solution of the problem A
′
(O) = (f1, g1) in V, then u = (u1 − u2) ∈ V and satisfy that

‖u1 − u2‖H1(Ω))2 ≤ K(‖div(F (u2)− F (u1)‖(W−2,4(Ω))2 + ‖F (u2)− F (u1)‖(W−3/2,4(Γ1))2
)

afterware, (L1(Ω))2 ↪→ (W−2,4(Ω))2, and the continuous of the operator trace there exist K1 > 0 such that
‖u1 − u2‖H1(Ω))2 ≤ K1(‖F (u2)− F (u1)‖1 + ‖F (u2)− F (u1)‖(W−2,4(Ω)2)
and we have ‖u1 − u2‖H1(Ω))2 ≤ K2 ‖F (u2)− F (u1)‖1
afterware the Lemma 2.3. If we have ‖u1‖H1(Ω))2 ≤ C and ‖u2‖H1(Ω))2 ≤ C, then
‖u1 − u2‖H1(Ω))2 ≤ K2C1 ‖u2 − u1‖(H1(Ω))2

If u1 6= u2 we have K2C1 ≥ 1, we can choose C > 0 very small, such that K2C1 < 1 that is absurd, then the
problem (P ) has one and only one solution in (W 1,4(Ω))2.
For conclude the theorem 2.5. We prove that the mathematically solution of (P) is physically accepted. Let λ is a
eigenvalues of ∇u we have |λ| ≤ |∇u|, if we have |λ| ≥ 1, then
KC ≥ K |ε(u)|20,Ω ≥

∫
Ω
|∇u|2 ≥ ∫

Ω
|λ|2 ≥ ∫

Ω
1 = mes(Ω)

Since, C > 0 is small, then the assumption |λ| ≥ 1 is not satisfied, we conclude that
det(I +∇u) > 0 and afterware [4, chapter.2, page.94] the solution of the problem (P) is physically accepted.
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