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Abstract 
 

This paper considers the partially linear model when the explanatory variables are highly correlated as well as the dataset contains outli-

ers. We propose new robust biased estimators for this model under these conditions. The proposed estimators combine least trimmed 

squares and ridge estimations, based on the spline partial residuals technique. The performance of the proposed estimators and the 

Speckman-spline estimator has been examined by a Monte Carlo simulation study. The results indicated that the proposed estimators are 

more efficient and reliable than the Speckman-spline estimator. 
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1. Introduction 

The Partially linear model (PLM) is one of the most commonly used semi-parametric regression models, which it allows both parametric 

and nonparametric specifications in the regression function. This model has gained great popularity since it was first introduced by Engle 

et al (1986) and has been widely applied in economics, social, and biological sciences. A PLM is defined by:  

 

     
    (  )                                                                                                                                                                           (1) 

 

Where    denotes the response variable,    is the random error term, and   ,    are     and     of regressors, respectively. The finite 

dimensional parameter   is the parametric part of the model, and the unknown function  ( ) is the non-parametric part of it. The classical 

assumptions of this model are: 
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Speckman (1988) proposed a general estimation method for PLM based on the partial residuals technique (PRT), and he considered the 

kernel approach to estimate the nonparametric component. There are other estimators have been proposed for this model, such as Chen 

and Shiau (1991), Ahn and Powell (1993), Hamilton and Truong (1997), Yatchew (1997, 2000, 2003), Fadili and Bullmore (2005), Ay-

dın (2014), Abonazel and Gad (2018), and El-Sayed et al (2019). Härdle et al (2000) and Abonazel (2018a) reviewed some of these esti-

mators. 

Recently, Abonazel et al (2019) modified the Speckman estimator by using the spline smoothing approach, and they showed that the 

PRT based on spline smoothing approach is more efficient than traditional PRT based on the kernel smoothing approach.  

In this paper, we propose efficient estimators of the PLM if the dataset combining the problem of multicollinearity and outlier values. 

The proposed estimators are the modified version of Abonazel et al (2019) estimator based on a method that combines least trimmed 

squares (LTS) and ridge estimations. The similar estimators have been provided by Amini and Roozbeh (2016) and Roozbeh (2016) 

based on the kernel smoothing approach.  

The rest of the paper is organized as follows. In the next section, we introduce the Speckman-Spline estimator that was proposed by 

Abonazel et al (2019). Our proposed estimators are presented in Section 3. While in Section 4, the Monte Carlo simulation study is con-

ducted to compare the performance of the different estimators. Concluding remarks are included in Section 5. 
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2. Speckman-spline estimator 

The PLM in (1) can be written in matrix form as: 

 

      ( )     

 

Where   (       )
 ,   (       )

 ,   (       )
 , and    [     ]. Taking the conditional expectation with respect to 

Z and differencing the two equations leads to (Härdle et al, 2004): 

 

 ̃   ̃   ̃                                                                                                                                                                                                     (2) 

 

Where  ̃      ( | ),  ̃     ( | ), and  ̃     ( | ). Using the modified regression in (2), the vector of the parametric pa-

rameters ( )  can be estimated separately. The modified variables  ̃  and  ̃  are calculated using the fact that the conditional 

tion  ( | ) can be estimated through a non-parametric regression on the explanatory variable  .  

The Nadaraya–Watson kernel approach has been used by Speckman (1988) to estimate the nonparametric part in PLM. However, in 

Abonazel et al (2019) estimator, the nonparametric part has been estimated by the spline smoothing approach. Abonazel et al (2019) 

showed that their estimation is more efficient than the traditional Speckman estimation. We will call Abonazel et al (2019) estimator as 

Speckman-spline (SS) estimator, and we can summarize SS estimator in the following algorithm: 

Step 1: Making a smoother spline matrix   , depending on smoothing parameter   and the knot points. 

Step 2: Calculating  ̃  (     )  and  ̃  (     ) . 

Step 3: Estimating the parametric component:  ̂  (  ̃  ̃)
   

 ̃   ̃  

Step 4: Estimating the non-parametric component:  ̂    (    ̂)     
 ; where the smoothing estimate  ̂  of the fitted values 

        ̂ is projected by:  ̂  [ ̂ (  )    ̂ (  )]
    (  

         
 )     

 , where  ̂  is a natural cubic spline with knots at 

          for a fixed     , and    is a well-known positive-definite matrix.  

To gain better perspective on smoothing spline, the estimation of the parameters of PLM can be performed by minimizing the following 

sum of squares equation: 

 

  (   ̂)  ∑ [(      
  ̂)   (  )]

 
  ∫ [   ( )] 

 

 
 
                                                                                                                              (3) 

 

Where  ̂ is the estimated parametric component given from step 3 in the algorithm above. To solve Equation (3), an iterative algorithm is 

required.  

3. The proposed estimator 

In this paper, we consider the PLM in the case of the columns of the design matrix   have a near-linear dependence, so that     is nearly 

singular. In this case, the OLS estimate becomes highly sensitive to random errors in the observed response variable with large variances. 

This case called in econometric literature as multicollinearity problem. There are many methods to handle this problem in regression 

models such as ridge, Liu, principal components, etc.  

Besides multicollinearity problem, we consider the dataset contain outlier values. The outliers are another common problem in the re-

gression analysis. There are many robust regression methods that are used to overcome the effects of outliers. 

In this paper, we propose a new robust biased estimator of PLM based on LTS method plus ridge regression. We use LTS-ridge estimator 

in stage 3 (in the above algorithm) instead of OLS estimator, the formula of the proposed (LTS-ridge) estimator is (Kan et al, 2013): 

 

 ̂      ( ̃  ̃       )
   

( ̃  ̃)  ̂     

 

Where      is the robust choice of the k parameter in ridge regression, and the total MSE (TMSE) of  ̂      is 
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Where   values are the eigenvalues of  ̃  ̃ matrix. This estimator is resistant to the combined problem of multicollinearity and outliers. 

Here,   and    are replaced by their LTS estimates  ̂    and  ̂   
  to obtain the minimum TMSE estimate, see Arslan and Billor (1996).  

In this paper, we suggest using the three ridge parameters in  ̂     : 

1) Updating the formula of the ridge parameter that is proposed by Kibria (2003): 
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2) We suggest the following new ridge parameters: 
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Where  ̂  (   ̃  ̃ )
  

    ̃   ̃; with   eigenvectors of  ̃  ̃ matrix. Using the three ridge parameters above in  ̂     , we get three 

robust-ridge (RR) estimators: RR1, RR2, and RR3, respectively.  
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4. The simulation study 

In this section, we investigate the performance of the presented estimators above through a Monte Carlo simulation study. In fact, we 

make a comparison study between the SS estimator and the proposed robust-ridge (RR1, RR2, and RR3) estimators. R software is used 

to perform our simulation study. For information about how to make Monte Carlo simulation studies using R, see Abonazel (2018b).  

The simulated dataset is carried out based on Equation (1) with the following simulation settings: 

1) The different sample sizes have been used as:   100, 150, 200, 300, and 500. 

2) The number of parametric coefficients are    2, 8; with       and        , as Månsson and Shukur (2011) and KaÇiran-

lar and Dawoud (2018). 

3) Two functions have been used for the nonparametric component in the model: 

 

           (  ) and           (   ). 
 

4) The explanatory variables:      (    ), where diag (  ) = 1 and off-diag (  ) =   , as Abonazel and Farghali (2018) and 

Abonazel (2019), where         and     . While the variable   is generated from uniform distribution from -1 to 1. 

5) The errors are generated from normal distribution with mean zero and standard deviation    0.5. To generate some outlier values 

in the model with       or       ratios, we replace some values randomly (according to the selected ratio) from the vector 

of errors with other values generated from uniform distribution from 3 to 7. 

6) All Monte Carlo experiments involved 1000 replications and all the results of all separate experiments are obtained by precisely 

the same series of random numbers. 

The goodness of fit of  ̂ and  ̂ can be quantified by computing the average of mean squared error (AMSE) values of  ̂ and  ̂ at each 

iteration  ;             The MSE of  ̂ and  ̂ are calculated as: 
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        ( ̂)  
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Where  ̂(  ) and  ̂  are the estimated values of  (  ) and   , respectively. To simplify the tables of the simulation results, we presented 

the total AMSE (TAMSE): TAMSE = AMSE of parametric part + AMSE of nonparametric part. 

The simulation results are recorded in Tables 1–8. These tables present the TAMSE of the estimators in different factors (      and non-

parametric function). Specifically, Tables 1-4 present the TAMSE values of the estimators when     (with              and      ), 

while case of     (with the same cases of    and the same nonparametric functions) is presented in Tables 5-8.  

From Tables 1-8, we can summarize some effects for all estimators in the following points: 

 As   increases, the TAMSE values increase. 

 As   increases, the TAMSE values decrease. 

 As    increases, the TAMSE values increase. 

 As   increases, the TAMSE values increase. 

In general, in all simulation situations, we can conclude that the TAMSE values of all RR estimators are smaller than the TAMSE values 

of SS estimator, and the efficient RR estimators are RR1 and RR3.  

 
Table 1: TAMSE Values for the Estimators of    when     and        

  
 RR Estimators 

SS RR1 RR2 RR3 

  = 15%     

100 0.7908 0.5438 0.6196 0.7090 
150 0.6849 0.4685 0.5450 0.6345 

200 0.6636 0.4934 0.5713 0.6619 

300 0.6241 0.4365 0.5093 0.5970 
500 0.5979 0.4647 0.5442 0.6353 

  = 35%     

100 3.4007 1.2714 1.3531 1.4433 

150 3.2041 0.8933 0.9733 1.0658 
200 3.2143 0.9071 0.9862 1.0821 

300 3.1619 0.7888 0.8763 0.9752 

500 3.1231 0.7500 0.8468 0.9562 

 
Table 2: TAMSE Values for the Estimators of    when     and        

  
 RR Estimators 

SS RR1 RR2 RR3 

  = 15%     

100 1.1643 0.3515 0.3797 0.4027 

150 0.9231 0.3027 0.3368 0.3707 
200 0.8345 0.2417 0.2689 0.2999 

300 0.7367 0.2457 0.2746 0.3090 
500 0.6671 0.2240 0.2577 0.2972 

  = 35%     

100 3.9254 1.5226 1.5184 1.4871 

150 3.5555 1.0405 1.0579 1.0601 

200 3.4909 0.8579 0.8826 0.8981 
300 3.3505 0.7054 0.7327 0.7581 

500 3.2201 0.5665 0.6000 0.6380 
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Table 3: TAMSE Values for the Estimators of    when     and        

  
 RR Estimators 

SS RR1 RR2 RR3 

  = 15%     

100 0.7879 0.5359 0.6101 0.6956 

150 0.6851 0.5151 0.5919 0.6787 

200 0.6630 0.5302 0.6127 0.7060 
300 0.6234 0.4515 0.5283 0.6187 

500 0.5980 0.4524 0.5316 0.6233 

  = 35%     

100 3.4028 1.2853 1.3824 1.4888 
150 3.2031 0.9638 1.0450 1.1348 

200 3.2173 0.8819 0.9625 1.0528 

300 3.1605 0.7921 0.8734 0.9677 
500 3.1266 0.7063 0.7948 0.8984 

 
Table 4: TAMSE Values for the Estimators of    when     and        

  
 RR Estimators 
SS RR1 RR2 RR3 

  = 15%     

100 1.1573 0.3660 0.3924 0.4137 

150 0.9214 0.3086 0.3423 0.3757 

200 0.8335 0.2646 0.2988 0.3376 
300 0.7357 0.2494 0.2853 0.3269 

500 0.6677 0.2109 0.2427 0.2789 

  = 35%     

100 3.9243 1.4762 1.4706 1.4417 
150 3.5547 1.0784 1.0977 1.1029 

200 3.4935 0.8534 0.8733 0.8873 

300 3.3498 0.7082 0.7413 0.7748 
500 3.2229 0.5219 0.5647 0.6123 

 
Table 5: TAMSE Values for the Estimators of    when     and        

  
 RR Estimators 
SS RR1 RR2 RR3 

  = 15%     

100 0.8510 0.1602 0.1425 0.1338 

150 0.7232 0.1353 0.0862 0.0829 

200 0.7041 0.1161 0.0661 0.0626 
300 0.6481 0.0975 0.0410 0.0389 

500 0.6159 0.0902 0.0230 0.0222 

  = 35%     

100 3.5408 1.4267 1.5154 1.4008 

150 3.2972 0.8792 0.9280 0.8722 
200 3.3195 0.6905 0.7272 0.6975 

300 3.1821 0.4612 0.4808 0.4679 

500 3.1375 0.3183 0.3019 0.2980 

 
Table 6: TAMSE Values for the Estimators of    when     and        

  
 RR Estimators 

SS RR1 RR2 RR3 

  = 15%     

100 1.4964 0.2451 0.2690 0.2029 

150 1.1292 0.1567 0.1933 0.1466 

200 1.0161 0.1130 0.1568 0.1231 

300 0.8300 0.0694 0.1073 0.0860 
500 0.7315 0.0435 0.0739 0.0616 

  = 35%     

100 4.6042 2.1915 1.9073 1.5595 

150 3.9774 1.3846 1.3212 1.1045 
200 3.7422 1.0338 1.0322 0.8859 

300 3.5109 0.6925 0.7299 0.6433 

500 3.3413 0.4413 0.4885 0.4488 

 
Table 7: TAMSE Values for the Estimators of    when     and        

  
 RR Estimators 

SS RR1 RR2 RR3 

  = 15%     

100 0.8514 0.1668 0.1425 0.1344 
150 0.7260 0.1295 0.0873 0.0827 

200 0.7047 0.1083 0.0672 0.0656 

300 0.6489 0.1204 0.0415 0.0398 
500 0.6155 0.0791 0.0235 0.0230 

  = 35%     

100 3.5354 1.4131 1.5005 1.3976 

150 3.2920 0.8780 0.9393 0.8962 

200 3.3133 0.6807 0.7239 0.6940 
300 3.1785 0.4582 0.4806 0.4681 
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500 3.1376 0.3074 0.2993 0.2959 

 
Table 8: TAMSE Values for the Estimators of    when     and        

  
 RR Estimators 
SS RR1 RR2 RR3 

  = 15%     

100 1.5234 0.2499 0.2640 0.1962 

150 1.1496 0.1499 0.1920 0.1504 

200 1.0186 0.1206 0.1633 0.1287 
300 0.8564 0.0755 0.1137 0.0914 

500 0.7365 0.0438 0.0729 0.0618 

  = 35%     

100 4.5575 2.0993 1.8432 1.5063 

150 3.9534 1.3338 1.2723 1.0695 
200 3.8058 1.0273 1.0282 0.8809 

300 3.5059 0.6777 0.7175 0.6351 

500 3.3261 0.4126 0.4564 0.4184 

 

Graphically, we will illustrate the degree of goodness of fit of the four estimators for the several nonparametric functions (         
    (   )           ) via the simulated datasets with different factors (       and   ). Figures 1-4 show the fitted curves of the 

estimators based on the four nonparametric functions, respectively. From Figure 1, we find that the fitted curves based on RR estimators 

are closer to the true curve than SS estimator; although the model contains many outliers and the explanatory variables are correlated. 

The same results can be concluded from figures 2-4. This means that RR estimators perform better regardless of the form of the nonpar-

ametric function and are not sensitive to outliers in the model. 

 

 
Fig. 1: Fitted Values for the Estimators of    when            and       . 

 

 
Fig. 2: Fitted Values for the Estimators of    when            and       . 
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Fig. 3: Fitted Values for the Estimators of    when            and     . 

 

 
Fig. 4: Fitted Values for the Estimators of    when            and     .95. 

 

5. Conclusion 

In this paper, we developed new LTS-ridge estimators for PLM when there are high inter-correlations between the explanatory variables 

as well as the dataset contains outliers. Moreover, new biasing parameters are suggested. A Monte Carlo simulation study was conducted 

to evaluate the performance of SS estimator (proposed by Abonazel et al, 2019) and our LTS-ridge estimators. The simulation results 

indicate that our LTS-ridge estimators are efficient than SS estimator in all situations.  
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