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Abstract

We prove a unique fixed point theorem for a function depending from four self maps satisfying (φ− ψ)-contractive
condition in partial metric spaces. Presented results extend and generalize some existing fixed point results in the
literature.
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1. Introduction

The Notion of partial metric space have originally developed by S.G. Matthews ([3]) to provide mechanism gen-
eralizing metric space theories. This relatively new field has been shown to have vast application potentials [6] in
the study of computer domains and semantics [7]. The partial metric spaces play an important role in constructing
models in the theory of computation see [1, 3, 6, 8].

S.G Matthews ([3])., Sandra Oltra and Oscar Valero [8], Salvador Romaguerra [9], I. Altun, Ferhan Sola [1] and
K.P.R Rao and G.N.V. Kishore [5] proved fixed point theorems in partial metric spaces for a single map.

In this paper, we prove a unique fixed point theorem for four self mappings for a generalized operator depending
from (ψ − ϕ) contractive condition in partial metric spaces.

First, let us recall some definitions and lemmas of partial metric spaces that we will use in the sequel.

2. Preliminaries

Definition 2.1 (([3]).). A partial metric on a nonempty set X is a function p : X ×X → R+ such that for all
x, y, z ∈ X :

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y),
(p2) p(x, x) ≤ p(x, y), p(y, y) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space (X, p) is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.
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Remark 2.2 (([3]).). It is clair that

a) |p(x, y)− p(y, z)| ≤ p(x, z),∀x, y, z ∈ X.

b) p(x, y) = 0 =⇒ x = y.

c) If x = y, p(x, y) may not be zero. We consider the following counter-example, the pair (R+, p) , where p(x, y) =
max{x, y} for all x, y ∈ R+.

d) If p is a partial metric on X, then the function ps : X×X → R+given by ps(x, y) = 2p(x, y)−p(x, x)−p(y, y)
is a metric on X.

Each partial metric p on X generates a T0 topology τp on X which has a base the family of open p−balls
{Bp(x, ε), x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

Definition 2.3 (([3])) Let (X, p) be a partial metric space.

(i) A sequence {xn} in (X, p) is said to converge to a point x ∈ X if, and only if p(x, x) = lim
n→∞

p(x, xn).

(ii) A sequence {xn} in (X, p) is said to be Cauchy sequence if the limit: lim
m,n→∞

p(xn, xm) exists and is finite.

(iii) (X, p) is said to be complete if every Cauchy sequence {xn} in X converges, with respect to τp, to a point
x ∈ X, such that

p(x, x) = lim
n,m→∞

p(xn, xm)

Lemma 2.4 (([3])) Let (X, p) be a partial metric space. Then:

(a) {xn} is a Cauchy sequence in (X, p) if, and only if it is a Cauchy sequence in the metric space (X, ps) .

(b) (X, p) is complete if, and only if the metric space (X, ps) is complete. Furthermore, lim
n→∞

ps(x, xn) = 0 if, and

only if

p(x, x) = lim
n,m→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

Matthews ([3]) obtained the following Banach fixed point theorem on complete partial metric spaces.

Theorem 2.5 ([3]). Let f be a mapping of a complete partial metric space (X, p) into itself such that there is a
real number c with 0 ≤ c < 1, satisfying the following condition:

for all x, y ∈ X : p(fx, fy) ≤ cp(x, y),

then f has a fixed point.

In 2010, I. Altun, F.Sola and H. Simsek [1], proved the following result, that generalizes Theorem 1 of Matthews.

Theorem 2.6 [1]. Let (X, p) be a complete partial metric space and let T : X → X be a map such that:

p(Tx, Ty) ≤ ϕ
(

max
{
p(x, y), p(x, Tx), p(y, Ty),

1

2
[p(x, Ty) + p(y, Tx)]

})
for all x, y ∈ X, where ϕ : R+ → R+ is continuous non-decreasing function such that ϕ(t) < t and the series∑
n≥1 ϕ(t) converges for all t0. Then T has a unique fixed point.

Very recently, Ljubomir Ciric, B. Samet, H. Aydi and C. Vetro [4], have proved a common fixed point theorem
for four mappings satisfying a generalized nonlinear contraction type condition on partial metric spaces and they
have given some application related to the homotopy for some operators on a set endowed with a partial metric.
The following theorem [4] extended and generalized the results obtained in [1].
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Theorem 2.7 [4]. Suppose that A,B, S and T are self-maps of a complete partial metric space (X, p) such that
Ax ⊂ TX, BX ⊂ SX and

p(Ax,By) ≤ ϕ (M (x, y)) ,

for all x, y ∈ X, where ϕ ∈ Φ and

M (x, y)=max
{
p(Sx, Ty), p(Ax, Sx), p(By, Ty),

1

2
[p(Sx,By) + p(Ax, Ty)]

}
If one of the ranges AX,BX, TX and SX is a closed subset of (X, p) , then

(i) A and S have a coincidence point.

(ii) B and T have a coincidence point.

In [5] K.P.R Rao and G.N.V. Kishore have obtained a unique fixed point theorem for self maps satisfying ψ−ϕ
contractive condition in partial metric spaces. They generalized and improved some results of Altun et al.[1].

Theorem 2.8 [5]. Let (X, p) be a complete partial metric space and let

S, T, f, g : X → X

be such that

ψ (p(Sx, Ty)) ≤ ψ (M (x, y))− ϕ (M (x, y)) for all x, y ∈ X,

where ϕ, ψ : [0,∞ [→ [0,∞ [. ψ is continuous, nondecreasing and ϕ is lower semi-continuous with ϕ(t) < t and

M (x, y) = max

{
p(fx, gy, p(fx, Sx, p(gy, Ty,

1

2
[p(fx, Ty) + p(gy, Sx)]

}

(i) T and F have a coincidence point.

(ii) g and S have a coincidence point.

Before stating our main results, we recall the following definitions.

Definition 2.9 Let X be a non-empty set and T1, T2 : X → X are given self-maps on X. The pair (T1, T2) is said
to be weakly compatible if T1T2t = T2T1t, whenever T1t = T2t for some t in X.

Our main results are the following:

3. Main Results

Theorem 3.1 Let (X, p) be a complete partial metric space and let A,B, S, T : X → X be such that

A(X) ⊂ T (X) and B(X) ⊂ S(X) (1)

ψ (p (Ax,By)) ≤ ψ (θ (x, y))− ϕ (θ (x, y)) for all x, y ∈ X (2)

where

θ (x, y) = λp (Ax, Sx) + µp (By, Ty) + δp (Sx, Ty) + γ [p (Ax, Ty) + p (Sx,By)] (3)

µ, δ, γ, λ ∈]0, 1[ and µ+ δ + 2γ + λ < 1. (4)

and ϕ, ψ : [0,∞ [→ [0,∞ [. ψ is continuous, nondecreasing and ϕ is lower semi-continuous, ϕ (t) = ψ (t) = 0⇐⇒
t = 0. If either T (X) or S (X) is a complete subspace of X and the pairs (A,S) and (B, T ) are weakly compatible,
then A,B, S and T have a unique common fixed point in X.
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Proof. Let x0 ∈ X be any element in X. Using (1), we construct sequences (xn) , (yn) in X such that{
Ax

2n
= Tx

2n+1
= y

2n
Bx

2n+1
= Sx

2n+2
= y

2n+1
for all n ≥ 1. (5)

First we prove that, if there exists n ≥ 1 such that θ
(
x

2n
, x

2n−1

)
= 0, then

y
2n

= y
2n−1

(6)

By taking x = x2n and y = x2n−1 in (3) , we get

0 = θ
(
x2n , x2n−1

)
= λp (Ax2n , Sx2n) + µp

(
Bx2n−1 , Tx2n−1

)
+δp

(
Sx2n , Tx2n−1

)
+γ
[
p
(
Ax2n , Tx2n−1

)
+ p

(
Sx2n , Bx2n−1

)]
= λp

(
y2n , y2n−1

)
+ µp

(
y2n−1 , y2n−2

)
+ δp

(
y2n−1 , y2n−2

)
+γ
[
p
(
y2n , y2n−2

)
+ p

(
y2n−1 , y2n−1

)]
.

Thus, since λ > 0 and λp
(
y
2n
, y

2n−1

)
≤ θ

(
x

2n
, x

2n−1

)
= 0, it follows that

p
(
y
2n
, y

2n−1

)
= 0,

hence

y2n = y2n −1 (7)

Now we claim if (7) is true, then we have

y
2n

= y
2n +1

, (8)

θ
(
x

2n
, x

2n+1

)
= λp (Ax

2n
, Sx

2n
) + µp

(
Bx

2n+1
, Tx

2n+1

)
+δp

(
Sx

2n
, Tx

2n+1

)
+γ
[
p
(
Ax

2n
, Tx

2n+1

)
+ p

(
Sx

2n
, Bx

2n+1

)]
= λp

(
y2n , y2n−1

)
+ µp

(
y2n+1 , y2n

)
+ δp

(
y2n−1 , y2n

)
+γ
[
p (y2n , y2n) + p

(
y2n−1 , y2n+1

)]

 (9)

From (9) and by the triangle inequality we get

θ
(
x

2n
, x

2n+1

)
≤ (λ+ δ)p

(
y
2n
, y

2n+1

)
+ µp

(
y
2n+1

, y
2n

)
+ γ

[
p
(
y
2n
, y

2n+1

)
+ p

(
y
2n
, y

2n−1

)
− p (y

2n
, y

2n
) + p (y

2n
, y

2n
)
]

Hence

θ
(
x

2n
, x

2n+1

)
≤ (γ + δ + λ) p

(
y
2n−1

, y
2n

)
+ (µ+ γ) p

(
y
2n
, y

2n+1

)
. (10)

Since

p
(
y2n , y2n−1

)
= p (y2n , y2n) ≤ p

(
y2n , y2n+1

)
, (11)

then from (10), (11) and (4) we obtain

θ (x2n, x2n+1) ≤ (λ+ µ+ δ + 2γ) p (y2n, y2n+1)
< p

(
y2n , y2n+1

) }
(12)

Since ψ is monotone, then

ψ
(
θ
(
x

2n
, x

2n+1

))
≤ ψ

(
p
(
y
2n
, y

2n+1

))
, (13)

p (Ax,By) = p
(
Ax2n , Bx2n+1

)
= p

(
y2n , y2n+1

)
. (14)
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From (13) , (14) and (2) we get

ψ
(
p
(
y
2n
, y

2n+1

))
≤ ψ

(
p
(
y
2n
, y

2n+1

))
− ϕ

(
θ
(
x

2n
, x

2n+1

))
.

By the property of ϕ, we have ϕ
(
θ
(
x

2n
, x

2n+1

))
= 0, this implies that

θ
(
x

2n
, x

2n+1

)
= 0.

By the fact that λ > 0 and λp
(
y
2n
, y

2n+1

)
≤ θ

(
x

2n
, x

2n+1

)
= 0, therefore y

2n
= y

2n+1
. Continuing in this way, we

can conclude that yn = yn+k for all k ≥ 0. Thus, the sequence {yn} is a Cauchy sequence. Now we can suppose
that

θ
(
x

2n
, x

2n+1

)
= 0 for all n ≥ 1. (15)

Setting p2n = p(y2n , y2n+1). We claim that

p
2n+1

≤ p
2n

for all n ≥ 1. (16)

Suppose (16) is not true, that is, there exists n ∈ N such that p2n+1 > p2n , then

ψ (p
2n

) ≤ ψ
(
p

2n+1

)
= ψ

(
p
(
y
2n+1

, y
2n+2

))
= ψ

(
p
(
Ax

2n+1
, Bx

2n+2

))
≤ ψ

(
θ
(
x2n+1 , x2n+2

))
− ϕ

(
θ
(
x2n+1 , x2n+2

))
,

θ
(
x2n+2 , x2n+1

)
= λp

(
Ax2n+2 , Sx2n+2

)
+ µp

(
Bx2n+1 , Tx2n+1

)
+δp

(
Sx2n+2 , Tx2n+1

)
+γ
[
p
(
Ax

2n+2
, Tx

2n+1

)
+ p

(
Sx

2n+2
, Bx

2n+1

)]
= λp(y2n+2 , y2n+1) + µp(y2n+1 , y2n) + δp(y2n+1 , y2n)

+γ[p(y2n+2 , y2n) + p(y2n+1 , y2n+1)].

Then by triangle inequality, we get

θ
(
x2n+2 , x2n+1

)
≤ λp2n+1 + µp

2n
+ δp2n+1 + γp2n+1 + γp

2n
.

Since

p(y2n+1 , y2n+2) ≤ p(y2n , y2n+1),

λ+ µ+ δ + 2γ < 1, then from (16) we have

θ
(
x

2n+1
, x

2n+2

)
≤ (λ+ µ+ δ + 2γ) p

2n

≤ p
2n
,

ψ is monotone, we have

ψ (p
2n

) ≤ ψ (p
2n

)− ϕ
(
θ
(
x

2n+1
, x

2n+2

))
.

This implies ϕ
(
θ
(
x

2n
, x

2n+1

))
= 0, by the property of ϕ, it follows that θ

(
x

2n
, x

2n+1

)
= 0, which is a contradiction

with (15). With the same way, we prove

p
2n+2

≤ p
2n+1

for all n ≥ 1. (17)

Thus from (16) and from (17) we have

p
n+1
≤ pn for all n ≥ 1.

Hence, the sequence {pn} is a non-decreasing sequence of non negative real numbers and must convergence to a
real number denoted by l. Say:

lim
n→∞

p (yn, yn+1) = l, l ≥ 0.
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We shall prove that l = 0. We suppose that

l > 0, (18)

then from (9) and (12) we get

lim
n→∞

λp (Ax
2n
, Sx

2n
) = lim

n→∞
λp
(
y
2n
, y

2n−1

)
≤ lim sup

n→∞
θ
(
x

2n
, x

2n+1

)
≤ (λ+ µ+ δ + 2γ) lim

n→∞
p
(
y2n , y2n+1

)
,

this implies, by using (4), that

0 < λl ≤ lim sup
n→∞

θ
(
x

2n
, x

2n+1

)
≤ l,

so, there exists l1 > 0 and a subsequence {x2nk
} of {x2n} such that

lim
n→∞

θ
(
x

2nk
, x

2nk+1

)
= l1 ≤ l.

Hence, by the lower semicontinuity of ϕ, we have

ϕ (l1) ≤ lim inf
k→∞

ϕ
(
θ
(
x2nk

, x2nk+1

))
(19)

From (2) , we get

ψ
(
p(y2nk

, y2nk+1)
)
≤ ψ

(
θ(x2nk

, x2nk+1)
)
− ϕ

(
θ(x2nk

, x2nk+1)
)

(20)

Taking the upper limit as k →∞ in (20) , we obtain

ψ(l) ≤ ψ(l1)− lim inf
k→∞

ϕ
(
θ(x

2nk
, x

2nk+1
)
)

≤ ψ (l1)− ϕ (l1)

≤ ψ (l)− ϕ (l1) .

This implies that ϕ (l1) = 0. Thus, by the property of ϕ, we have l1 = 0, which is a contradiction with (18) .
Therefore l = 0 and so

lim
n→∞

p (yn, yn+1) = 0, (21)

and from (p2), we have also

lim
n→∞

p (yn, yn) = 0, (22)

from (21) and (22), we have

lim
n→∞

ps (yn, yn+1) = 0 . (23)

Now, we prove that {y2n} is a Cauchy sequence in
(
X, ps

)
. On contrary, suppose that {y2n} is not a Cauchy

sequence in
(
X, ps

)
. There exists an ε > 0 and monotone increasing sequences of natural numbers {2mk} and {2nk}

such that nk < mk and

ps
(
y
2mk

, y
2nk

)
≥ ε (24)

and

ps
(
y
2mk

, y
2nk−2

)
< ε (25)

From
(
24
)

and
(
25
)

we get

ε ≤ ps
(
y
2mk

, y
2nk

)
≤ ps

(
y2mk

, y2nk−2

)
+ ps

(
y2nk−2 , y2nk−1

)
+ ps

(
y2nk−1 , y2nk

)
< ε+ ps

(
y
2nk−2

, y
2nk−1

)
+ ps

(
y
2nk−1

, y
2nk

)
.
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Letting k →∞ and using (23), we have

lim
k→∞

ps
(
y
2mk

, y
2nk

)
= ε. (26)

Hence from the definition of ps and from
(
22
)
, we have

lim
k→∞

p
(
y
2mk

, y
2nk

)
=
ε

2
. (27)

Letting k →∞ and using
(
26
)
,
(
24
)

in∣∣ps(y
2mk

,y
2nk+1

)
− ps

(
y
2mk

, y
2nk

)∣∣ ≤ ps(y
2nk

+1
, y

2nk

)
,

we obtain

lim
k→∞

ps
(
y
2mk

, y
2nk+1

)
= ε. (28)

Hence, we have

lim
k→∞

p
(
y
2mk

, y
2nk+1

)
=
ε

2
. (29)

Letting k →∞ and using
(
26
)
,
(
24
)

in∣∣ps(y
2mk−1

, y
2nk+1

)
− ps

(
y
2mk

, y
2nk

)∣∣ ≤ ps(y
2mk−1

, y
2mk

)
,

we get:

lim
k→∞

ps
(
y
2mk−1

, y
2nk

)
= ε. (30)

Hence, we have

lim
k→∞

p
(
y2mk−1 , y2nk

)
=
ε

2
. (31)

Letting k →∞ and using (30), (24) in∣∣ps(y2mk−1 , y2nk+1)− ps(y2mk−1 , y2nk
)
∣∣ ≤ ps(y2nk+1 , y2nk

).

we get:

lim
k→∞

ps
(
y
2mk−1

, y
2nk+1

)
= ε. (32)

Hence, we have

lim
k→∞

p
(
y
2mk−1

, y
2nk+1

)
=
ε

2
. (33)

Now, by
(
2
)

and
(
3
)

we have

ψ
(
p
(
Ax

2mk
, Bx

2nk+1

))
= ψ

(
p
(
y
2mk

, y
2nk+1

))
≤ ψ

(
θ
(
x

2mk
, x

2nk+1

))
− ϕ

(
θ
(
x

2mk
, x

2nk+1

))
,

0.2cm

θ
(
x2mk

, x2nk+1

)
= λp

(
y2mk

, y
2mk−1

)
+ µp

(
y2nk+1 , y2nk

)
+δp

(
y
2mk−1

, y
2nk

)
+γ
[
p
(
y2mk

, y2nk

)
+ p
(
y2mk−1 , y2nk+1

)]
 (34)

Letting k →∞ and using (21), (27) , (31), (34) and since γ + δ
2 ≤

1
2 , we obtain

0.3cm
ψ
(
ε
2

)
≤ ψ

((
γ + δ

2

)
ε
)
− ϕ

((
γ + δ

2

)
ε
)

≤ ψ
(
ε
2

)
− ϕ

((
γ + δ

2

)
ε
)
,
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this implies that ϕ
((
γ + δ

2

)
ε
)

= 0, then ε = 0; which is a contradiction. Hence {y2n} is a Cauchy sequence. Letting

n→∞ and m→∞ in

|ps (y2n+1, y2m+1)− ps (y
2m

, y
2n

)| ≤ ps
(
y
2n+1

, y
2n

)
+ ps

(
y
2m+1

, y
2m

)
,

we get lim
n.m→∞

ps
(
y2n+1 , y2m+1

)
= 0. Hence {y2n+1} is a Cauchy sequence. Thus {yn} is a Cauchy sequence in

(X, ps) . We have lim
n.m→∞

ps (yn, ym) = 0. Now, from the definition of ps and from (22) , we have

lim
n.m→∞

p (yn, ym) = 0. (35)

Suppose S(X) is complete. Since {y2n+1} ⊂ S(X) is a Cauchy sequence in the complete metric space (S(X), ps) ,
therefore there exists t ∈ X such that v = S(t) ∈ S(X). Since {yn} is a Cauchy sequence in (X, ps) and y2n+1 → v,
it follows that y

2n
→ v. From Lemma 1 (b), we have

p(v, v) = lim
n→∞

p(y
2n+1

, v) = lim
n→∞

p(y
2n
, v) = lim

n.m→∞
p (yn, ym) (36)

From (35) and (36) ,we have

p(v, v) = lim
n→∞

p(y
2n+1

, v) = lim
n→∞

p(y
2n
, v) = 0 (37)

We shall prove that lim
n→∞

p(At, y2n) = p(At, v). Letting n→∞ in

ps(At, y2n) = 2p(At, y2n)− p(At,At)− p(y2n , y2n)

we get by using (22)

ps(At, v) = 2 lim
n→∞

p(At, y2n)− p(At,At)− 0

2p(At, v)− p(At,At)− p(v, v) = 2 lim
n→∞

p(At, y2n)− p(At,At)

By (37), we have

p(At, v) = lim
n→∞

p(At, y
2n

)

Let At 6= v

p(At, v) ≤ p(At,Bx2n+1) + p(Bx2n+1, v)− p(Bx2n+1, Bx2n+1)

≤ p(At,Bx2n+1) + p(y2n+1, v)

ψ (p(At, v)) ≤ ψ
(
p(At,Bx2n+1) + p(y2n+1 , v)

)
(38)

Hence letting n→∞ in (38), we obtain

ψ (p(At, v)) ≤ ψ
(

lim
n→∞

p(At,Bx2n+1) + 0
)

= lim
n→∞

ψ
(
p(At,Bx2n+1)

)
≤ lim
n→∞

[
ψ
(
θ
(
t, x

2n+1

))
− ϕ

(
θ
(
t, x

2n+1

))]
θ
((
t, x

2n+1

))
= λp(At, Sx

2n+1
) + µp(Bx

2n+1
, Tx

2n+1
) (39)

+ δp(St, Tx
2n+1

) + γ
[
p(At, Tx

2n+1
) + p(St,Bx

2n+1
)
]

Then

θ
((
t, x

2n+1

))
= λp(At, y

2n
) + µp(y

2n+1
, y

2n
) (40)

+ δp(v, y
2n

) + γ
[
p(At, y

2n
) + p(v, y

2n+1
)
]



International Journal of Applied Mathematical Research 213

Letting n→∞ in (40) and using (21), (37) and the fact that λ+ γ < 1, we obtain

lim
n→∞

θ ((t, x2n+1)) = (λ+ γ) p(v,At) ≤ p(v,At)

Thus

ψ (p(At, v)) ≤ ψ (p(At, v))− ϕ ((λ+ γ) p(v,At))

It follows ϕ ((λ+ γ) p(v,At)) = 0, from the property of ϕ we have p(v,At) = 0 hence v = At = St. Since the pair
(A,S) are compatible, We have Av = Sv. Suppose

Sv 6= v

As in above, using the metric ps and (22) , (37), we can show that

p(Av, v) = lim
n→∞

p(Av, y
2n

)

p(Av, v) ≤
[
p(Av,Bx

2n+1
) + p(Bx

2n+1
, v)− p(Bx

2n+1
, Bx

2n+1
)
]

≤ p(Av,Bx
2n+1

) + p(y
2n+1

, v)

Then

ψ (p(Av, v)) ≤ ψ
(
p(Av,Bx2n+1) + p(y2n+1 , v)

)
(41)

Letting n→∞, we get

ψ (p(Av, v)) ≤ ψ
(

lim
n→∞

p(Av,Bx
2n+1

)
)

+ 0

= lim
n→∞

ψ
(
p(Av,Bx2n+1)

)
≤ lim
n→∞

[ψ
(
θ
(
v, x2n+1

))
− ϕ

(
θ
(
v, x2n+1

))
]

Since

θ (v, x2n+1) = λp (Av,Av) + µp(y
2n
, y

2n+1
) + δp(Av, y

2n
)

+ γ
[
p(y

2n
, Av) + p(Av, y

2n+1
)
]

lim
n→∞

θ (v, x2n+1) = λp (Av,Av, ) + 0 + δp(Av, v)

+ 2γp(Av, v)

Since λ+ δ + 2γ < 1,We obtain

lim
n→∞

θ (v, x2n+1) = (λ+ δ + 2γ) p(Av, v) ≤ p(Av, v)

Thus

ψ (p(Av, v)) ≤ ψ (p(Av, v))− ϕ ((λ+ µ+ 2γ) p(Av, v))

Hence ϕ ((λ+ µ+ 2γ) p(Av, v)) = 0, by the property of ϕ, we have

Av = v = Sv (42)

Since A(X) ⊂ T (X), there exists w ∈ X such that v = Sv = Tw. Suppose v 6= Bw

ψ (p(v,Bw)) = ψ (p(Av,Bw)) ≤ ψ (θ (v, w))− ϕ (θ (v, w))

θ (v, w) = λp (Av, Sv) + µp(Bw, Tw) + δp(Sv, Tw)
+γ [p(Av, Tw) + p(Sv,Bw)]

= λp (v, v) + µp(Bw, v) + δp(v, v)
+γ [p(v, v) + p(v,Bw)]

= (λ+ δ + γ)p(v, v) + (µ+ γ)p(v,Bw)
= 0 + (µ+ γ)p(v,Bw)
≤ p(v,Bw).
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Hence

ψ (p(v,Bw)) ≤ ψ (p(v,Bw))− ϕ ((µ+ γ)p(v,Bw)) .

Thus, ϕ ((µ+ γ)p(v,Bw)) = 0. By the property of ϕ, we have v = Bw. Thus Tw = Bw = v. Since (T,B) is
weakly compatible, we have Tv = Bv. Suppose Bv 6= v.

ψ (p(v,Bv)) = ψ (p(Av,Bv)) ≤ ψ (θ (v, v))− ϕ (θ (v, v)) ,

θ (v, v) = λp (Av, Sv) + µp(Bv, Tv) + δp(Sv, Tv)
+γ [p(Av, Tv) + p(Sv,Bv)]

= λp (v, v) + µp(Bv,Bv) + δp(v,Bv)
+γ [p(v,Bv) + p(v,Bv)]

= µp(Bv,Bv) + (δ + 2γ) p(v,Bv) (Fromp2)
= (µ+ δ + 2γ) p(v,Bv)
≤ p(v,Bv),

hence

ψ (p(v,Bv)) ≤ ψ (p(v,Bv))− ϕ ((µ+ δ + 2γ) p(v,Bv)) .

It follows ϕ ((µ+ δ + 2γ) p(v,Bv)) = 0, then from the property of ϕ, we have p(v,Bv) = 0, thus v = Bv. We have.

Tv = Bv = v. (43)

From (42) and (43) , v is a common fixed point of A,B, T and S. Now we prove the uniqueness of the common fixed
point. Let z be another common fixed point of A,B, T and S. Suppose v 6= z,

ψ (p(v, z)) = ψ (p(Av,Bz)) ≤ ψ (θ (v, z))− ϕ (θ (v, z)) ,

θ (v, z) = λp (Av, Sv) + µp(Bz, Tz) + δp(Sv, Tz)
+γ [p(Av, Tz) + p(Sv,Bz)]

= λp (v, v) + µp(z, z) + δp(v, z)
+γ [p(v, z) + p(v, z)]

= (δ + µ+ 2γ) p(v, z) From p2
≤ p(v, z).

Hence

ψ (p(v, z)) ≤ ψ (p(v, z))− ϕ ((δ + µ+ 2γ) p(v, z)) .

It follows that ϕ ((δ + µ+ 2γ) p(v, z)) = 0 and by the property of ϕ, we have v = z. Thus v is the unique common
fixed point of A,B, T and S.

Corollary 3.2 Let (X, p) be a partial metric space and let A,B, S, T : X → X be such that

A(X) ⊂ T (X) and B(X) ⊂ S(X).

If

p (Ax,Bx) ≤ θ (x, y) for all x, y ∈ X,

where

θ (x, y) = λp (Ax, Sx) + µp (By, Ty) + δp (Sx, Ty)
+γ [p (Ax, Ty) + p (Sx,By)] ,

µ, δ, γ, λ ∈ [0.1[ and λ0, µ+ δ + 2γ + λ < 1,

if either T (X)or S (X) is a complete subspace of X and the pairs (A,S) and (B, T ) are weakly compatible, then
A,B, S and T have a unique common fixed point in X.
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Proof. Taking ψ (t) = t and ϕ = 0 in theorem 3.1.

Corollary 3.3 Let (X, p) be a partial metric space and let A, T : X → X be such that

A(X) ⊂ T (X).

If

p(Ax,Ax) ≤ θ(x, y) for all x, y ∈ X,

where

θ (x, y) = λp (Ax, Tx) + µp (Ay, Ty) + δp (Tx, Ty)
+γ [p (Ax, Ty) + p (Tx,Ay)] ,

µ, δ, γ, λ ∈ [0.1[ and λ0, µ+ δ + 2γ + λ < 1,

if T (X) is a complete subspace of X and the pairs (A, T ) are weakly compatible, then A and T have a unique
common fixed point in X.

Proof. Taking ψ (t) = t and ϕ = 0 and A = B and T = S in theorem 5.

Example 3.4 Let X = [0, 1] and p(x, y) = max{x, y} for x, y ∈ X. Let A,B, S and T : X → X and

• S(x) = x
2 , T (x) = x

3 , A(x) = x
4 , B(x) = x

6 ,

• ψ : [0,∞[→ [0,∞[ defined by: ψ (t) = t,

• ϕ : [0,∞[→ [0,∞[ defind by ϕ (t) = t
2 ,

• λ = β = γ = δ = 1
6 .

Then all conditions of theorem 3.1 are satisfied and 0 is the unique fixed point of A,B, S and T.

Example 3.5 Let X = [0, 1] and p(x, y) = max{x, y} for x, y ∈ X. Let A,B, S and T : X → X and

• S(x) = x
x+1 , T (x) = x

x+2 , A(x) = x2

2x+2 and B(x) = x2

2x+4 ,

ψ : [0,∞[→ [0,∞[ defined by ψ (t) = t,

ϕ : [0,∞[→ [0,∞[ by ϕ(t) = t
2 ,

• λ = β = γ = δ = 1
6 .

Then all conditions of theorem 3.1 are satisfied and 0 is the unique fixed point of A,B, S and T.

4. Applications

In this section, we give an application of the previous section.
Set Y = {χ : [0,∞[→ [0,∞[, χ is a Lebesgue integrable mapping which is summable and nonegative and

satisfies
∫ ε
0
χ (t) dt > 0 for each ε > 0}.

Theorem 4.1 Let (X, p) be a complete partial metric space and let A,B, S, T : X → X be such that

A(X) ⊂ T (X) and B(X) ⊂ S(X)

and for all x, y ∈ X :∫ ψ(p(Ax,By))

0

χ (t) dt ≤
∫ ψ(θ(x,y))

0

χ (t) dt−
∫ ϕ(θ(x,y))

0

χ (t) dt, χ ∈ Y,

where

0.2cm
θ (x, y) = λp(Ax, Sx) + µp(By, Ty) + δp(Sx, Ty)

+γ [p(Ax, Ty) + p(Sx,By)]
µ, δ, γ, λ ∈]0.1[ and µ+ δ + 2γ + λ < 1,

 (44)

and ϕ, ψ : [0,∞ [→ [0,∞ [. ψ is continuous, nondecreasing and ϕ is lower semi-continuous, ϕ (t) = ψ (t) = 0⇐⇒
t = 0. If either T (X) or S (X) is a complete subspace of X and the pairs (A,S) and (B, T ) are weakly compatible,
then A,B, S and T have a unique common fixed point in X.
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Proof. Define Λ : R+ → R+ by Λ (x) =
∫ x
0
χ (t) dt. then Λ is continuous and nondecreasing with Λ(0) = 0. Then

we obtain

Λ(ψ (p(Ax,By)) ≤ ψ (p(Ax,By))− ϕ (p(Ax,By))

Which further can be written as

Ψ1(p(Ax,By) ≤ Ψ1 (θ (x, y))− Φ1 (θ (x, y))

where Ψ1 = Λ ◦ ψ and Φ1 = Λ ◦ ϕ. Hence by theorem 3.1 we have the desired results.
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