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Abstract 

 

The variational inequality problem provides a broad unifying setting for the study of optimization, equilibrium and 

related problems and serves as a useful computational framework for the solution of a host of problems in very diverse 

applications. Variational inequalities have been a classical subject in mathematical physics, particularly in the calculus 

of variations associated with the minimization of infinite-dimensional functionals. This paper presents a survey of main 

results related to variational inequalities and fixed point problems defined on real Hilbert spaces and Banach spaces. 
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1. Introduction 

Variational inequalities were formulated between the end of 60’ and the beginning of 70’ of previous century by the 

italian mathematician G. Stampacchia [16]. In recent years, variational inequality theory has been extended and 

generalized in several directions, using new and powerful methods, to study a wide class of unrelated problems in a 

unified and general framework. The theory of variational inequalities represents, in fact, a very natural generalization of 

the theory of boundary value problems and allows us to consider new problems arising from many fields of applied 

mathematics, such as mechanics, physics, engineering, the theory of convex programming and the theory of control. 

While the variational theory of boundary value problems has its starting point in the method of orthogonal projection, 

the theory of variational inequalities has its starting point in the projection on a convex set. They provide a very general 

framework for a wide range of mathematical problems among which, rather under general hypotheses, optimization 

ones. Moreover, they have shown to be important models in the study of equilibrium problems [40], in the engineering 

sciences (equilibrium problems in a traffic network) and in the economic sciences (oligopolistic market equilibrium 

problems) [7], [10], [6]. Such problems, in fact, play a crucial role in the theory of complex systems and for this reason, 

recently, has been presented many variational formulations of these problems. It is well known that the classical 

variational inequality is equivalent to a fixed point problem. This alternative equivalent formulation has played a major 

role in variational inequalities. In particular, the solution of the variational inequalities can be computed using iterative 

algorithms; see [1], [32], [46], [45], [44], [38], [59], [57], and [63]. Indeed, many well-known problems arising in 

various branches of science can be studied by using algorithms which are iterative in their nature. As an example, in 

computer tomography with limited data, each piece of information implies the existence of a convex set Cm in which the 

required solution lies. The problem of finding a point in the intersection N Cmm 1
 is then of crucial interest but cannot 

be usually solved directly. Therefore, an iterative algorithm must be used to approximate such a point. One of the most 

important and difficult problems in this theory is the development of an efficient and implementable iterative algorithm 

for solving variational inequalities. As a result of interaction between different branches of mathematical and 

engineering sciences, we now have a variety of techniques to suggest and analyze various 

Numerical methods including projection technique and its variant forms, auxiliary principle, and Wiener-Hopf 

equations for solving variational inequalities and related optimization problems. Related to the variational inequalities, 

we have the problem of finding the fixed points of the nonexpansive mappings, which is the subject of current interest 

in functional analysis. It is natural to consider a unified approach to these two different problems.  
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The development of the finite-dimensional variational inequalities also began in the mid-1960s but followed a different 

path. Unlike its infinite-dimensional counterpart, which was conceived in the area of partial differential systems, the 

finite-dimensional variational inequality was born in the domain of Mathematical Programming. The developments 

include a rich mathematical theory, a host of effective solution algorithms and a multitude of interesting connections to 

numerous disciplines. The variational inequality problem is considered within optimization theory as a natural extension 

of minimization problems, see [45]. 

2. Definitions 

Let H be a real Hilbert space with inner product          and norm║.║, respectively. Let C be a closed convex subset of H. 

The variational inequality problem is to find u ϵ C such that < Au, v - u > ≥ 0,    v ϵ C.  

The set of solutions of variational inequality problem VI(C, A) is denoted by Ω. The variational inequality problem has 

been extensively studied in literature; see, for example, [7], [10], [6] and references therein. 

Definitions: Let A: C → H be a mapping of C into H. 

1) A is called monotone if < Au - Av, u – v > ≥ 0   u, v ϵ C. 

Monotone operators are the key ingredient of monotone variational inequalities. 

2) A is called α-inverse-strongly-monotone [12], [13] if there exists a positive real number α such that  

< Au – Av, u – v > ≥ α║Au – Av ║
2     u,v ϵ C. 

It is easy to see that a α-inverse-strongly mapping A is monotone and Lipschitz continuous but converse is not true.   

3) A is called β-strongly-monotone if there exists a positive real number α such that < Au – Av, u – v >  

≥ β║u – v ║
2
    u,v ϵ C. 

4) A mapping S: C→C is called nonexpansive [55-56] if ║Su – Sv ║ ≤ ║u – v ║    u,v є C. 

We denote by F(S) the set of fixed points of S. 

5) A mapping S: C→ C is called Lipschitz continuous if there exists a real number L > 0 such that ║Su – Sv ║ ≤ L 

║u – v ║   u,v ϵ C. 

6) A mapping S: C→ C is called contraction if there exists a real number α є (0, 1) such that ║Su – Sv ║  

   ≤ α ║u – v ║   u,v ϵ C. 

7) A mapping S: C→ C is called strictly pseudo-contractive with the coefficient k є (0, 1) if  ║Su – Sv ║
2
  

  ≤ ║u – v ║
2
 + k║(I – S)u – (I – S)v ║

2
    u,v ϵ C. 

For such a case, S is also said to be a k-strict pseudo-contraction.  

8) A mapping S: C→ C is called pseudo-contractive if < Su – Sv, u – v > ≤ ║u – v ║
2
    u,v ϵ C.  

9)  A mapping S: C→C is called asymptotically nonexpansive [28] if there exists a sequence {kn} of positive 

numbers such that limn→∞ kn = 1 and║S
n
u – S

n
v ║ ≤ kn║u – v ║    u,v є C,   n ≥ 1. 

10) A mapping S: C → C is called asymptotically nonexpansive [47] in the intermediate sense provided S is 

uniformly continuous and           sup

u, v C (║S
n
u – S

n
v ║- ║u – v ║) ≤ 0.  

11) A mapping S: C→ C is called uniformly Lipschitzian if there exists a real number L > 0 such that ║S
n
u – S

n
v ║ 

 ≤ L ║u – v ║   u,v ϵ C,   n ≥ 1. 

Let A be an inverse strongly monotone mapping. Then, in the context of the variational inequality problem, it is easy to 

see that  

u ϵ Ω   u = PC (u - λAu), for any λ > 0. 

So to find the solutions of variational inequality problem, we shall use projection mappings. Now we describe some 

properties of projection mappings. 

Some Properties of Projection Mapping:  

Let H be a real Hilbert space with inner product < . , . > and norm ║.║. Let C be a closed convex subset of H. We shall 

write xn⇀ x to indicate that the sequence {xn} converges weakly to x. xn→ x implies that {xn} converges strongly to x. 

It is well known that for any x ϵ H, there exists a unique nearest point in C, such that ║u – PCx║= inf{║u - y║ : y ϵ C}     

PC is called the metric projection of H onto C. The metric projection PC of H onto C satisfies  

< x - y, PCx - PCy > ≥ ║ PCx - PCy ║ 
2
 , for every x,y ϵ H,   

PC is characterized by the properties:  PCx ϵ C, 

< x - PCx, y - PCx > ≤ 0, for all x ϵ H, y ϵ C, 

║x – y║
2
 ≥║ x- PCx ║

2 
+ ║ y - PCx║

2
, for all x ϵ H, y ϵ C. 

It is known that H satisfies the Opial condition [68], that is, for any sequence {xn} with xn⇀x, the inequality, 

         ║xn - x║           ║xn - y║ 

holds for every y ϵ H with y ≠ x. We also know that, if {xn} is sequence of H with xn ⇀ x and ║xn║→║x║, then there 

holds that xn → x. 

A set valued mapping T : H → 2
H
 is called monotone if for all x,y ϵ H, f ϵ Tx and g ϵ Ty imply < x – y, f – g > ≥ 0. A 

monotone mapping T: H→2
H 

is maximal if its graph G(T) is not properly contained in the graph of any other monotone 

mapping. It is known that a monotone mapping T is maximal if and only if for (x, f) ϵ H  H, < x – y, f – g > ≥ 0 for 

every (y, g) ϵ G (T) implies f ϵ Tx. 

Let A: C→ H be a monotone, k – Lipschitz continuous mapping and NCv be the normal cone to C at v ϵ C, that is,  
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NCv = {w ϵ H : < v - u, w > ≥ 0,  u ϵ C} 

Define, Tv = 
CAv N v, if v C

, if v C

 

 

 

Then, T is maximal monotone [49-50] and 0 ϵ Tv if and only if v ϵ VI(C, A) 

If A is a α-inverse-strongly-monotone mapping of C into H, then it is obvious that A is 1/α-Lipschitz continuous. We 

also have that for all x, y ϵ C and λ > 0, 

║ (I - λA) x - (I - λA) y ║
2
 = ║(x - y) – λ(Ax - Ay)║

2 

 = ║x – y║
2
 - 2λ< x – y, Ax – Ay > + λ

2
║ Ax – Ay║

2
 

 ≤ ║x – y║
2
 + λ (λ - 2α) ║ Ax – Ay║

2
       

So, if λ ≤ α, then I – λA is a nonexpansive mapping of C into H.  

3. Main results 

Let H be a real Hilbert space with inner product          and norm║.║, respectively. Let C be a closed convex subset of H. 

Let A: C → H be a nonlinear mapping. 

The classical variational inequality problem is to find u ϵ C such that  

< Au, v - u > ≥ 0,    v ϵ C,                                                                                                                                              (3.1) 

which is introduced and studied by Stampacchia [16].  

The set of solutions of variational inequality problem VI(C, A) is denoted by Ω. The variational inequality problem has 

been extensively studied in literature, see, for example,[7], [10], [6] and references therein. 

A first geometric interpretation of VIP(C, A), defined by inequality (3.1), is that u in C is a solution of VIP(C, A) if and 

only if there exists Au which forms a non-obtuse angle with every vector of the form v – u with v ∈ C. 

 

3.1. Results regarding solution of variational inequalities and fixed point problems in Hilbert 

spaces 
 

The following result was given by Takahashi and Toyoda [57], for the existence of solutions of the variational 

inequality problem for α-inverse-strongly-monotone mappings.  

Proposition [57]. Let C be a bounded closed convex subset of a real Hilbert space H and let A be an α-inverse-strongly- 

monotone mapping of C into H. Then, VI (C, A) is nonempty. 

In 2003, W. Takahashi and M. Toyoda [57] introduced an iteration process for finding a common element of the set of 

fixed points of a nonexpansive mapping and the set of solutions of a variational inequality problem for an inverse 

strongly-monotone mapping and then obtained a weak convergence theorem.  

 

Theorem.3.1.1. [57] Let K be a closed convex subset of a real Hilbert space H. Let α > 0. Let A be an α-inverse-

strongly-monotone mapping of K into H and let S be a nonexpansive mapping of K into itself such that F(S) ∩ VI(K, A) 

≠ ф. Let {xn} be a sequence generated by 

x0 = x ϵ K, 

xn+1 = αnxn + (1 – αn) SPK (xn - λnAxn),                                                                                                                        (3.2) 

for every n = 0, 1, 2,………, where {λn} ⊂ [a, b] for some a, b ϵ (0,2α) and { αn} ⊂ [c, d] for some c, d ϵ (0,1). Then, 

{xn} converges weakly to z ϵ F(S) ∩ VI (K, A), where z = limn→∞ PF(S) ∩VI(C, A)xn. 

 

Lemma [52] Let C be a closed convex subset of a real Hilbert space H. Let S be a nonexpansive mapping of C into 

itself such that F(S) ≠ ф. Then F(S) = F (PCS). 

In 2004, using above lemma given by S. Matsushita and D. Kuroiwa [52] and motivated by the result given by W. 

Takahashi and M. Toyoda [57], Hideaki Iiduka and Wataru Takahashi [18], introduced an iterative scheme for finding a 

common element of the set of fixed points of a nonexpansive nonself-mapping and the set of solutions of the variational 

inequality for an inverse-strongly-monotone mapping in a Hilbert space. Then they showed that the sequence converges 

strongly to a common element of two sets. 

 

Theorem.3.1.2: [18] Let C be a closed convex subset of a real Hilbert space H. Let A be an α-inverse-strongly-

monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such that F (S) ∩ VI(C, A) ≠ ф. Let 

{xn} be a sequence generated by    x0 = x ϵ C,  

xn+1 = PC (αnx + (1 - αn)SPC (xn - λnAxn)),                                                                                                                        (3.3) 

for every n = 0, 1, 2,…….., where {λn} is a sequence in [0, 2α]. If {αn} and {λn} are chosen so that λn ϵ [a,b] for some a, 

b with 0 < a < b < 2α, 

n
n 0
lim


 = 0, n

n 0





 = ∞, n 1 n

n 0







    , n 1 n

n 0







    .
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Then {xn} converges strongly to PF(S)∩VI(C, A)x. 

After that in 2005, Iiduka and Takahashi [17] proposed a Halpern-like iterative scheme and obtained a strong 

convergence theorem in Hilbert space. 

 

Theorem.3.1.3: [17] Let C be a closed convex subset of a real Hilbert space H. Let A be an α-inverse-strongly-

monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such that F (S) ∩ VI(C, A) ≠ ф. Let 

{xn} be a sequence generated by    x1 = x ϵ C,  

xn+1 = αnx + (1 - αn)SPC(xn - λnAxn),                                                                                                                                (3.4) 

for every n = 1, 2,…….., where {αn} is a sequence in [0, 1) and {λn} is a sequence in [0, 2α]. If {αn} and {λn} are 

chosen so that λn ϵ [a,b] for some a, b with 0 < a < b < 2α, 

n
n 0
lim


 = 0, 
n

n 0





 = ∞, 
n 1 n

n 0







    , 
n 1 n

n 0







   
 

Then {xn} converges strongly to PF(S) ∩VI(C, A)x. 

On the other hand, for solving the variational inequality problem in a finite dimensional Euclidean space R
n 

under the 

assumption that a set C ⊂ R
n
 is nonempty, closed and convex, a mapping A : C → R

n
 is monotone and k-Lipschitz 

continuous and Ω is nonempty, Korpelevich [10] introduced the following so-called extragradient method: 

x0 = x ϵ Rn
,  

yn = PC(xn - λAxn),                                                                                                                                                           (3.5) 

xn+1 = PC(xn - λAyn),   n ≥ 0, 

where λ ϵ (0, 1/k). He showed that the sequences {xn} and {yn} generated by above algorithm converge to the same 

point z ϵ Ω.  

In 2006, motivated by the idea of Korpelevich’s extragradient method [15], N. Nadezhkina and W. Takahashi [42], 

introduced the following iterative process for finding the common element of the set of fixed points of a nonexpansive 

mapping and the set of solutions of the variational inequality problem for a monotone, Lipschitz-continuous mapping. 

The proposed iterative process was based on the so-called extragradient method. They obtained a weak convergence 

theorem for two sequences generated by this process. 

 

Theorem.3.1.4: [42] Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz 

continuous mapping of C into H and let S be a nonexpansive mapping of C into itself such that F (S) ∩ VI(C,A) ≠ ф. Let 

{xn}, {yn} be sequences generated by 

x0 = x ϵ C , 

yn = Pc(xn - λnAxn),                                                                                                                                                           (3.6) 

xn+1 = αnxn + (1 - αn)SPc(xn - λnAyn),    n ≥ 0,  

where {λn} ⊂ [a, b] for some a, b ϵ (0,1/k) and {αn} ⊂ [c, d] for some c, d ϵ (0,1). Then the sequences {xn}, {yn} 

converge weakly to some z ϵ F(S) ∩ VI(C, A), where z = limn→∞ PF(S)∩VI(C, A)xn. 

Further in 2006, inspired by Nadezhkina and Takahashi’s iterative process Lu-Chuan Zeng and Jen-Chih Yao [36], 

introduced an iterative process for finding the common element of the set of fixed points of a nonexpansive mapping 

and the set of solutions of the variational inequality problem for a monotone, Lipschitz-continuous mapping. The 

proposed iterative process was based on the so-called extragradient method. They obtained a strong convergence 

theorem for two sequences generated by this process.  

 

Theorem.3.1.5: [36] Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz 

continuous mapping of C into H and let S be a nonexpansive mapping of C into itself such that F (S) ∩ VI(C,A) ≠ ф. Let 

{xn}, {yn} be sequences generated by x0 = x ϵ C, 

yn = Pc(xn - λnAxn),                                                                                                                                                           (3.7) 

xn+1 = αnx0 + (1 - αn)SPc(xn - λnAyn),    n ≥ 0,  

where {λn} and {αn} satisfy the conditions: 

a) {λnk} ⊂ (0, 1 - δ) for some δ ϵ (0, 1); 

b) {αn} ⊂ (0, 1), n
n 0
lim


 = 0, n

n 0





 = ∞. 

Then the sequences {xn}, {yn} converge strongly to same point PF(S)∩VI(C, A)x0, provided, 

limn→∞ ║xn – xn+1║ = 0                                                                                                                                                   (3.8) 

 

Remark. The iterative scheme (3.6) in theorem 3.1.4 has only weak convergence. The iterative scheme (3.7) in theorem 

3.1.5 has strong convergence but imposed condition (3.8) on the sequence {xn}. 

Further, inspired by iterative schemes (3.6) and (3.7), in 2006, Yonghong Yao, Yeong-Cheng Liou and Jen-Chih Yao 

[67], presented an extragradient method for fixed point problems and variational inequality problems. Using this 

method, they found the common element of the set of fixed points of a nonexpansive mapping and the set of solutions 

of the variational inequality for monotone mapping. They obtained a strong convergence theorem under some mild 

conditions. 
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Theorem.3.1.6: [67] Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz 

continuous mapping of C into H and let S be a nonexpansive mapping of C into itself such that F (S) ∩ Ω ≠ ф. For fixed 

u ϵ H and given x0 ϵ H arbitrary, let {xn}, {yn} be sequences generated by 

yn = Pc(xn - λnAxn), 

xn+1 = αnu + βnxn + γnSPc(xn - λnAyn),    n ≥ 0,                                                                                                               (3.9) 

where {αn}, {βn}, {γn} are three sequences in [0, 1] satisfying the conditions: 

(C1). αn + βn + γn = 1, 

(C2). n
n 0
lim


 = 0, n

n 0





 = ∞, 

(C3). 0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

(C4). limn→∞λn = 0. 

Then {xn} converges strongly to PF(S)∩Ωu. 

 

Definition: Generalized variational inequality problem is defined as follows: 

Let C be closed, convex subset of a real Hilbert space H. Find u ϵ C such that  

< u – Au – λBu, v – u > ≥ 0,   v ϵ C, λ > 0.                                                                                                                 (3.10) 

 

Remark. The generalized variational inequality problem (3.10) is reduced to classical variational inequality (3.1) if A = 

I, the identity mapping. 

In 2010, motivated by the results obtained by Iiduka, Takahashi, Toyoda [18] and Iiduka, Takahashi [17], Sun Young 

Cho [53], considered a generalized variational inequality problem by a Halpern-type iterative method. A strong 

convergence theorem was established in a real Hilbert space. 

 

Theorem.3.1.7: [53] Let C be a closed convex subset of a real Hilbert space H. Let A be an α-strongly-monotone and 

L-Lipschitz continuous mapping of C into H and B be an β-strongly-monotone and K-Lipschitz continuous mapping of 

C into H such that VI(C, B, A) ≠ ф. Let {xn} be sequence generated by 

x0 ϵ C,    

xn+1 = αnu + βnxn + γnPc(Axn - λBxn),    n ≥ 0,                                                                                                              (3.11) 

where u is fixed element in C, λ is a positive constant and {αn}, {βn}, {γn} are three sequences in (0, 1). Assume that 

above control sequences satisfy the following restrictions:  

(C1). αn + βn + γn = 1, n ≥ 0; 

(C2). n
n 0
lim


 = 0, n

n 0





 = ∞, 

(C3). 0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

(C4). 
2 2 21 2a L 1 2 K      ≤ 1. 

Then {xn} converges strongly to x ϵ VI(C, B, A), where x = PVI(C, B, A) u. 

In 2011, Wang H. and Song Y. [20] introduced an iterative method for finding a common element of the set of fixed 

points of a nonexpansive mapping and the set of solutions of some variational inequality in a Hilbert space. 

 

Theorem 3.1.8: [20] Let K be a nonempty closed convex subset of a Hilbert space H. Assume that A: K → H is an α-

inverse strongly monotone mapping and T: K → K is a nonexpansive self-mapping with VI(K, A) ⋂ F(T) ≠  . For an 

anchor point u ∈ K and an initial value x0 ∈ K and a constant   ∈ (0, 2α), the sequence {xn} be defined iteratively by 

xn+1 = αn u + βn xn + (1 – αn – βn )TPK(xn –  Axn).                                                                                                         (3.12) 

Suppose that {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy the following conditions: 

(C1). Limn → ∞ αn = 0, 

(C2). n

n 0





 = ∞, 

(C2). 0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

Then {xn} converges strongly to x = PVI (K, A) ⋂ F (T) u. 

Moreover, there exist a subsequence {
knx } ⊂ {xn} and {∈n} ⊂ (0, ∞) with limn → ∞ ∈n = 0 such that  

 
knx - x

*  
  2 ≤ 

kk
nn

m

m 0

1
2



 


 , 

 
kn 1x  - x

*  
  2 ≤ 

k kk
n nn

m

m 0

1
(1 2 )



   


 , 
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nx - x

*  
  2 ≤    

kn 1x  - Pu   2 - 
k

n 1

m

m n 1 m



 




  , nk + 1 < n < nk + 1 , m  = 

m

i

i 0

  , 

 
n 1x 

- x
*  

  2 ≤    
0x - x

*
   2 

- 
n

m

m 0 m




  ≤    

0x - x
*
   2 

, 1 ≤ n ≤ nk – 1,  

1 ≤ nk ≤ smax = max {s; 
s

m

m 0 m




  ≤    

0x - x
*
   2}. 

Using above theorem, they proved some corollaries. 

 

Corollary (i): [20] Let H, T, A, K, λ be as in theorem3.1.8. For an anchor point u ϵ K and an initial value x0 ϵ K and a 

constant δ ϵ (0, 1), the sequence {xn} be defined iteratively by 

xn+1 = αn u + (1 – αn)[δxn + (1 - δ)TPK(xn –  Axn)].  

Suppose that {αn} ⊂ (0, 1) satisfies the following conditions: 

(C1). Limn → ∞ αn = 0, 

(C2). n

n 0





 = ∞, 

Then {xn} converges strongly to x = PVI(K, A) ⋂ F(T) u. 

 

Corollary (ii): [20] Let H, T, A, K, λ be as in theorem3.1.8. For an anchor point u ϵ K and an initial value x0 ϵ K and a 

constant δ ϵ (0, 1), the sequence {xn} be defined iteratively by 

xn+1 = δ(αn u + (1 – αn)xn) + (1 - δ)TPK(xn –  Axn).  

Suppose that {αn} ⊂ (0, 1) satisfies the following conditions: 

(C1). Limn → ∞ αn = 0, 

(C2). n

n 0





 = ∞, 

Then {xn} converges strongly to x = PVI(K, A) ⋂ F(T) u. 

 

Corollary (iii): [20] Let H, T, {αn}, {βn} be as in theorem3.1.8. Assume that A: K → H is an α-inverse-strongly 

monotone mapping with VI (K, A) ≠ ф. For an anchor point u ϵ K and an initial value x0 ϵ K and a constant λ ϵ (0, 2α), 

the sequence {xn} be defined iteratively by xn+1 = αn u + βn xn + (1 – αn – βn) PK (xn –  Axn).      

Then {xn} converges strongly to PVI (K, A) u. 

The viscosity approximation method for finding a fixed point of a given nonexpansive mapping was proposed by 

Moudafi [52] in 2000. He proved the strong convergence of the sequence generated by both the implicit and explicit 

methods to a unique solution of some variational inequality. 

In 2014, Chugh R and Rani R [46], motivated by Takahashi and Toyoda [57], S. Matsushita and D. Kuroiwa [52], 

Iiduka and Takahashi [17] and the research going in this direction, introduced a new iterative scheme for finding a 

common element of the set of fixed points of a nonexpansive mapping and the set of solutions of a variational 

inequality problem for an α-inverse-strongly-monotone mapping and then obtained a weak convergence theorem. 

 

Theorem 3.1.9: [17] Let C be a closed convex subset of a real Hilbert space. Let A be an α-inverse-strongly monotone 

mapping of C into H and let S be a nonexpansive mapping of C into itself such that F(S)∩VI(C,A) ≠ ф. Let {xn}, {yn} be 

sequences generated by 

x0 = x ϵ C, 

yn = αnxn + (1 - αn)SPc(xn - λnAxn), 

xn+1 =βnyn + (1 - βn)SPc(yn - λnAyn),                                                                                                                               (3.13) 

Where {λn} ⊂ [0,2α], {αn} ⊂ [0,1] and {βn} ⊂ [0,1] if {αn}, {λn} and {βn} satisfy the following conditions 

1) n
n 0
lim


 = 0, n

n 0





 = ∞. 

2) βn ∈ [0,a)   n ≥ 0 and for some a ϵ (0,1). 

3)  {λn} ⊂ [c,d] for some c,d with 0 < c < d < 2α. 

4) n 1 n

n 0







   , n 1 n

n 0







    , n 1 n

n 0







    . 

Then, the sequences {xn}, {yn} converge weakly to the same point z ϵ F(S) ∩ VI(C, A), where z =    
   

 PF(S) ∩ VI(C, A) xn. 

 

Theorem 3.1.10: [5] In a Hilbert space, define {xn} by implicit way 

xn =  n

n n

n n

1
Tx f (x )

1 1




 
  ,                                                                                                                                    (3.14) 
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where ϵn is a in sequence (0, 1) tending to zero, where f : C → C is a contraction and T : C → C is a nonexpansive 

mapping. Then {xn} converges strongly to the unique solution x ϵ C of the variational inequality 

< (I – f)x, x – y > ≤ 0. 

In other words, x is the unique fixed point of PFix (T) f. 

 

Theorem 3.1.11: [5] In a Hilbert space, define {xn} by (x0 ϵ C is arbitrary) 

xn + 1 = n

n n

n n

1
Tx f (x )

1 1




 
                                                                                                                                 (3.15) 

Suppose that {ϵn} satisfies the conditions 

limn → ∞ ∈n = 0, n

n 0





 = ∞, limn → ∞ 
n n 1

1 1




 

 = 0.   

Then {xn} converges strongly to the unique solution x ϵ C of the variational inequality 

< (I – f) x, x – y > ≤ 0. 

In other words, x is the unique fixed point of PFix (T) f. 

In 2004, Xu [19] extended the results of [5] to more general version. He proved the following theorems: 

 

Theorem 3.1.12: [19] Let H be a Hilbert space, C be a closed convex subset of H and T: C → C be a nonexpansive 

mapping with Fix (T) ≠ ф and f is a contraction on C. Let {xt} be given by 

xt = tf(xt) + (1 - t)Txt,  t ϵ (0, 1).                                                                                                                                    (3.16) 

Then: 

i) s-limt →0 xt = x exists; 

ii) x = PS f(x) or equivalently, x is the unique solution in F(T) to the variational inequality  

< (I – f) x, x – y > ≤ 0, y ϵ S, 

where S = F (T) and PS is the metric projection from H to S. 

 

Theorem 3.1.13: [19] Let H be a Hilbert space, C be a closed convex subset of H and T : C → C be a nonexpansive 

mapping with Fix(T) ≠ ф and f is a contraction on C. Let {xn} be given by 

xn + 1 = αnf(xn) + (1 – αn)Txn,  n ≥ 0.                                                                                                                              (3.17) 

Then under the following hypotheses 

(H1). Limn → ∞ αn = 0, 

(H2). n

n 0





 = ∞, 

(H3). Either n 1 n

n 0







    or limn → ∞ 
n 1

n




 = 1,   

xn → x, where x is the unique solution of the variational inequality 

< (I – f) x, x – y > ≤ 0, y ϵ S. 

In 2007, motivated by the results in [5] and [9], Junmin Chen, Lijuan Zhang and Tiegang Fan [23] studied viscosity 

approximation methods for nonexpansive mappings. They showed that the sequence generated by proposed scheme 

converges strongly to a common element of the set of fixed points of a nonexpansive nonself-mapping and the set of 

solutions of the variational inequality for an inverse-strongly-monotone mapping in a Hilbert space.  

 

Theorem 3.1.14: [23] Let C be a closed convex subset of a real Hilbert space H. Let f: C → C be a contracton with 

coefficient k (0 < k < 1). Let A be a α-inverse-strongly-monotone mapping of C into H and let S be a nonexpansive 

mapping of C into itself such that F(S) ∩ VI(C, A) ≠ ф. Let {xn} be a sequence generated by 

x0 = x ϵ C,  

xn+1 = αnf(xn) + (1 - αn)SPC(xn - λnAxn)                                                                                                                          (3.18) 

for every n = 0, 1, 2,…….., where {λn} ⊂ [a, b] and {αn} is a sequence in (0, 1). If {αn} and {λn} are chosen so that λn ϵ 
[a,b] for some a, b with 0 < a < b < 2α, 

n
n 0
lim


 = 0, n

n 0





 = ∞,  n 1 n

n 0







    , n 1 n

n 0







   
 

Then {xn} converges strongly to q ϵ F(S) ∩ VI(C, A), which is the unique solution in the F(S) ∩ VI(C, A) to the 

following variational inequality < (I – f) q, q – p > ≤ 0, p ϵ F(S) ∩ VI(C, A). 

Inspired by the results given by Nadezhkina and Takahashi [42], Zeng and Yao [36], Zeng and Yao [37] again 

introduced an extragradient-like approximation method basing on the extragradient method and viscosity approximation 

method and obtained the very interesting result. 
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Theorem 3.1.15: [37] Let C be a closed convex subset of a real Hilbert space H. Let f: C → C be a contracton 

mapping, let A: C → H be a monotone, L-Lipschitz continuous mapping and let S be a nonexpansive mapping of C into 

itself such that F(S) ∩ VI(C, A) ≠ ф. Let {xn}, {yn} be the sequences generated by 

x0 = x ϵ C,  

yn = (1 - γn)xn + PC(xn - λnAxn)                                                                                                                                       (3.19) 

xn+1 = (1 - αn – βn)xn + αnf(yn) + βnSPC(xn - λnAyn)  ,   

where {λn} is a sequence in (0, 1) with 
n

n 0





 < ∞ and {αn}, {βn} {γn} are three sequences in [0, 1] satisfying the 

conditions: 

i) αn + βn ≤ 1 for all n ≥ 0; 

ii) 
n

n 0
lim


 = 0,  n

n 0





 = ∞ ; 

iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

Then the sequences {xn}, {yn} converge strongly to g = PF(S) ∩ VI (A, C)f(q) if and only if 

{Axn} is bounded and lim infn → ∞ < Axn, y - xn > ≥ 0,    y ϵ C                                                                                   (3.20) 

 

Remark. The iterative scheme (3.6) in theorem 3.1.4 has only weak convergence. The iterative scheme (3.7) in theorem 

3.1.5 has strong convergence but imposed the condition (3.8) on the sequence {xn}. The iterative scheme (3.19) in 

theorem 3.1.15 has strong convergence but imposed condition (3.20) on the sequence {xn}. So there is a natural 

question- 

Could we construct an iterative scheme to approximate the common element of the set of fixed points of a nonexpansive 

mapping and the set of solutions of the variational inequality for monotone mapping without any assumption on the 

sequence {xn}?  

In 2007, Muhammad Aslam Noor, YonghongYao, Rudong Chen and Yeong-Cheng Loiu [39], tried to answer the 

question and presented an iterative method for fixed point problems and variational inequality problems without any 

assumption on {xn}. The proposed iterative scheme was based on the so-called extragradient method and viscosity 

approximation method. Using this method, they found the common element of the set of fixed points of a nonexpansive 

mapping and the set of solutions of the variational inequality for monotone mapping. 

 

Theorem 3.1.16: [39] Let C be a closed convex subset of a real Hilbert space H. Let f: C → C be a contracton with 

coefficient k (0 < k < 1). Let A be a monotone, L-Lipschitz continuous mapping of C into H and let S be a nonexpansive 

mapping of C into itself such that F(S) ∩ VI(C,A) ≠ ф. Let {xn}, {yn}, {zn} be the sequences generated by 

x0 = x ϵ C, 

zn = Pc(xn - λnAxn), 

yn = (1 - γn)xn + γnPc(xn - λnAzn),                                                                                                                                    (3.21) 

xn+1 = (1 – αn)xn + αnS[βn f(xn) + (1 - βn) yn],  

for every n = 0, 1, 2,…….., where {λn} is a sequence in (0, 1) with limn→∞λn = 0 and {αn}, {βn} and {γn} are three 

sequences in [0, 1] satisfying the conditions: 

1) 
n

n 0
lim


 = 0,  n

n 0





 = ∞, 

2) 0 < lim infn→∞αn ≤ lim supn→∞αn < 1, 

3) limn→∞ (γn+1 - γn) = 0. 

Then, the sequences {xn}, {yn} and {zn} converge strongly to the same point q = PF(S) ∩VI(C, A) f (q). 

In 2009, Wangkeeree and Kamraksa [51], introduced an iterative method for finding a common element of the set of 

fixed points of a family of infinitely nonexpansive mappings and the set of solutions of the variational inequality for an 

inverse-strongly monotone mapping in a Hilbert space. They showed that the iterative sequence converges strongly to a 

common element of these two sets.  

 

Theorem 3.1.17: [51] Let C be a closed convex subset of a real Hilbert space H, let f be a contraction of C into itself, 

let B be an α-inverse strongly monotone mapping of C into H and let {Ti : C → C} be a family of infinitely nonexpansive 

mappings with F = i

i 1

F(T ) VI(B,C)




≠  . Let A be a strongly positive linear bounded self adjoint operator with the 

coefficient   > 0 such that   A     1. Assume that 0 <   <  /α. Let {αn}, {βn},{ n} and { n} be sequences in [0, 1] 

satisfying the following conditions: 

(C1). limn → ∞ αn = 0, n

n 0





 = ∞, 

(C2). 0 < lim infn→∞ n ≤ lim supn→∞ n < 1, 

(C3). (1 + βn) n - 2βn > d for some d ∈ (0, 1), 
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(C4). 
n 1 n

n 0







   n 1 n

n 0

0






    , 

(C5). n 1 n

n 0







    and { n} ⊂ [a, b] for some a, b ∈ (0, 2α). 

Then the sequence {xn} generated by  

zn =  nxn + (1 -  n)Wnxn , 

yn = βnxn + (1 - βn)Wn zn ,                                                                                                                                              (3.22) 

xn+1 = αn   f(xn) +  n xn + ((1 –  n )I – αnA)PC(yn -  nB yn) ,    n ≥ 1 

converges strongly to q ∈ F, where q = PF ( f + (I - A)) q which solves the following variational inequality: 

   f (q) – Ap, p - q  ≤ 0,   p ∈ F. 

Here the mapping Wn is defined by 

Un, n + 1 = I, 

Un, n = μnTnUn, n + 1 + (1 – μn) I, 

Un, n – 1 = μn – 1Tn – 1Un, n + (1 – μn – 1) I, 

: 

Un, k = μkTkUn, k + 1 + (1 – μk) I, 

Un, k – 1 = μk – 1Tk – 1Un, k + (1 – μk – 1) I, 

: 

Un, 2 = μ2T2Un, 3 + (1 – μ2) I, 

Wn = Un, 1 = μ1T1Un, 2 + (1 – μ1) I, 

Such a mapping Wn is nonexpansive from C to C and it is called W-mapping generated by T1, T2,……., Tn and μ1, 

μ2,………, μn. 

 

Remark. A linear bounded operator B is called strongly positive if there is a constant   > 0 with the property that 

 Ax, x  ≥  ∥x∥2
,   x ∈ H. 

In 2009, motivated and inspired by above results, Meijuan Shang, Yongfu SU, Xiaolong Qin [41], introduced a general 

three-step iterative scheme for finding a common element of the set of fixed points of a nonexpansive mapping and the 

set of solutions of the variational inequality for an inverse-strongly monotone mapping by viscosity approximation 

methods in a Hilbert space. They showed that the iterative sequence converges strongly to a common element of two 

sets, which solves some variational inequality. 

 

Theorem 3.1.18: [41] Let C be a closed convex subset of a real Hilbert space H. Let f: C → C be a contracton with 

coefficient k (0 < k < 1). Let A be an α-inverse-strongly-monotone mapping of C into H and let S be a nonexpansive 

mapping of C into itself such that F(S) ∩ VI(C, A) ≠ ф. Let {xn} be a sequence generated by  

x0 = x ϵ C, 

zn = Pc(xn - τnAxn),   

yn = Pc(zn - μnAzn),                                                                                                                                                         (3.23) 

xn+1 = αnf(xn) + (1 - αn)SPc(yn - λnAyn), 

where {αn}, {λn}, {μn} and {τn} satisfy the following conditions: 

1) {αn} is a sequence in (0, 1); 

2) 
n

n 0
lim


 = 0, n

n 0





 = ∞, n n 1

n 0







    

3) n n 1

n 0







    , n n 1

n 0







    ,  n n 1

n 0







     

4) {λn}, {μn} and {τn} are three sequences in [a, b] for some a, b ϵ (0, 2α). 

Then {xn} converges strongly to q ϵ F(S) ∩ VI(C, A), which is the unique solution in the F(S) ∩ VI(C, A) to the 

following variational inequality < (I – f) q, q – p > ≤ 0,   p ϵ F(S) ∩ VI(C, A). 

In 2009, motivated by the results obtained by Chen et al. [23], Jong Soo Jung [22], introduced a new composite iteration 

by viscosity approximation methods for finding a common element of the set of fixed points of a nonexpansive 

mapping and the set of solutions of the variational inequality for an inverse-strongly monotone mapping in a Hilbert 

space. If we take βn = 0, then iterative scheme (3.24) reduces to iterative scheme (3.18). They showed that the iterative 

sequence converges strongly to a common element of two sets, which is a solution of some variational inequality.  

 

Theorem 3.1.19: [22] Let C be a closed convex subset of a real Hilbert space H. Let f: C → C be a contracton with 

coefficient k (0 < k < 1). Let A be an α-inverse-strongly-monotone mapping of C into H and let S be a nonexpansive 

mapping of C into itself such that F(S) ∩ VI(C, A) ≠ ф. Let {xn} be a sequence generated by 

x0 = x ϵ C, 

yn = αnf(xn) + (1 - αn)SPc(xn - λnAxn),                                                                                                                            (3.24) 
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xn+1 = (1 - βn)yn + βnSPc(yn - λnAyn),     

where {λn} ⊂ [0,2α], {αn} ⊂ [0, 1) and {βn} ⊂ [0,1]. If {αn}, {λn} and {βn} satisfy the following conditions 

1) 
n

n 0
lim


 = 0, n

n 0





 = ∞. 

2) βn ⊂ [0,a)   n ≥ 0 and for some a ϵ (0,1). 

3) λn ϵ [c,d] for some c,d with 0 < c < d < 2α. 

4) n 1 n

n 0







    , n 1 n

n 0







    ,. n 1 n

n 0







     

Then {xn} converges strongly to q ϵ F(S) ∩ VI(C, A), which is the unique solution in the set F(S) ∩ VI(C,A) to the 

following variational inequality  < (I – f)q, q – p > ≤ 0, p ϵ F(S) ∩ VI(C,A). 

 

Definition: Let H be a real Hilbert space with inner product          and norm║.║, respectively. Let C be a closed convex 

subset of H. Let A: C → H be a nonlinear mapping. 

i) A is said to be relaxed μ-cocoercive if there exists a constant μ > 0 such that < Ax – Ay, x – y > ≥ (-μ)‖Ax - Ay‖2
, 

  x, y ϵ C. 

ii) A is said to be relaxed (μ, ν)-cocoercive if there exists a constants μ, ν > 0 such that < Ax – Ay, x – y >  

≥ (-μ)‖Ax - Ay‖2
 + ν‖x - y‖2

,   x, y ϵ C. 

 

Remark. A μ-inverse-strongly monotone mapping is also called μ-cocoercive. 

 

Lemma. [21] Let C is a nonempty closed convex subset of a real Hilbert space H and T: C → C be a k-strict 

pseudocontraction with a fixed point. Define S: C → C by Sx = kx + (1 - k)Tx for each x ϵ C. Then S is nonexpansive 

with F(S) = F (T). 

In 2009, using the above lemma Xiaolong Qin, Shin Min Kang, Yongfu Su and Meijuan Shang [58] improved the 

results given by W. Takahashi and M. Toyoda [57], Korpelevich [15], Iiduka and Takahashi [17], Yonghong Yao, 

Yeong-Cheng Liou and Jen-Chih Yao [67] and introduced a general iterative scheme to investigate the problem of 

finding a common element of the fixed point set of a strict pseudocontraction and the solution set of a variational 

inequality problem for a relaxed cocoercive mapping by viscosity approximation methods. They proved the following 

strong convergence theorem.  

Theorem.3.1.20: [58] Let H be a real Hilbert space, C be a nonempty closed convex subset of H and A: C → H be a 

relaxed (μ, ν)-cocoercive and L-Lipschitz continuous mapping. Let f: C → C be a contraction with the coefficient α є (0, 

1) and T: C → C be a strict pseudocontraction with a fixed point. Define a mapping S: C → C by Sx = kx + (1 - k)Tx 

for each x є C. Assume that   = F(T) ∩ VI(C, A) ≠ φ. Let {xn} be a sequence generated by the following algorithm:  

x1 є C and  

zn = ωnxn + (1 - ωn)PC(xn - tnA xn) , 

yn = δnS xn + (1 - δn) zn ,                                                                                                                                                 (3.25) 

xn+1 = αnf(xn) + βn xn + γn yn ,    n ≥ 1, 

where {αn}, {βn}, {γn}, {δn}, {ωn} are sequences in (0, 1) and {tn} is a positive sequence. Assume that the above control 

sequences satisfy the following restrictions: 

a) αn + βn + γn = 1, n ≥ 1; 

b) 
n

n 0
lim


 = 0,  n

n 0





 = ∞, 

c) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

d) 0 < t ≤ tn ≤ 
2

2

2( L )

L

 
 , where t is some constant, for each n ≥1, 

e) limn→∞ |tn – tn+1| = 1, 

f) limn→∞ δn = δ є (0, 1), limn→∞ ωn = ω є (0, 1). 

Then, the sequence {xn} converges strongly to u є  , where u =   f(u), which solves the following variational 

inequality 

<f (u) – u, u – v > ≤ 0,   x є  . 
In 2009, inspired by the research going on in this direction, L. C. Ceng, A. Petrusel, C. Lee and M. Wong [29] obtained 

two extragradient methods for finding a common element of the set of solutions of a variational inequality for monotone 

and Lipschitz continuous mapping and fixed points of a family of strict pseudocontractions. 

 

Theorem 3.1.21: [29] Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz 

continuous mapping of C into H. Let N ≥ 1 be an integer. Let for each 1 ≤ i ≤ N, Si: C → C be a κi-strict 

pseudocontraction for some 0 ≤ κi < 1 such that 
N

i

i 1

F(S )


  ≠ φ.Let κ = max {κi: 1 ≤ i ≤ N}. Assume that for each n, 
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{λi
(n)

}i
N

 = 1 is a finite sequence of positive numbers such that 
N

( )

i

n

i

1

  = 1 for each n ≥ 0, where λi
(n)

 > 0 for all n ≥ 0 and 

1 ≤ i ≤ N. Given any x0 є C, let {xn}
 ∞

n = 0, {yn}
 ∞

n = 0 be the sequences generated by 

yn = PC(xn – λnA xn) , 

tn = PC(xn – λnA yn),                                                                                                                                                       (3.26) 

xn+1 = αntn + (1 – αn) 
N

( )

i

n

i

1

 Sitn,    n ≥ 0, 

where there hold the following conditions 

i) {λn} ⊂ [a, b] for some a, b ϵ (0,1/k); 

ii) {αn} ⊂ [α, β] for some α, β ϵ (κ, 1). 

Then, the sequences {xn}, {yn} converge weakly to the same point z є 
N

i

i 1

F(S )


  , where z = limn → ∞ 

N

ii 1

n
F(S )

P x




 . 

 

Algorithm. Let {αn}
 ∞

n = 0 be a sequence in (κ, 1) and {λn}
∞

n = 0 be a sequence in (0,1/k). Given any x0 є C, let {xn}
 ∞

n = 0, 

{yn}
 ∞

n = 0 be the sequences generated by iterative scheme 

yn = PC(xn – λnA xn) , 

tn = PC(xn – λnA yn), 

xn+1 = αntn + (1 – αn) S[n]tn,    n ≥ 0, 

where S[n] = Si, with i = n (modN), 0 ≤ i ≤ N – 1, i.e., if n = jN + i for some integers j ≥ 0 and 0 ≤ i ≤ N – 1, then S[n] = S0 

if i = 0 and  S[n] = Si if 0 ≤ i ≤ N – 1. 

Using this algorithm they proved a weak convergence theorem. 

 

Theorem 3.1.22: [29] Let C be a closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz 

continuous mapping of C into H. Let N ≥ 1 be an integer. Let for each 0 ≤ i ≤ N – 1, Si: C → C be a κi-strict 

pseudocontraction for some 0 ≤ κi < 1 such that 
N

i

i 1

F(S )


  ≠ φ. Let κ = max {κi: 0 ≤ i ≤ N – 1}. Given any x0 є C, let 

{xn}
 ∞

n = 0, {yn}
∞

n = 0 be the sequences generated by 

yn = PC(xn – λnA xn) , 

tn = PC(xn – λnA yn),                                                                                                                                                       (3.27) 

xn+1 = αntn + (1 – αn) S[n]tn,    n ≥ 0, 

Assume that the sequences {αn} ⊂ (κ, 1) and {λn} ⊂ (0, 1/k) satisfy the following conditions 

i) {λn} ⊂ [a, b] for some a, b ϵ (0,1/k); 

ii) {αn} ⊂ [α, β] for some α, β ϵ (κ, 1). 

Then, the sequences {xn}, {yn} converge weakly to the same point z є 
N

i

i 1

F(S )


  , where z = limn → ∞ 

N

ii 1

n
F(S )

P x




 . 

In 2011, motivated by the results obtained by Iiduka and Takahashi [17] and Y. Yao and J. C. Yao [67], Yuan Qing, 

Sun Young Cho and Xiaolong Qin [62], considered the class of strict pseudocontractions and class of inverse strongly 

monotone mappings and introduced a new iterative method for finding a common element of the fixed point set of a 

strict pseudocontraction and the solution set of variational inequality in a real Hilbert space.  

Theorem 3.1.23: [62] Let C be a closed convex subset of a real Hilbert space H. Let A be an α-inverse-strongly-

monotone mapping of C into H and B be an β-inverse-strongly-monotone mapping of C into H and T: C → C be a k-

strict pseudocontraction. . Assume that   = F (T) ∩ VI(C, A) ∩ VI(C, B) ≠ φ. Let {xn} be a sequence generated by the 

following algorithm:  

x0 є C and  

zn = ηnxn + (1 - ηn)PC(xn - ρnA xn) , 

yn = δn PC(zn - λnB zn) + (1 - δn) T PC(zn - λnB zn),                                                                                                         (3.28) 

xn+1 = αnu + βn xn + γn yn ,    n ≥ 0, 

where u is a fixed element in C, {αn}, {βn}, {γn}, {δn}, {ηn} are sequences in (0, 1) and {ρn} is a positive sequence. 

Assume that the above control sequences satisfy the following restrictions: 

a) αn + βn + γn = 1, n ≥ 0; 

b) n
n 0
lim


 = 0,  n

n 0





 = ∞, 

c) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 
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d) limn → ∞ 
n 1 n

n 0







    limn → ∞ 
n 1 n

n 0







    limn → ∞ 
n 1 n

n 0







   0. 

e) {λn}, {ρn} є [a, b] for some a, b with 0 < a < b < min{2α, 2β} 

f) limn→∞ ηn = 0 and k ≤ δn ≤ e < 1, where e є [k, 1) is some constant. 

Then, the sequence {xn} converges strongly to u є  , where u =   u. 

In 2011, Bunyawat A. and Suantal S. [1], further generalized the above results and introduced an iterative method for 

finding a common element of the set of fixed points of a countable family of nonexpansive mappings and the set of 

solutions of some variational inequality problem for an inverse strongly monotone mapping in a Hilbert space and 

obtained a strong convergence result.  

 

Theorem 3.1.24: [1] Let C be a nonempty closed convex subset of a Hilbert space H. Assume that B: C → H is a β-

inverse strongly monotone mapping. . Let A be a strongly positive linear bounded operator with the coefficient   > 0 

such that    A     1 and let f be a contraction of C into itself. Assume that 0 <   <  /α. Let {Tn : C → C} be a countable 

family of nonexpansive mappings with F = n

n 1

F(T ) VI(C,B)




≠  . Let {xn} be sequence generated by the following 

algorithm: 

x0 є C,    

xn+1 = PC (αn   f(xn) + (1 – αnA)Tn PC(xn –  nB xn)),                                                                                                      (3.29) 

for all n = 0, 1, 2, ……………., where {αn} ⊂ (0, 1) and { n} ⊂ (0, 2β). If {αn} and { n} are chosen so that  n ∈ [a, b] 

for some a, b with 0 < a < b < 2β,  

(C1). limn → ∞ αn = 0, 

(C2). n

n 0





 = ∞, 

(C3). n 1 n

n 0







    , 

(C4). n 1 n

n 0







    . 

Suppose that ({Tn}, T) satisfies the AKTT- condition. Then the sequence {xn} converges strongly to q ∈ F, where q = 

PF ( f + (I – A)) q which solves the following variational inequality: 

   f (q) – Ap, p – q  ≤ 0,   p ∈ F. 

 

Remark. To deal with a family of mappings, the following condition was introduced: 

Let C be a subset of a real Banach space E and let  
n 1nT




 be a family of mappings of C such that 
nn 1

F(T )



  

Then {Tn} is said to satisfy the AKTT-condition [27] if for each bounded subset B of C, 

n 1 n

n 1

sup{ T z T z : z B} .






     

In 2011, Ceng et al [8], investigated the problem of finding a common element of the set of fixed points of an 

asymptotically κ- strict pseudocontractive mapping in the intermediate sense and the set of solutions of a variational 

inequality problem for a monotone and Lipschitz continuous mapping. They obtained an extragradient-like iterative 

algorithm that is based on an extragradient-like approximation method and the modified Mann iteration method. They 

established a strong convergence theorem for two sequences generated by this extragradient-like iterative algorithm. 

 

Theorem 3.1.25: [8] Let A: C → H be a monotone and L-Lipschitz continuous mapping, f: C → C be a contraction 

with contractive constant α є (0, 1) and S: C → C be a uniformly continuous asymptotically κ- strict pseudocontractive 

mapping in the intermediate sense with sequence {γn} such that F(S) ∩ Ω ≠ φ and n

n 1





  < ∞. Let {xn}, {yn} be 

sequences generated by 

 x1 є C    

γn = (1 – μn)xn + μnPC(xn – λnAxn), 

tn = PC(xn – λnAγn),                                                                                                                                                        (3.30) 

xn+1 = (1 – αn – βn – νn) xn + αnf(γn) + βn tn + νnS
n
tn,    n ≥ 1, 

where {λn} is a sequence in (0, 1) with n

n 1





 < ∞ and {αn}, {βn}, {γn}, {μn} are sequences in [0, 1] satisfying the 

following restrictions: 
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a) αn + βn + νn ≤ 1, n ≥ 1; 

b) 
n

n 0
lim


 = 0,  n

n 0





 = ∞, 

c) κ < lim infn→∞βn ≤ lim supn→∞βn < 1, 

d) 
n

n 1





  = ∞. 

Then, the sequences {xn}, {yn} converge strongly to the same point q = PF(S)∩Ωf(q) if and only if {Axn} is bonded, ‖(I – 

S
n
)xn‖ → 0 and lim infn → ∞< Axn , y – xn > ≥ 0 for all y є C. 

In 2012, inspired by Wangkeeree and Kamraksa [51], Yonghong Yao and Mihai Postolache [66] introduced an iterative 

scheme for finding a common element of the set of solutions of a pseudomonotone, Lipschitz-continuous variational 

inequality problem and the set of fixed points of an infinite family of nonexpansive mappings. The proposed iterative 

method combined two well-known schemes: extragradient and approximate proximal methods. They derived some 

necessary and sufficient conditions for strong convergence of the sequences generated by the proposed scheme.  

 

Theorem 3.1.26: [66] Let C be a closed convex subset of a real Hilbert space H. Let A: C → H be a pseudomonotone 

and L-Lipschitz continuous and (w, s)-sequentially-continuous mapping mapping and let 
n 1n{S }



 be an infinite family 

of nonexpansive mappings of C into itself such that 
n 1




 Fix (Sn) ∩ Ω ≠ Φ. 

Let {xn}, {yn}, {zn} be sequences generated by 

x1 є C 

γn = PC(xn – λnAxn), 

zn = αnxn + (1 – αn)WnPC(xn – λnAyn),                                                                                                                           (3.31) 

Cn = {z є C: ‖zn – z‖ ≤ ‖xn – z‖}, 

Find xn + 1 є Cn such that  

< (1 – βn)xn – xn + 1 + en – σnAxn + 1 , xn + 1 – x > ≥ 0,   x є Cn, n ≥ 1, where Wn is a W-mapping defined by 

Un, n + 1 = I, 

Un, n = ξnSnUn, n + 1 + (1 – ξn) I, 

Un, n – 1 = ξn – 1Sn – 1Un, n + (1 – ξn – 1) I, 

: 

Un, k = ξkSkUn, k + 1 + (1 – ξk) I, 

Un, k – 1 = ξk – 1Sk – 1Un, k + (1 – ξk – 1) I, 

: 

Un, 2 = ξ2S2Un, 3 + (1 – ξ2) I, 

Wn = Un, 1 = ξ1S1Un, 2 + (1 – ξ1) I, and {en} is error sequence in H which satisfies ∑n ‖en‖ < ∞. 

Suppose the following conditions hold:   

i) {λn} ⊂ [a, b] for some a, b ϵ (0,1/k); 

ii) {αn} ⊂ [0, c] for some c ϵ (0, 1). 

iii) {σn} ⊂ (0, 1/k) and {βn} ⊂ [0, 1] satisfies 
n

n 0
lim


 = 0, n

n 0





 = ∞. 

Then the sequences {xn}, {yn} and {zn} converge strongly to the same element of 
n 1




 Fix (Sn) ∩ Ω if and only if 

‖xn + 1 – xn‖ → 0 and lim infn → ∞< Axn , x – xn > ≥ 0 for all x є C.  

In 2012, Liou et al. [61], considered a general variational inequality and fixed point problem, which is to find a point x 

with the property that x ∈ GVI(C, A) and g(x) ∈ Fix(S), where GVI(C, A) is the solution set of variational inequality, 

Fix(S) is fixed points set of nonexpansive mapping S and g is nonlinear operator. For solving GVI(C, A), they 

suggested an iterative method and showed that the sequence generated by this method converges strongly to a unique 

solution of variational inequality problem.  

 

Theorem 3.1.27: [61] Let C be a nonempty closed convex subset of a Hilbert space H. Let F: C → H be L-Lipschitz 

continuous mapping, g: C → C be a weakly continuous and  -strongly monotone mapping such that R (g) = C. Let A: C 

→ H be an α-inverse strongly g-monotone mapping and let S: C → C be a nonexpansive mapping. Suppose that Ω ≠  . 

Let β ∈ (0, 1) and   ∈ (L, 2α). For given x0 ∈ C, let {xn} ⊂ C be a sequence generated by 

g(xn + 1) = βg(xn) + (1 - β)SPC[αnF(xn) + (1 – αn)(g(xn) -  Axn)], n ≥ 0,                                                                        (3.32) 

where {αn} ⊂ (0, 1) satisfies: 

(C1). limn → ∞ αn = 0, 

(C2). n

n 0





 = ∞. 
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Then the sequence {xn} converges strongly to x

*
 ∈   which is the unique solution of the following variational 

inequality: 

 F(x
*
) - g(x

*
), g(x) - g(x

*
)   ≤ 0,   x ∈  . 

Further, in 2008, Ceng et al. [9] introduced a new a problem of finding (x
*
, z

*
) ∈ C   C such that 

  1D1z
*
 + x

*
 - z

*
, x – x

*  ≥ 0,   x ∈ C, 

  2D2x
*
 + z

*
 - x

*
, x – z

*  ≥ 0,   x ∈ C,                                                                                                                          (3.33) 

where D1, D2: C → H are any two mappings and  1,  2 > 0. This system is called a system of variational inequalities. 

They studied a relaxed extragradient method for finding solutions of a general system of variational inequalities with 

inverse strongly monotone mappings in a real Hilbert as follows: 

 

Theorem 3.1.28: [30] Let C be a nonempty closed convex subset of a real Hilbert space H and let A, B: C → H be α-

inverse strongly monotone and  -inverse strongly monotone, respectively. Define the mapping Let S : C → C be a 

nonexpansive mapping with F(S) ⋂ Ω ≠ ϕ, where Ω is the set of fixed points of the mapping G : C → C defined by G(x) 

= PC(PC(x – μBx) -  APC(x – μBx) for all x ∈ C. Let x1 = u ∈ C and let {xn} be the sequence generated by 

yn = PC(xn– μBxn), 

xn+1 = αnu +  nxn +  nPC (xn -  Axn,                                                                                                                              (3.34) 

where   ∈ (0, 2α), μ ∈ (0, 2 ) and {αn}, { n}, { n} ∈ [0, 1]. Assume that the following conditions hold: 

i) αn +  n +  n = 1, ), n ≥ 1, 

ii) limn → ∞ αn = 0, n

n 0





 = ∞, 

iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

Then {xn} converges strongly to x0 = PF(S)  Ωu and (x0, y0) is a solution of (3.32), where y0 = PC(x0 – μBx0). 

In 2013, motivated by the work of Ceng et al. [30], Kangtunyakarn [4] considered a new problem of finding (x
*
, z

*
) ∈ C 

  C such that 

 x*
 - (I -  1D1) (ax

*
 + (1 - a) z

*
), x – x

*  ≥ 0,   x ∈ C, 

 z*
 - (I –  2D2) x

*
, x – z

*  ≥ 0,   x ∈ C,                                                                                                                         (3.35) 

where D1, D2: C → H are any two mappings. This system is called a modification of system of variational inequalities, 

for every  1,  2 > 0 and a ∈ [0, 1]. If a = 0, then (3.35) reduces to (3.33). 

He proved a strong convergence theorem for finding a common element of the set of fixed points of a finite family of 

ki-strictly pseudocontractive mappings and the set of solutions of a modified general system of variational inequalities 

problems. 

Now we give a definition: 

 

Definition: Let C be a nonempty closed convex subset of a Hilbert space H. Let 
N

i 1i{T}


be a finite family of ki-strict 

pseudo-contractions of C into itself. For each j = 1, 2, ……, N, let αj = (α1
j 
, α2

j
, α3

j
) ∈ I   I   I , where I ∈ [0, 1] and α1

j 

+ α2
j 
+ α3

j
 = 1. Define the mapping S: C → C as follows: 

 0 = I, 

 1 = α1T1  0
 
+ α2

1
  0

 
+ α3

1
I, 

 2 = α1
2
T2  1

 
+ α2

2
  1

 
+ α3

2
I, 

 3 = α1
3
T3  2

 
+ α2

3
  2

 
+ α3

3
I, 

: 

 N - 1 = α1
N - 1 

TN - 1  N - 2
 
+ α2

N - 1
  N - 2

 
+ α3

N - 1
I,                                                                                                          (3.36) 

S =  N = α1
N 

SN N - 1
 
+ α2

N N - 1
 
+ α3

N
I, 

This mapping is called the S –mapping generated by T1, T2,……. TN and α1, α2,….. , αN. 

 

Theorem 3.1.29: [4] Let C is a nonempty closed convex subset of a real Hilbert space H and let D1, D2: C → H be d1, d2 

-inverse strongly monotone mappings, respectively. Define the mapping G: C → C by G(x) = PC (I –  1D1)(ax + (1 - 

a)PC(I –  2D2)x) for all x ∈ C,  1,  2 > 0 and a ∈ [0, 1). Let 
N

i 1i{T}


be a finite family of k-strict pseudocontractive 

mappings of C into itself with F = 
N

ii 1
F(T )


⋂ F(G)≠ ϕ and k = min{ki : i = 1, 2,……,N} and let αj = (α1

j 
, α2

j
, α3

j
) ∈ I 

  I   I, where I ∈ [0, 1], α1
j 
+ α2

j 
+ α3

j
 = 1, α1

j
, α3

j
 ∈ (k, 1) and α1

N
 ∈ (k, 1], α3

N
 ∈ [k, 1), α2

j
 ∈ [k, 1) for all j = 1, 2, ……, 

N. Let S be the S–mapping generated by T1, T2,……. TN and α1, α2,….. , αN. Let x1, u ∈ C and let {xn} be the sequence 

generated by 

yn = PC(I –  2D2)xn, 

xn+1 = αnu +  nxn +  nSPC (axn + (1 - a)yn -  1D1 (axn + (1 - a)yn)), n ≥ 1 ,                                                                   (3.37) 

where  1 ∈ (0, 2d1),  2 ∈ (0, 2d2) and {αn}, { n},{ n}∈ [0, 1]. Assume that the following conditions hold: 

i) αn +  n +  n = 1, 
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ii) limn → ∞ αn = 0, 
n

n 0





 = ∞, 

iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

Then {xn} converges strongly to x0 = PF u and (x0, y0) is a solution of (3.35), where y0 = PC (I –  2D2)x0. 

 

3.2. Results regarding solution of variational inequalities and fixed point problems in Banach 

spaces 
 

Generalized variational inequality problem in Banach spaces is defined as follows: 

Find x
*
 ∈ C such that  

< A x
*
, j(x - x

*
) > ≥ 0,   x ∈ C and j(x - x

*
) ∈ J(x - y).                                                                                                (3.38) 

The set of solutions of variational inequality (3.38) is denoted by S(C, A). 

Let E be a real normed linear space with dual E
*
. We denote by J, the normalized duality mapping from E to E

*
 defined 

by  

J(x) = {f ∈ E
*
,   x, f  = ‖x‖ ‖f‖, ‖x‖ = ‖f‖},  x ∈ E, 

where  . , .  denotes the generalized duality pair. It is well known that if E
*
 is strictly convex, then J is single-valued. 

We shall denote the single-valued duality mapping by j. 

Let C be a nonempty closed convex subset of a Banach space E. An operator A of C into E is said to be α-inverse 

strongly accretive if there exists a constant α > 0 such that  

< Ax – Ay, J(x - y) > ≥ α ‖ Ax – Ay ‖2
,   x, y ∈ C. 

 

Definition: A Banach space E is said to be uniformly convex iff for any ∈, 0 < ∈ ≤ 2, the inequalities ∥x∥ ≤ 1, ∥y∥ ≤ 1 

and ∥x - y∥ ≥ ∈ imply there exists a   > 0 such that ∥
x y

2


 ∥ ≤ 1 –  . 

 

Definition: Let E be a Banach space. Then a function  E : R
+
 → R

+
 is said to be the modulus of smoothness of E if 

 E (t) = sup {
x y x y

2

  
 - 1 : ∥x∥ = 1, ∥y∥ = t}. 

A Banach space E is said to be uniformly smooth if 

limt → 0 
 

E

t

t
 = 0. 

Let q > 1. A Banach space E is said to be q-uniformly smooth if there exists a fixed constant c > 0 such that  E(t) ≤ ct
q
 . 

It is easy to see that if E is q-uniformly smooth, then q ≤ 2 and E is uniformly smooth.   

In 2000, Moudafi [5] gave viscosity approximation methods. Later H. K. Xu [19] generalized the results of [5] for 

nonexpansive mappings in uniformly smooth Banach space. He proved the following theorems: 

 

Theorem 3.2.1: [19] Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E and T : K 

→ K be a nonexpansive mapping with F(T) ≠   and f is a contraction on K. Then the path {xt} defined by  

xt = tf(xt) + (1 - t)Txt,  t ϵ (0, 1).                                                                                                                                    (3.39) 

converges strongly to a point in F (T). If we define Q:  K → F (T) by Q (f) = limt → ∞ xt, where ΠK = {f: f: K → K a 

contraction}, then Q(f) solves the variational inequality: 

 (I - f)Q(f), j(Q(f) – x)  ≤ 0,    x ∈ F(T). 

 

Theorem 3.2.2: [19] Let E be a uniformly smooth Banach space, K be a nonempty closed convex subset of E and T : K 

→ K be a nonexpansive mapping with F(T) ≠   and f is a contraction on K. Assume that {αn} ⊂ (0, 1) satisfies the 

following conditions: 

i) limn → ∞ αn = 0, 

ii) n

n 0





 = ∞. 

iii)  Either n 1 n

n 0







    or limn → ∞ (αn + 1 / αn) = 1. 

Then the sequence {xn} generated by 

xn + 1 = αn f(xn) + (1 – αn)Txn,  n = 0, 1, 2,………………                                                                                             (3.40) 

converges strongly to a fixed point of T. 

Let E be a real normed linear space with dim E ≥ 2. The norm of E is said to be uniformly Gateaux differentiable if for 

each y ∈ S = {x ∈ E: ‖x‖ = 1}, the limitlimn → ∞ 
x ty x

t

 
 is attained uniformly for x ∈ S. 
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Let K be a nonempty bounded closed convex subset of E and let d (K) = sup {‖x - y‖: x, y ∈ K} be the diameter of K. 

For each x ∈ K, let r(x, K) = sup {‖x - y‖ : y ∈ K} and let r(K) = inf{ r(x, K) : x ∈ K}. The normal structure coefficient 

of E is defined as the number 

N (E) = inf {d (K) / r (K) : K is a bounded closed convex subset of E with d(K) > 0}.  

A space E such that N (E) > 1 is said to have uniformly normal structure. A space with a uniformly normal structure is 

reflexive and all uniformly convex Banach spaces have uniformly normal structure.  

In 2006, Naseer Shahzad and Aniefiok Udomene [43] extended the results of H. K. Xu [19] from nonexpansive to 

asymptotically nonexpansive and obtained the following theorems:  

 

Theorem 3.2.3: [43] Let E be a real Banach space with a uniformly Gateaux differentiable norm possessing uniform 

normal structure, K be a nonempty closed convex and bounded subset of E, T : K → K be an asymptotically 

nonexpansive mapping with sequence {kn} ⊂ [1, ∞) and f : K → K be a fixed contraction with constant α ∈ [0, 1). Let 

{tn} ⊂ (0, n

n

(1 )k

k



 
) be such that limn → ∞ tn = 1 and limn → ∞ n

n n

k 1

k t




 = 0. Then, 

i) for each integer n ≥ 0, there is a unique xn ∈ K such that  

n n

n n

n n

t t
x (1 )f (x )

k k
   T

n 
xn                                                                                                                                         (3.41) 

And if in addition, limn → ∞ ‖xn - Txn‖ = 0, then, 

ii) The sequence {xn} converges strongly to some fixed point p of T, which is the unique solution of variational 

inequality: 

  (I - f) p, j (p – x
*
)   ≤ 0,   x

*
 ∈ F (T). 

 

Theorem 3.2.4: [43] Let E be a real Banach space with a uniformly Gateaux differentiable norm possessing uniform 

normal structure, K be a nonempty closed convex and bounded subset of E, T : K → K be an asymptotically 

nonexpansive mapping with sequence {kn} ⊂ [1, ∞) and f : K → K be a fixed contraction with constant α ∈ [0, 1). Let 

{tn} ⊂ (0, ξn) be such that limn → ∞ tn = 1, n n

n 0

t (1 t )




  = ∞ and limn → ∞ n

n n

k 1

k t




 = 0, where ξn = min { n

n

(1 )k

k




,

n

1

k
}. 

For an arbitrary y0 ∈ K, let the sequence {yn} be iteratively defined by  

n n

n 1 n

n n

t t
y (1 )f (y )

k k
     T

n 
yn                                                                                                                                  (3.42) 

Then, 

i) For each integer n ≥ 0, there is a unique xn ∈ K such that the equality (3.35) holds.  

And if in addition, limn → ∞ ‖xn - Txn‖ = 0, limn → ∞ ‖yn - Tyn‖ = 0, then, 

ii) The sequence {yn} converges strongly to some fixed point p of T, which is the unique solution of variational 

inequality : 

  (I - f) p, j (p – x
*
)   ≤ 0,   x

*
 ∈ F (T). 

In 2007, Ying Chen, Huimin He and Rudong Chen [60], extended the results of Naseer Shahzad and Aniefiok Udomene 

[43] to more general class of asymptotically pseudocontractive mappings and more general class of Banach spaces. 

They obtained fixed point solutions of variational inequalities for asymptotically pseudocontractive mapping defined on 

a real reflexive Banach space with uniformly Gateaux differentiable norm possessing uniform normal structure. They 

proved under some conditions on K, T and {tn} ⊂ (0, 1) that the generated by (3.41) and (3.42) converges strongly to 

some fixed point p of T, which is the unique solution of the variational inequality: 

  (I - f) p, j (p – x
*
)   ≤ 0,   x

*
 ∈ F (T). 

Theorem 3.2.5: [60] Let E be a real Banach space with a uniformly Gateaux differentiable norm possessing uniform 

normal structure, K be a nonempty closed convex and bounded subset of E, T : K → K be an asymptotically 

pseudocontractive mapping with sequence {kn} ⊂ [1, ∞), uniformly asymptotically regular and uniformly L-

Lipschitzian. Let f: K → K be a fixed contraction with constant α ∈ [0, 1). Let {tn} ⊂ (0, n

n

(1 )k

k




) be such that  

limn → ∞ tn = 1 and limn → ∞ n

n n

k 1

k t




 = 0 and L < N(E)

1/2
. Then, 

i) for each integer n ≥ 0, there is a unique xn ∈ K such that  

n n

n n

n n

t t
x (1 )f (x )

k k
   T

n 
xn  and limn → ∞ ‖xn - Txn‖ = 0,                                                                                     (3.43) 

ii)  If in addition,  

‖xn - T
m

x‖2
 ≤   xn – T

m
x, j(xn - x)      m, n ≥ 1,   x ∈ K 

Then the sequence {xn} converges strongly to some fixed point p of T, which is the unique solution of variational 

inequality: 
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  (I - f) p, j (p – x
*
)   ≤ 0,   x

*
 ∈ F (T). 

 

Theorem 3.2.6: [60] Let E be a real Banach space with a uniformly Gateaux differentiable norm possessing uniform 

normal structure, K be a nonempty closed convex and bounded subset of E, T : K → K be an asymptotically 

pseudocontractive mapping with sequence {kn} ⊂ [1, ∞), uniformly asymptotically regular and uniformly L-

Lipschitzian. Let f: K → K be a fixed contraction with constant α ∈ [0, 1). Let {tn} ⊂ (0, ξn), (2α)
1/2

 < L ≠ 1, α ∈ (0, 
1

2
) 

be such that limn → ∞ tn = 1, limn → ∞ n

n n

k 1

k t




 = 0, and L < N(E)

1/2 
, where ξn = min{ n

n

(1 )k

k




, n

2

k (1 2 )

2L

 

 
 }. Suppose 

that ‖xn - T
m

x‖2
 ≤   xn – T

m
x, j(xn - x)   , limn → ∞ ‖yn - Tyn‖ = 0 

For an arbitrary y0 ∈ K, let the sequence {yn} be iteratively defined by  

n n

n 1 n

n n

t t
y (1 )f (y )

k k
     T

n 
yn                                                                                                                                  (3.44) 

converges strongly to some fixed point p of T, which is the unique solution of variational inequality: 

  (I - f) p, j (p – x
*
)   ≤ 0,   x

*
 ∈ F (T). 

 

Definition: Let D be a subset of C and Q be a mapping of C into D. Then Q is said to be sunny if 

Q (Qx + t(x - Qx)) = Qx, whenever Qx + t(x - Qx) ∈ C for x ∈ C and t ≥ 0. A mapping Q of C into itself is called a 

retraction if Q
2
 = Q. A subset D of C is called a sunny nonexpansive retract of C if there exists a sunny nonexpansive 

retraction from C onto D.  

In 2005, in order to find a solution of the variational inequality (3.33), Aoyama et al. [26] obtained a weak convergence 

theorem as follows: 

 

Theorem 3.2.7: [26] Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach 

space E. Let QC be a sunny nonexpansive retraction from E onto C, let α > 0 and let A be inverse strongly accretive 

operator of C into E with S(C, A) ≠ ϕ. Suppose that x1 = x ∈ C and {xn} is given by 

xn + 1 = αnxn + (1 – αn)QC (xn –  nAxn), n ≥ 0,                                                                                                                (3.45) 

where { n} is a sequence of positive real numbers and {αn} is a sequence in [0, 1]. If { n} and {αn} are chosen so that  n 

∈ [a, 
2

K


 ] for some a > 0 and αn ∈ [b, c] for some b, c with 0 < b < c < 1, then {xn} converges weakly to some element 

z of S(C, A), where K is the 2-uniformly smoothness constant of E.   

However they only obtained the weak convergence of the proposed scheme (3.45). Hence, it is an interesting topic to 

construct an iterative scheme which converges strongly to the solution of variational inequality (3.38). In this regard, 

Aoyama, Iiduka and Takahashi [25] further introduced another iterative scheme which has strong convergence. 

Let G be an unbounded subset of R
+
 such that s + t ∈ G whenever s, t ∈ G. Let X be a smooth Banach space, C be a 

nonempty closed convex subset of X and J = {Ts : s ∈ G} be a commutative family of nonexpansive self-mappings of 

C. Denote by F, the set of common fixed points of J i. e. F = {x ∈ C : Tsx = x, s ∈ G}. 

In 2007, Yao and Noor [65] suggested a new viscosity iterative method for a commutative family of nonexpansive 

mappings and a contraction in Banach space. 

 

Theorem 3.2.8: [65] Let C be a nonempty closed convex subset of a reflexive Banach space X with a weakly 

sequentially continuous duality mapping. Let {αn}, { n}, { n} be three sequences in (0, 1) and {rn} be a sequence in G. 

Let {αn}, { n}, { n} satisfy the control conditions: 

i) αn +  n +  n = 1. 

ii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

iii) rn → ∞ 

iv) J  is a semigroup (i. e. TrTs = Tr+s for r, s ∈ G) and satisfies the uniformly asymptotically regularity condition 

r G, r
lim

 
 

x C

sup


 ∥ TsTrx - Trx ∥ = 0, uniformly in s ∈ G, 

where C  is any bounded of C. If there exists Q (f) ∈ F which solves the variational inequality  

< (I – f) Q (f), J(Q(f) – p) > ≤ 0, 

Then the sequence {xn} generated by 

xn+1 = αn f(xn) +  nxn +  nT nr xn,  n ≥ 0                                                                                                                        (3.46) 

converges strongly to Q (f) ∈ F. 

Then they gave another interesting theorem: 
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Theorem 3.2.9 [65] Let X be a reflexive Banach space with a uniformly Gateaux differentiable norm. Suppose that 

every weakly compact convex subset of X has the fixed point property for nonexpansive mappings. Let C be a 

nonempty closed convex sebset of X. Assume J  is uniformly asymptotically regular on bounded subsets of C; that is, 

for each bounded subset C  of C and each r ∈ G, there holds 

s
lim


 
x "C

sup


 ∥ TrTsx – Tsx ∥ = 0, uniformly in s ∈ G. 

Then the net {zs} defined by 

zs = αs f(zs) + (1 - αs )Tszs,                                                                                                                                              (3.47) 

converges strongly to a point in F. If we define Q:  C → F by  

Q (f) = lims → ∞ zs, f ∈  C,  

Then, Q (f) solves the variational inequality  

< (I – f) Q (f), J (Q(f) – p) > ≤ 0, f ∈  C, p ∈ F. 

In particular, if f = u ∈ C is a constant, then the above limit defines the sunny nonexpansive retraction Q from C to F, 

 < Q (u) - u, J(Q(u) – p) > ≤ 0, u ∈ C, p ∈ F. 

Combining above two results, they obtained another result as follows: 

 

Theorem 3.2.10: [65] Let X be a reflexive Banach space with a uniformly Gateaux differentiable norm. Suppose that 

every weakly compact convex subset of X has the fixed point property for nonexpansive mappings and X has a weakly 

sequentially continuous duality mapping. Let C be a nonempty closed convex subset of X. Let {αn}, { n}, { n} satisfies 

the control conditions: 

i) αn +  n +  n = 1. 

ii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

iii) rn → ∞ 

iv) J  is a semigroup (i. e. TrTs = Tr+s for r, s ∈ G) and satisfies the uniformly asymptotically regularity condition 

r G, r
lim

 
 

x C

sup


 ∥ TsTrx - Trx ∥ = 0, uniformly in s ∈ G, 

Assume J  is uniformly asymptotically regular on bounded subsets of C; that is, for each bounded subset C  of C and 

each r ∈ G, there holds 

s
lim


 
x C

sup


 ∥ TrTsx – Tsx ∥ = 0, uniformly in s ∈ G, where C  is any bounded of C. Then the sequence {xn} generated by 

xn+1 = αn f(xn) +  nxn +  nT nr xn,  n ≥ 0                                                                                                                        (3.48) 

converges strongly to Q (f) ∈ F, where Q (f) is a solution of the variational inequality  

< (I – f) Q (f), J (Q (f) – p) > ≤ 0, f ∈  C, p ∈ F. 

In 2011, motivated by the research going on in this direction, Yao Y., Noor M. A., Noor K. I. and Loiu Y. C. [64], 

suggested a new iterative method for solving some variational inequality involving an accretive operator in Banach 

spaces. They proved the strong convergence of the proposed iterative method under certain conditions.   

 

Theorem 3.2.11: [64] Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth 

Banach space E which admits a weakly sequentially continuous duality mapping. Let A : C → E be an α-inverse 

strongly accretive operator such that S(C, A) ≠  . Let {αn}, {βn} be two sequences in (0, 1) and { n} be a real number 

sequence in [a, 
2

K


 ]. Suppose the following conditions are satisfied: 

i) 0 < lim infn→∞αn ≤ lim supn→∞αn < 1, 

ii) limn → ∞ βn = 0, n

n 0





 = ∞, 

iii) 
n 0
lim


( n + 1 –  n) = 0, 

Then the sequence {xn} generated by  

xn + 1 = αnxn + (1 – αn)Q[βnu + (1 – βn)Q(xn –  nAxn)], n ≥ 0,                                                                                       (3.49) 

converges strongly to Q'u, where Q' is a sunny nonexpansive retraction of E onto S(C, A). 

In particular, if we take u = 0, then the sequence {xn} converges strongly to the minimum norm element in S(C, A).  

Using the above result, they obtained the following corollary also. 

 

Corollary (i) [64] Let C is a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach 

space E which admits a weakly sequentially continuous duality mapping. Let A: C → E be an α-inverse strongly 

accretive operator such that S(C, A) ≠  . Let {αn}, {βn} be two sequences in (0, 1) and { n} be a real number sequence 

in [a, 
2

K


 ]. Suppose the following conditions are satisfied: 
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i) 0 < lim infn→∞αn ≤ lim supn→∞αn < 1, 

ii) limn → ∞ βn = 0, n

n 0





 = ∞, 

iii) 
n 0
lim


( n + 1 –  n) = 0, 

For fixed u ∈ C and given x0 ∈ C arbitrary, let the the sequence {xn} be generated by  

xn + 1 = αnxn + (1 – αn)[βnu + (1 – βn)Q(xn –  nAxn)], n ≥ 0,                                                                                          (3.50) 

Then the sequence {xn} defined by (3.50) converges strongly to Q'u, where Q' is a sunny nonexpansive retraction of C 

onto S(C, A). 

In particular, if we take u = 0, then the sequence {xn} generated by 

xn + 1 = αnxn + (1 – αn)[βnu + (1 – βn)Q(xn –  nAxn)], n ≥ 0, 

converges strongly to the minimum norm element in S(C, A).  

In 2013, Ceng et al. [33] gave an implicit iterative scheme by two step relaxed extragradient method in the setting of 

uniformly convex and 2-uniformly smooth Banach spaces as follows: 

 

Theorem 3.2.12: [33] Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth 

Banach space X. Let  C be a sunny nonexpansive retraction from X onto C. Let Bi: C → X be a αi-inverse strongly 

accretive for i = 1, 2. Let f: C → C be a contraction with coefficient ρ ∈ (0, 1). Let 
n 0n{S }



 be an infinite family of 

nonexpansive mappings of C into itself such that F = 
ii 0

Fix(S )



  ≠ ϕ, where   is a fixed point set of the mapping 

G. For arbitrarily given x0 ∈ C, let {xn} be a sequence generated by 

yn = αn f(yn) + (1 – αn)  C (1 –  1B1)  C (1 –  2B2) xn , 

xn+1 =  nxn + (1 –  n)Snyn,  n ≥ 0 ,                                                                                                                                 (3.51) 

where 0 <  i <
i

2K


 for i = 1, 2.   

Let {αn}, {βn} be two sequences in (0, 1) satisfying the following conditions: 

i) limn → ∞ αn = 0, n

n 0





 = ∞, 

ii) 0 < lim infn→∞ n ≤ lim supn→∞ n < 1, 

Assume that 
n 1

sup




 x ∈ D ∥Snx – Sn – 1 x∥ < ∞ for any bounded subset D of C and let S be a mapping of C into itself 

defined by Sx = limn → ∞ Snx for all x ∈ C and suppose that Fix(S) =
ii 0

Fix(S )



. Then {xn} converges strongly to q ∈ 

F, whivh solves the following VIP: 

< q – f (q), J(q - p) > ≤ 0,   p ∈ F. 

 

Theorem 3.2.13: [33] Let C be a nonempty closed convex subset of a uniformly convex Banach space X which has a 

uniformly Gateaux differentiable norm. Let  C be a sunny nonexpansive retraction from X onto C. Let Bi : C → X be 

an  i-strictly pseudocontractive and αi-strongly accretive with αi +  i ≥ 1for i = 1, 2. Let f : C → C be a contraction with 

coefficient ρ ∈ (0, 1). Let 
n 0n{S }



 be an infinite family of nonexpansive mappings of C into itself such that F = 

ii 0
Fix(S )




  ≠ ϕ, where   is a fixed point set of the mapping G. For arbitrarily given x0 ∈ C, let {xn} be a 

sequence generated by 

yn = αn xn + (1 – αn)  C (1 –  1B1)  C (1 –  2B2) xn , 

xn+1 =  n f(xn) + (1 –  n)Snyn,  n ≥ 0 ,                                                                                                                            (3.52) 

where i i

i

i i

1
1 (1 ) 1

1

 
    

 
 for i = 1, 2.   

Let {αn}, {βn} be two sequences in (0, 1) satisfying the following conditions: 

i) 0 < lim infn→∞αn ≤ lim supn→∞αn < 1, 

ii) limn → ∞ βn = 0, n

n 0





 = ∞, 

iii) Either n n 1

n 1







    or limn → ∞ ⎸αn - αn - 1⎸ /  n = 0. 

iv) Either n n 1

n 1







     or limn → ∞  n - 1 /  n = 1. 
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Assume that 
n 1

sup




 x ∈ D ∥Snx – Sn – 1 x∥ < ∞ for any bounded subset D of C and let S be a mapping of C into itself 

defined Sx = limn → ∞ Snx for all x ∈ C and suppose that Fix(S) =
ii 0

Fix(S )



. Then {xn} converges strongly to q ∈ F, 

whivh solves the following VIP: 

< q – f (q), J (q - p) > ≤ 0,   p ∈ F. 

 

Corollary (i). [33] Let C be a nonempty closed convex subset of a uniformly convex Banach space X which has a 

uniformly Gateaux differentiable norm. Let  C be a sunny nonexpansive retraction from X onto C. Let Bi: C → X be an 

 i-strictly pseudocontractive and αi-strongly accretive with αi +  i ≥ 1for i = 1, 2. Let f: C → C be a contraction with 

coefficient ρ ∈ (0, 1). Let S be a nonexpansive mapping of C into itself such that F = Fix(S) ⋂   ≠ ϕ, where   is a fixed 

point set of the mapping G. For arbitrarily given x0 ∈ C, let {xn} be a sequence generated by 

yn = αn xn + (1 – αn)  C (1 –  1B1)  C (1 –  2B2) xn , 

xn+1 =  n f(xn) + (1 –  n)Syn,  n ≥ 0 ,                                                                                                                             (3.53) 

where i i

i

i i

1
1 (1 ) 1

1

 
    

 
 for i = 1, 2.   

Let {αn}, {βn} be two sequences in (0, 1) satisfying the following conditions: 

i) 0 < lim infn→∞αn ≤ lim supn→∞αn < 1, 

ii) limn → ∞ βn = 0, n

n 0





 = ∞, 

iii) Either n n 1

n 1







    or limn → ∞ ⎸αn - αn - 1⎸ /  n = 0. 

iv) Either n n 1

n 1







     or limn → ∞  n - 1 /  n = 1. 

Then {xn} converges strongly to q ∈ F, whivh solves the following VIP: 

< q – f (q), J(q - p) > ≤ 0,   p ∈ F. 

Also they gave an explicit iterative scheme in the setting of uniformly convex Banach spaces with a uniformly Gateaux 

differentiable norm as follows. 

 

Theorem 3.2.14: [33] Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth 

Banach space X. Let  C be a sunny nonexpansive retraction from X onto C. Let Bi: C → X be a αi-inverse strongly 

accretive for i = 1, 2. Let f: C → C be a contraction with coefficient ρ ∈ (0, 1). Let 
n 0n{S }



 be an infinite family of 

nonexpansive mappings of C into itself such that F = ii 0
Fix(S )




  ≠ ϕ, where   is a fixed point set of the mapping 

G. For arbitrarily given x0 ∈ C, let {xn} be a sequence generated by 

yn = αn f(xn) + (1 – αn) Sn C (1 –  1B1)  C (1 –  2B2) xn , 

xn+1 =  nyn + (1 –  n) Sn C (1 –  1B1)  C (1 –  2B2) yn  n ≥ 0 ,                                                                                   (3.54) 

where 0 <  i <
i

2K


 for i = 1, 2.   

Let {αn}, {βn} be two sequences in (0, 1] satisfying the following conditions: 

i) limn → ∞ αn = 0, n

n 0





 = ∞, 

ii) { n} ⊂ [a, 1] for some a ∈ (0, 1), 

iii) Either n n 1

n 1







     or limn → ∞ αn - 1 / αn = 1. 

iv) Either n n 1

n 1







    or limn → ∞ ⎸ n -  n - 1⎸ / αn = 0. 

Assume that 
n 1

sup




 x ∈ D ∥Snx – Sn – 1 x∥ < ∞ for any bounded subset D of C and let S be a mapping of C into itself 

defined Sx = limn → ∞ Snx for all x ∈ C and suppose that Fix(S) = ii 0
Fix(S )




. Then {xn} converges strongly to q ∈ F, 

whivh solves the following VIP: 

< q – f (q), J(q - p) > ≤ 0,   p ∈ F. 
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Corollary (i): [33] Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach 

space X. Let  C be a sunny nonexpansive retraction from X onto C. Let Bi : C → X be an αi-inverse strongly accretive 

for i = 1, 2. Let f : C → C be a contraction with coefficient ρ ∈ (0, 1). Let S be a nonexpansive mapping of C into itself 

such that F = Fix(S) ⋂   ≠ ϕ, where   is a fixed point set of the mapping G. For arbitrarily given x0 ∈ C, let {xn} be a 

sequence generated by 

yn = αn f(xn) + (1 – αn) S C (1 –  1B1)  C (1 –  2B2) xn , 

xn+1 =  nyn + (1 –  n) S C (1 –  1B1)  C (1 –  2B2) yn  n ≥ 0 ,                                                                                    (3.55) 

where 0 <  i <
i

2K


 for i = 1, 2.   

Let {αn}, {βn} be two sequences in (0, 1] satisfying the following conditions: 

i) limn → ∞ αn = 0, n

n 0





 = ∞, 

ii) { n} ⊂ [a, 1] for some a ∈ (0, 1), 

iii) Either n n 1

n 1







     or limn → ∞ αn - 1 / αn = 1. 

iv) Either n n 1

n 1







    or limn → ∞ ⎸ n -  n - 1⎸ / αn = 0. 

Then {xn} converges strongly to q ∈ F, whivh solves the following VIP: 

< q – f(q), J(q - p) > ≤ 0,   p ∈ F. 

 

Corollary (ii): [33] Let C be a nonempty closed convex subset of a real Hilbert space H. Let Bi: C → H be an αi-inverse 

strongly monotone for i = 1, 2. Let f: C → C be a contraction with coefficient ρ ∈ (0, 1). Let 
n 0n{S }



 be an infinite 

family of nonexpansive mappings of C into itself such that F = 
ii 0

Fix(S )



  ≠ ϕ, where   is a fixed point set of 

the mapping G. For arbitrarily given x0 ∈ C, let {xn} be a sequence generated by 

yn = αn f(xn) + (1 – αn) SnPC (1 –  1B1)  C (1 –  2B2) xn , 

xn+1 =  nyn + (1 –  n) SnPC (1 –  1B1)  C (1 –  2B2) yn  n ≥ 0 ,                                                                                    (3.56) 

where 0 <  i < 2αi for i = 1, 2.   

Let {αn}, {βn} be two sequences in (0, 1] satisfying the following conditions: 

i) limn → ∞ αn = 0, n

n 0





 = ∞, 

ii) { n} ⊂ [a, 1] for some a ∈ (0, 1), 

iii) Either n n 1

n 1







     or limn → ∞ αn - 1 / αn = 1. 

iv) Either n n 1

n 1







    or limn → ∞ ⎸ n -  n - 1⎸ / αn = 0. 

Assume that 
n 1

sup




 x ∈ D ∥Snx – Sn – 1 x∥ < ∞ for any bounded subset D of C and let S be a mapping of C into itself 

defined Sx = limn → ∞ Snx for all x ∈ C and suppose that Fix(S) =
ii 0

Fix(S )



. Then {xn} converges strongly to q ∈ F, 

whivh solves the following VIP: 

< q – f (q), J (q - p) > ≤ 0,   p ∈ F. 

 

Corollary (iii): [33] Let C be a nonempty closed convex subset of a real Hilbert space H. Let Bi: C → H be an αi-

inverse strongly monotone for i = 1, 2. Let f: C → C be a contraction with coefficient ρ ∈ (0, 1). Let S be a 

nonexpansive mapping of C into itself such that F = Fix(S) ⋂   ≠ ϕ, where   is a fixed point set of the mapping G. For 

arbitrarily given x0 ∈ C, let {xn} be a sequence generated by 

yn = αn f(xn) + (1 – αn) SPC (1 –  1B1)  C (1 –  2B2) xn , 

xn+1 =  nyn + (1 –  n) SPC (1 –  1B1)  C (1 –  2B2) yn  n ≥ 0 ,                                                                                     (3.57) 

where 0 <  i < i

2K


 for i = 1, 2.   

Let {αn}, {βn} be two sequences in (0, 1] satisfying the following conditions: 

i) limn → ∞ αn = 0, n

n 0





 = ∞, 
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ii) { n} ⊂ [a, 1] for some a ∈ (0, 1), 

iii) Either n n 1

n 1







     or limn → ∞ αn - 1 / αn = 1. 

iv) Either n n 1

n 1







    or limn → ∞ ⎸ n -  n - 1⎸ / αn = 0. 

Then {xn} converges strongly to q ∈ F, whivh solves the following VIP: 

< q –f (q), J (q - p) > ≤ 0,   p ∈ F. 

 

Corollary (iv): [33] Let C be a nonempty closed convex subset of a real Hilbert space H. Let T: C → C be a 

pseudocontractive mapping and let S be a nonexpansive mapping of C into itself such that F = Fix(S) ⋂ Fix (T) ≠ ϕ. Let 

f: C → C be a contraction with coefficient ρ ∈ (0, 1). For arbitrarily given x0 ∈ C, let {xn} be a sequence generated by 

yn = αn f(xn) + (1 – αn) S((1 –  )xn) +  Txn), 

xn+1 =  nyn + (1 –  n) S((1 –  )yn) +  Tyn),  n ≥ 0 ,                                                                                                      (3.58) 

where 0 <   < 1 - k. Let {αn}, {βn} be two sequences in (0, 1] satisfying the following conditions: 

i) limn → ∞ αn = 0, n

n 0





 = ∞, 

ii) { n} ⊂ [a, 1] for some a ∈ (0, 1), 

iii) Either n n 1

n 1







     or limn → ∞ αn - 1 / αn = 1. 

iv) Either n n 1

n 1







    or limn → ∞ ⎸ n -  n - 1⎸ / αn = 0. 

Then {xn} converges strongly to q ∈ F, whivh solves the following VIP: 

< q – f (q), J (q - p) > ≤ 0,   p ∈ Fix(S) ⋂ Fix(T). 

 

Corollary (v): [33] Let H be a real Hilbert space. Let A be an α-inverse-strongly monotone mapping of H into itself and 

let S be a nonexpansive mapping of C into itself such that Fix(S) ⋂ A
-1

0≠ ϕ. Let f: H → H be a contraction with 

coefficient ρ ∈ (0, 1). For arbitrarily given x0 ∈ C, let {xn} be a sequence generated by 

yn = αn f(xn) + (1 – αn) S(xn -  Axn), 

xn+1 =  nyn + (1 –  n) S(yn -  Ayn),  n ≥ 0 ,                                                                                                                   (3.59) 

where 0 <   < 2α. Let {αn}, {βn} be two sequences in (0, 1] satisfying the following conditions: 

i) limn → ∞ αn = 0, n

n 0





 = ∞, 

ii) { n} ⊂ [a, 1] for some a ∈ (0, 1), 

iii) Either n n 1

n 1







     or limn → ∞ αn - 1 / αn = 1. 

iv) Either n n 1

n 1







    or limn → ∞ ⎸ n -  n - 1⎸ / αn = 0. 

Then {xn} converges strongly to q ∈ Fix(S) ⋂ A
-1

0, whivh solves the following VIP: 

< q – f (q), q - p > ≤ 0,   p ∈ Fix(S) ⋂ A
-1

0. 

In 2013, Kangtunyakarn [3] proved a strong convergence theorem for finding a common element of the set of solutions 

of a finite family of variational inequality problems and the set of fixed points of a nonexpansive mapping and an  -

strictly pseudo-contractive mapping in uniformly convex and 2-uniformly smooth spaces. 

Firstly, we give a definition. 

 

Definition: Let C be a nonempty closed convex subset of a Banach space H. Let 
N

i 1i{T}


be finite family of 

nonexpansive mappings of C into itself and let  1,  2,……..,  N, be real numbers such that 0 ≤  i ≤ 1 for every i = 1, 2, 

……, N. Define a mapping K : C → C as follows: 

 1 =  1T1 + (1 -  1) I, 

 2 =  2T2  1 + (1 –  2)  1, 

 3 =  3T3  2 + (1 –  3)  2, 

: 

 N - 1 =  N-1 TN-1  N-2 + (1 –  N-1)  N-2,                                                                                                                        (3.60) 

K =  N =  NTN  N-1 + (1 –  N)  N-1, 

Such a mapping K is called the K–mapping generated by T1, T2,……. TN and  1,  2,….. ,  N. 
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Theorem 3.2.15: [3] Let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach 

space E. Let QC be a sunny nonexpansive retraction from E onto C. For every i = 1, 2, ……, N, let Ai : C → E α-inverse 

strongly accretive mappings. Define a mapping Gi : C → C by QC(I –  iAi)x = Gix for all x ∈ C and i = 1, 2, ……, N, 

where  i ∈ (0, i

2

K


 ), K is the 2-uniformly smooth constant of E. Let B : C → C be the K-mapping generated by G1, 

G2,….., GN and  1,  2,……,  N, where  i ∈ (0, 1),   i = 1, 2, ……, N – 1 and  N ∈ (0, 1]. Let T : C → C be a 

nonexpansive mapping and S : C → C be an  -strictly pseudocontractive mapping with F = F(S) ⋂ F(T) 
N

ii 1
S(C,A )


 

≠ ϕ. Define a mapping BA : C → C by T((1 - α)I + αS)x = BAx,   x ∈ C and α ∈ (0, 
2

K


 ). For arbitrarily given x1 ∈ C, 

let {xn} be a sequence generated by 

xn+1 = αn f(xn) +  nxn +  nBxn +  nBAxn,   n ≥ 1,                                                                                                          (3.61) 

where f: C → C is a contractive mapping and {αn}, { n}, { n}, { n} ⊆ [0, 1], αn +  n +  n +  n = 1 and satisfy the 

following conditions: 

i) limn → ∞ αn = 0, n

n 0





 = ∞, 

ii) { n}, { n}⊆ [c, d] ⊂ (0, 1), for some c, d > 0,   n ≥ 1, 

iii) n 1 n

n 1







    , n 1 n

n 1







     , n 1 n

n 1







     

iv) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. 

Then the sequence {xn} converges strongly to q ∈ F, whivh solves the following VIP: 

< q –f (q), j (q - p) > ≤ 0,   p ∈ F. 

In 2013, Atid Kangtunyakarn [2], introduced a new mapping, called S
A
-mapping to modify the Halpern iterative 

scheme for finding a common element of two sets of solutions of variational inequality problem and the set of fixed 

points of a finite family of nonexpansive mappings and the set of fixed points of a finite family of strictly pseudo-

contrctive mappings in a uniformly convex and 2-uniformly smooth Banach space. 

Firstly, we give a definition. 

 

Definition: Let C be a nonempty closed convex subset of a Banach space H. Let 
N

i 1i{S }


 and 
N

i 1i{T}


be two finite 

families of mappings of C into itself. For each j = 1, 2, ……, N, let αj = (α1
j 
, α2

j
, α3

j
) ∈ I   I   I , where I ∈ [0, 1] and 

α1
j 
+ α2

j 
+ α3

j
 = 1. Define S

A
 : C → C as follows: 

 0 = T1 = I, 

 1 = T1 (α1
1
S1  0

 
+ α2

1
  0

 
+ α3

1
I), 

 2 = T2 (α1
2
S2  1

 
+ α2

2
  1

 
+ α3

2
I), 

 3 = T3 (α1
3
S3  2

 
+ α2

3
  2

 
+ α3

3
I), 

: 

 N - 1 = TN - 1(α1
N - 1 

SN - 1  N - 2
 
+ α2

N - 1
  N - 2

 
+ α3

N - 1
I),                                                                                                (3.62) 

S
A
 =  N = TN (α1

N 
SN N - 1

 
+ α2

N N - 1
 
+ α3

N
I), 

This mapping is called the S
A
 –mapping generated by S1, S2,….., SN, T1, T2,……. TN and α1, α2,….. , αN. 

 

Theorem 3.2.16: [2] let C be a nonempty closed convex subset of a uniformly convex and 2-uniformly smooth Banach 

space E. Let QC be a sunny nonexpansive retraction from E onto C. Let A, B be α- and  -inverse strongly accretive 

mappings of C into E, respectively. Let 
N

i 1i{S }


 be a finite family of ki-strict pseudocontractions of C into itself and let 

N

i 1i{T}


 be a finite family of nonexpansive mappings of C into itself such that F = 
N N

i ii 1 i 1
F(S ) F(T )

 
⋂ S(C, A) ⋂ 

S(C, B) ≠ ϕ and k = min {ki: i = 1, 2,……, N} with K
2
 ≤ k, where K is the 2-uniformly smooth constant of E. Let αj = 

(α1
j 
, α2

j
, α3

j
) ∈ I   I   I, where I ∈ [0, 1], α1

j 
+ α2

j 
+ α3

j
 = 1, α1

j
 ∈ (0, 1], α2

j
 ∈ [0, 1], α3

j
 ∈ (0, 1) for all j = 1, 2, ……, N. 

Let S
A
 be the S

A
 –mapping generated by S1, S2,….., SN, T1, T2,……. TN and α1, α2,….. , αN. 

Let {xn} be the sequence generated by x1, u ∈ C and 

xn+1 = αnu +  nxn +  n QC (I – aA) xn +  n QC (I – bB) xn +  n S
A
 xn , n ≥ 1 ,                                                               (3.63) 

where {αn},{ n},{ n},{ n},{ n} ∈ [0, 1] and αn +  n +  n +  n +  n = 1 and satisfy the following conditions: 

i) limn → ∞ αn = 0, n

n 0





 = ∞, 

ii) { n}, { n}, { n}⊆ [c, d] ⊂ (0, 1), for some c, d > 0,   n ≥ 1, 
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iii) 
n 1 n

n 1







     , 
n 1 n

n 1







    ,
n 1 n

n 1







     ,
n 1 n

n 1







    n 1 n

n 1







    , 

iv) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1, 

v) a ∈ (0, 
2K


) and b ∈ (0, 

2K


). 

Then {xn} converges strongly to z0 = QF u, where QF is the sunny nonexpansive retraction of C onto F.  
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