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Abstract

This paper deals with a Non-Integral Technique (NIT) and Differ-
ential Transformation Method (DTM) which are sufficiently accurate
and efficient methods for approximate solutions of the MHD boundary
layer flow of an incompressible fluid past a flat plate for a wide range of
the magnetic parameter. The proposed solutions are first obtained by
NIT by utilizing a known solution of another differential equation and
then by DTM, where a group of transformations are used to reduce the
boundary value problem into a pair of initial value problems, which are
then solved by means of the differential transformation method. The
proposed method yields closed series solutions of the boundary layer
equations, which can then be calculated numerically. The pertinent pa-
rameter appearing in the problem is discussed graphically and presented
in table. From the numerical values, it is evident that as the value of
the magnetic parameter increases, the skin-friction on the surface of the
plate also increases, and it becomes unity when the magnetic parameter
becomes infinity. This is indicative of the fact that even if the magnetic
parameter is infinitely large, the skin-friction will be finite only.

Keywords: Differential Transformation Method, Hydromagnetic boundary
layer, local error, Non- Integral Technique, skin-friction.
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1 Introduction

The simplest example of the application of the boundary layer equation is
afforded by the flow along a very thin plate. Historically, this is the first ex-
ample illustrating the application of Prandtl’s boundary layer theory ; it was
discussed by Blasius [4] in his doctor’s thesis. Subsequently, problems like
these were also solved by Prandtl [13], Bairstow [3], Goldstein [9], Toepfer
[17], Singh and Chandarki [15], etc.
The first objective of the present paper is to find out the approximate solutions
of the MHD boundary layer equation governing the flow of an incompressible
fluid past a flat plate by utilizing a known solution of another equation on the
lines of Dey [6] who found out the approximate solutions of the Falkner-Skan
equation [8].
Secondly the study employs the differential transformation method to obtain
power series solutions of the same boundary-layer problem. A group of trans-
formations are used to reduce the third-order nonlinear boundary value prob-
lems to a pair of initial value problems. These problems are then solved by
the differential transformation method. The study concludes by comparing
the current numerical results with those given by other integral approximation
methods and Non Integral Technique considered in first part in order to verify
the accuracy of the methods.

2 Formulation of the Problem

Let us consider a steady two-dimensional flow of a viscous fluid on a flat plate
in the presence of a transverse magnetic field strength By(x). In the case of
a small electric conductivity and large transverse magnetic field By(x), the
boundary layer equations are given by

∂u

∂x
+

∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dy
+ ν

∂2u

∂y2
− σB2

y

ρ
(u− U∞) (2)

subject to the boundary conditions

{
u = 0, v = 0, at y = 0

u(∞) = U∞ at y = ∞ (3)

where y = ∞ denotes the edge of the boundary layer and U∞ is a constant
potential flow velocity.
In the above equation, x is the co-ordinate measured along the surface starting
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from the slit location in the direction of the motion ; y is the co-ordinate normal
to the surface; u, v are the velocity components in the directions of x− and y−
axes respectively ; g is the acceleration due to gravity; ρ is the fluid density;
σ is the electrical conductivity and ν is the kinematic viscosity.
Let ψ(x, y) denote the stream-function such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
(4)

which satisfies the equation of continuity (1). The substitution of (4) in (2)
leads to the following differential equation

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
− S(x)

(
∂ψ

∂y
− U∞

)
(5)

where S(x) =
σB2

y

ρ
.

As the flow is taking place past a flat plate, U(x) = U0 = constant.
As a result, the term U dU

dx
vanishes.

Now let us set

S(x) = S0x
ε

and put η =
(

U∞
2νx

)1/2
, ψ = (2νU∞x)1/2 f(η) to study the similarity solution of

(2).
The condition that each term in the equation contains the same degree in x
gives ε = −1, and the equations (4) - (5) reduce to

f ′′′ + ff ′′ + β(1− f ′) = 0 (6)

accompanied by the boundary conditions

f(0) = f ′(0) = 0, f ′(∞) = 1 (7)

where β = S0

U−∞ ≥ 0 is the magnetic parameter.

3 Mathematical Analysis

3.1 Non- Integral Technique(NIT):

The genesis of the present method is to solve (6) using a known solution of
another third order non-linear equation having the same boundary conditions
as those of (6). Briefly, the variables in (6) are scaled with the known solution
using a parameter α. The square of the error introduced as a result of the
scaled variables introduced in (6) is minimized to obtain α.
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The present choice of a differential equation, having the same boundary con-
ditions as those of (6), in fact should provide a guidance in the selection of
the trial functions for approximate methods proposed by many investigators.
On the other hand, a trial function that itself is a solution of another equa-
tion having the same boundary conditions should be ideal. In this way, one
can ensure that the nature of the highest order derivative in (6)is preserved,
and the trial function satisfies the same boundary conditions as the dependant
variable in (6).
For the present analysis, a known solution of a differential equation having the
same boundary conditions as these of (6) is readily available if we consider the
equation as

d3g

dη3
− dg

dη
+ 1 = 0 (8)

subject to the boundary conditions

g =
dg

dη
= 0, at η = 0

dg

dη
→ 1 as η →∞ (9)

Here it may be noted that (8) is a particular case of (6) for β → ∞, and
can be obtained from (6) by using the transformations

y = β1/2η, g = β1/2f (10)

and letting β →∞.
The closed form solution of (8) is

dg

dη
= 1− e−η (11)

Although (6) and (8) are the two different non-linear equations, they are of
the same order, and their boundary conditions are similar. In order to find
the approximate solutions of (6)-(7) on the lines of Dey [6], let us consider the
following transformations:

{
f(η) = g(αη)

α
, df(η)

dη
= dg(αη)

dη
, d2f(η)

dη2 = αd2g(αη)
dη2 ,

d3f(η)
dη3 = α2 d3g(αη)

dη3

(12)

Using (12) in (6), one can obtain

α2g′′′ + gg′′ + β(1− g′) = e(α, η) (13)

where e(α, η) is the local error introduced due to the introduction of (12).
Henceforth, the prime denotes the differentiation with respect to η.
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The following conditions for (13) are the same as given in (9).
Following Annamalai et al. [1], squaring the error we estimate E, given by

E =

∫ ∞

0

e2(α, η)dη, (14)

and then minimize; i.e., by setting

dE

dα
= 0 (15)

The final expression for α that follows from (11), (13) -(15) leads as

α2 = β + 0.2205 (16)

This relation is valid for small values of β. Using the equation for large β, as
is clear from Evans [7], obtained from (6) and the transformations in (10), it
can be shown for large β that

α2 = 1 +
0.2205

β
(17)

Once α is known, the approximate values of the non-dimensional skin-friction
Cf can be estimated from the quantity

Cf = αg′′(0), g′′(0) = 1. (18)

3.2 Differential Transformation Method:

In order to find the series solution of equation (6) for a family of values of
magnetic parameter β, it is first necessary to define a dependent variable G(η),
i.e.,

G(η) =
∂f(η)

∂β
(19)

Differentiating (6)-(7) with respect to β gives

d3G(η)

dη3
+ f(η)

d2G(η)

dη2
+ G(η)

d2f(η)

dη2
+

(
1− df(η)

dη

)
− β

dG(η)

dη
= 0. (20)

The boundary conditions are given by

G(0) =
dG(0)

dη
= 0,

dG(∞)

dη
= 0. (21)
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The method of superposition is used together with a group of transforma-
tions to solve the boundary-layer equation given in (2). Initially, the following
expression is defined:

G(η) = P (η) + CQ(η). (22)

where C is a constant to be determined.
Substituting (22) into (20) gives the following pair of initial value problems:

d3P (η)

dη3
+ f(η)

d2P (η)

dη2
+ P (η)

d2f(η)

dη2
− β

dP (η)

dη
=

df(η)

dη
− 1 (23)

with the initial conditions of

P (0) =
dP (0)

dη
=

d2P (0)

dη2
= 0, (24)

and

d3Q(η)

dη3
+ f(η)

d2Q(η)

dη2
+ Q(η)

d2f(η)

dη2
− β

dQ(η)

dη
= 0 (25)

with the initial conditions of

Q(0) =
dQ(0)

dη
= 0,

d2Q(0)

dη2
= 1. (26)

Substituting the boundary condition at infinity from (21) into (22) gives
the value of the parameter C as

C = −
dP (∞)

dη

dQ(∞)
dη

. (27)

To solve (6) at β = ∆β; (6) is first solved for the case of β = 0 in order
to establish the function f(η) and its derivatives which appear in equations
(23) and (25). Solving equations (23)-(26) then gives P (η) and Q(η), and their

derivatives. The value of C is obtained by substituting dP (∞)
dη

and dQ(∞)
dη

in to

equation (27). Given C, the values of G(η) are derived form (22) and are then
substituted into the rearranged from of (19) given below to give the solutions
of f(η) at β = ∆β, i.e. ,

f(η)|β=∆β = f(η)|β=0 + G(η)∆β. (28)

This process is then repeated to calculate the solutions of equations (6) for
β = 2∆β, β = 3∆β,..... etc.
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3.2.1 Solution of Blasius equation by DTM

To solve (6) using the differential transformation method, it is first necessary
to solve the Blasius equation (β = 0), i.e.,

d3f(η)

dη3
+ f(η)

df2(η)

dη2
= 0 (29)

The boundary conditions are given by

f(0) = f ′(0) = 0 at η = 0. (30)

f ′(∞) = 1 as η →∞ (31)

The boundary value problems ( (29)-(31)) can then be reduced to a pair of
initial value problems, which are given by

d3F (ζ)

dζ3
+ F (ζ)

dF 2(ζ)

dζ2
= 0 (32)

The boundary conditions are given by

F (0) = F ′(0) = 0, F ′′(0) = 1 at ζ = 0. (33)

and by
d3f(η)

dη3
+ f(η)

df2(η)

dη2
= 0 (34)

with initial conditions of

f(0) = f ′(0) = 0 f ′′(0) =

(
1

dF (∞)/dζ

)3/2

(35)

These equations suggest a transformation of the form

F (ζ) = λ−1/3f(η), ζ = λ1/3η, λ =

(
1

dF (∞)/dζ.

)
(36)

The differential transformation method is then used to solve the pair of ini-
tial value problems ((32)-(35)). Initially, the following expressions are defined:

y(ζ) =
dF (ζ)

dζ
, (37)

and
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z(ζ) =
dy(ζ)

dζ
=

d2F (ζ)

dζ2
(38)

Thereafter, the third-order ordinary differential equation, (32), is reduced
to a first-order ordinary differential equation with the following form:

dz(ζ)

dζ
+ F (ζ)z(ζ) = 0 (39)

The initial conditions become

F (0) = y(0) = 0, z(0) = 1 (40)

By a process of inverse differential transformation, the solutions of each
sub-domain take m + 1 terms for the power series, i.e.,

Fi(ζ) =
m∑

k=0

(
ζ

Hi

)k

F i(k), 0 ≤ ζ ≤ Hi, (41)

yi(ζ) =
m∑

k=0

(
ζ

Hi

)k

Yi(k), 0 ≤ ζ ≤ Hi, (42)

zi(ζ) =
m∑

k=0

(
ζ

Hi

)k

Zi(k), 0 ≤ ζ ≤ Hi, (43)

where i = 0, 1, 2, ..., n indicates the i− th sub-domain, k = 0, 1, 2, ..., m repre-
sents the number of terms of the power series, Hi represents the sub-domain
interval, andF i(k), Yi(k) and Zi(k) are the transformed functions of Fi(ζ),
yi(ζ) and zi(ζ), respectively.
From the initial conditions (40) and the solution equations, (41)-(43), it can
be seen that

F 0(0) = 0, (44)

Y0(0) = 0, (45)

Z0(0) = δ(k) (46)

Performing differential transformation of Eqs. (37)(39) gives the following:

k + 1

Hi

F i(k + 1) = Yi(k), (47)
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k + 1

Hi

Yi(k + 1) = Zi(k), (48)

k + 1

Hi

Zi(k + 1) +
k∑

l=0

F i(k − l)Zi(l) = 0. (49)

The various values of F i(k), Yi(k) and Zi(k) are obtained by using (47)-(49),
together with the transformed initial conditions, i.e., (44)-(46). The solution
of (32) is then determined by means of the inverse transformed equations, i.e.,
(41)-(43).
From (42), it can be shown that the value of dF (∞)/dζ approaches a limiting
value in the final sub-domain. In the expressions which follow, this limiting
value is represented by the parameter ”λ”. The following expressions are also
defined:

u(η) =
df(η)

dη
, (50)

and

v(η) =
du(η)

dη
=

d2f(η)

dη2
(51)

Hence, the third-order ordinary differential equation, (34), becomes a first-
order ordinary differential equation with the following form:

dv(η)

dη
+ f(η)v(η) = 0 (52)

The initial conditions become

f(0) = u(0) = 0, v(0) = λ−3/2. (53)

fi(η) =
m∑

k=0

(
η

Hi

)k

f i(k), 0 ≤ η ≤ Hi, (54)

ui(η) =
m∑

k=0

(
η

Hi

)k

Ui(k), 0 ≤ η ≤ Hi, (55)

vi(η) =
m∑

k=0

(
η

Hi

)k

Vi(k), 0 ≤ η ≤ Hi, (56)

where as before i = 0, 1, 2, ..., n indicates the i − th sub-domain, k =
0, 1, 2, ..., m represents the number of terms of the power series, Hi represents
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the sub-domain interval, andf i(k), Ui(k) and Vi(k) are the transformed func-
tions of fi(η), ui(η) and vi(η), respectively.
From the initial conditions (53) and the solution equations, (54)-(56), it can
be shown that

f 0(0) = 0, (57)

U0(0) = 0, (58)

V0(0) = λδ(k) (59)

equations (50)-(52) undergo a process of differential transformation to give
the following:

k + 1

Hi

f i(k + 1) = Ui(k), (60)

k + 1

Hi

Ui(k + 1) = Vi(k), (61)

k + 1

Hi

Vi(k + 1) +
k∑

l=0

f i(k − l)Vi(l) = 0. (62)

As in the solution of the previous initial value problem, when the vari-
ous values of f i(k), Ui(k) and Vi(k) have been determined by using (60)-(62),
together with the transformed initial conditions ( (57)-(59)), the solution of
equations (34) can be obtained by means of the inverse transformed equations,
i.e., (54)-(56).
Since the solutions of the boundary value problems ((29)-(31)) can be estab-
lished from the previous calculations, f(η) is also known and can be substituted
into (6) to solve the Falkner-Skan equation.
The differential transformation method is then used to solve the pair of ini-
tial value problems given by (23)-(26). Initially, the following expressions are
defined:

r(η) =
dP (η)

dη
, (63)

and

s(η) =
dr(η)

dη
=

d2P (η)

dη2
(64)
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Thereafter, the third-order ordinary differential equation, (23), is reduced to
a first-order ordinary differential equation with the following form:

ds(η)

dη
+ f(η)s(η) +

d2f(η)

dη
P (η)− βr(η) =

df(η)

dη
− 1, (65)

The initial conditions become

P (0) = r(0) = s(0) = 0 (66)

As before, inverse differential transformation is used to yield the following
solutions:

Pi(η) =
m∑

k=0

(
η

Hi

)k

P i(k), 0 ≤ η ≤ Hi, (67)

ri(η) =
m∑

k=0

(
η

Hi

)k

Ri(k), 0 ≤ η ≤ Hi, (68)

si(η) =
m∑

k=0

(
η

Hi

)k

Si(k), 0 ≤ η ≤ Hi, (69)

where i = 0, 1, 2, ..., n indicates the i − th sub-domain, k = 0, 1, 2, ...,m
represents the number of terms of the power series, Hi represents the sub-
domain interval, andP i(k), Ri(k) and Si(k) are the transformed functions of
Pi(η), ri(η) and si(η), respectively.
From the initial conditions (66) and the solution equations, (67)-(68), it can
be shown that

P 0(0) = 0, (70)

R0(0) = 0, (71)

S0(0) = 0. (72)

Equations (64)-(65) undergo a process of differential transformation to give
the following:

k + 1

Hi

P i(k + 1) = Ri(k), (73)

k + 1

Hi

Ri(k + 1) = Si(k), (74)
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k + 1

Hi

Si(k+1)+
k∑

l=0

f i(k−l)Si(l)+
k∑

l=0

Zi(k−l)P i(l)−βRi(k) =
k + 1

Hi

fi(k+1)−δ(k).

(75)

As in the solution of the previous initial value problem, when the various
values of P i(k), Ri(k) and Si(k) have been determined by using (73)-(75),
together with the transformed initial conditions ( (70)-(72)), the solution of
equation (65) can be obtained by means of the inverse transformed equations,
i.e., (67)-(69).
From (68,)it is noted that the value of dP (∞)/dη approaches a limiting value
in the final sub-domain. The following expression is defined:

A(η) =
dQ(η)

dη
, (76)

and

B(η) =
dA(η)

dη
=

d2Q(η)

dη2
(77)

Thereafter, the third-order ordinary differential equation, (25), is reduced to
a first-order ordinary differential equation with the following form:

dB(η)

dη
+ f(η)B(η) +

d2f(η)

dη
Q(η)− βA(η) = 0 (78)

The initial conditions become

Q(0) = A(0) = B(0) = 0 (79)

The inverse differential transformation is used to yield the following solutions:

Qi(η) =
m∑

k=0

(
η

Hi

)k

Qi(k), 0 ≤ η ≤ Hi, (80)

Ai(η) =
m∑

k=0

(
η

Hi

)k

Ai(k), 0 ≤ η ≤ Hi, (81)

Bi(η) =
m∑

k=0

(
η

Hi

)k

i

Bi(k), 0 ≤ η ≤ Hi, (82)

where i = 0, 1, 2, ..., n indicates the i − th sub-domain, k = 0, 1, 2, ...,m
represents the number of terms of the power series, Hi represents the sub-
domain interval, andQi(k), Ai(k) and Bi(k) are the transformed functions of
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Qi(η), Ai(η) and Bi(η), respectively.
From the initial conditions (79) and the solution equations, (80)(82), it can be
shown that

Q0(0) = 0, (83)

A0(0) = 0, (84)

B0(0) = 0 (85)

Equations (76)-(78) undergo a process of differential transformation to give
the following:

k + 1

Hi

Qi(k + 1) = Ai(k), (86)

k + 1

Hi

Ai(k + 1) = Bi(k), (87)

k + 1

Hi

Bi(k +1)+
k∑

l=0

f i(k− l)Bi(l)+
k∑

l=0

Zi(k− l)Qi(l)−βAi(k) = δ(k). (88)

As in the solution of the previous initial value problem, when the various
values of Qi(k), Ai(k) and Bi(k) have been determined by using (86)-(88),
together with the transformed initial conditions ( (83)-(85)), the solution of
equation (78) can be obtained by means of the inverse transformed equations,
i.e., (80)-(82).
From (81), it is noted that the value of dQ(∞)/dη approaches a limiting value
in the final sub-domain.
The value of C is determined by substituting the values of dP (∞)/dη and
dQ(∞)/dη into (27). C, P (η), Q(η) and their derivatives are then substituted
into (22) to determine the value of G(η). Finally, G(η) is substituted into (28)
to generate the solutions of (6) for various values of β.

4 Results and discussion

Equation (6) subject to the the boundary conditions (7) is solved by NIT and
DTM, for the pertinent magnetic parameter β. In order to verify the accuracy
of the present methods, the results are compared with those by Cebeci and
Keller[5] and Smith [16] for the skin friction coefficient f ′′(0) at β = 0. They
are found to be in good agreement ( at β = 0). The values of f ′′(0) by DTM
and NIT are given in the Table 1. The values are in close agreement. From
the Table 2 and equation (11), it is evident that the values of the skin-friction
on the surface of the plate go on increasing as the magnetic parameter β goes
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on increasing and physically this appears to be plausible. The skin-friction
becomes unity as β →∞ ( by NIT).
The solutions of the initial value problem (32) and (34) are depicted in Table
2 from which it can be seen that dF (∞)/dζ and df(∞)/dη approach a lim-
iting value of 1.655190 and 0.999999 respectively. Substituting the value of
dF (∞)/dζ into (36) gives a calculated value of λ equal to 0.469600. Using
this value of λ, Table 2 presents the current numerical results for the Falkner-
Skan boundary-layer problem for the case of β = 0 in terms of f(η) and its
derivatives. The results obtained by the present method are in good agree-
ment with those provided by White [18]and Kuo [10] to about five decimal
places. The variation of the values of f(η) and its derivatives for the case of
β = 0 are plotted in Fig.1. Figure 2 plots the numerical values of f(η) for the
present boundary-layer equation it can be seen that as the magnetic param-
eter increases f(η) also increases. Fig. 3 displays the dimensionless velocity
profiles f ′(η) for varies magnetic parameter β. The result show that increasing
magnetic parameter is to accelerate the velocity. Fig. 4 show the shear-stress
profiles for a flat plate for a wide range of the magnetic parameter. Once
again, the current numerical results obtained by NIT and DTM are in good
agreement.

Table 1: Comparison of the values of f ′′(0) for for the magnetic parameter β

β Smith [16] Cebeci [5] DTM (Present Case) NIT(Present Case)
0.0 0.46960 0.46960 0.46910 0.46920
0.2 − − 0.66343 0.64819
0.4 − − 0.80009 0.78749
0.6 − − 0.91659 0.90562
0.8 − − 1.01988 1.01002
1.0 − − 1.11362 1.10460
1.2 − − 1.20006 1.19170
1.4 − − 1.28068 1.27285
1.6 − − 1.35652 1.34913
1.8 − − 1.42834 1.42132
2.0 − − 1.49671 1.49002
∞ − − 1 −

5 Concluding Remarks

By NIT, it is important and interesting to note that remarkably simple ap-
proximate solutions in closed form as given by (16) - (18) of equation (6) -
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Figure 1: Variation of f(η), f ′(η) and f ′′(η) for β = 0 by NIT and DTM.

(7), are now available for a wide range of magnetic parameter β. Also, this
method utilizes the ’similarity’ between equation (6) and another third order
non-linear equation (8), and minimizes the total error. As a matter of this fact,
it is hoped that such an analysis will find wider use in engineering applications.
By DTM, it has been demonstrated that the current results for the velocity
and shear-stress profiles are in good agreement with those provided by NIT. It
is authors’ belief that the methods presented in this paper provide an effective
numerical scheme for determining the solutions of the nonlinear third order
differential equations pertaining to the boundary-layer problems.
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Table 2: Values of F (ζ), f(η) and their derivatives from the initial value
problems (32) - (33) and (34) - (35)

η, ζ F (ζ) F ′(ζ) F ′′(ζ) f(η) f ′(η) f ′′(η)
0.00 0.000000 0.000000 1.000000 0.000000 0.000000 0.469600
0.20 0.019997 0.199933 0.998668 0.009391 0.093905 0.469306
0.40 0.079915 0.398937 0.989396 0.037549 0.187605 0.467254
0.60 0.179357 0.594661 0.964703 0.084386 0.280575 0.461734
0.80 0.317314 0.783380 0.918537 0.149674 0.371963 0.451190
1.00 0.491930 0.960417 0.847633 0.232990 0.460633 0.434379
1.20 0.700371 1.120825 0.752765 0.333657 0.545246 0.410565
1.40 0.938860 1.260271 0.639249 0.450724 0.624386 0.379692
1.60 1.202886 1.375886 0.516206 0.582956 0.696700 0.342487
1.80 1.487566 1.466848 0.394557 0.728872 0.761057 0.300445
2.00 1.788066 1.534483 0.284413 0.886797 0.816695 0.255669
2.20 2.100006 1.581860 0.192824 1.054947 0.863304 0.210580
2.40 2.419731 1.613053 0.122720 1.231528 0.901065 0.167560
2.60 2.744434 1.632327 0.073226 1.414824 0.930601 0.128613
2.80 3.072123 1.643492 0.040933 1.603284 0.952875 0.095113
3.00 3.401492 1.649552 0.021426 1.795568 0.969055 0.067710
3.20 3.731747 1.652633 0.010499 1.990581 0.980365 0.046370
3.40 4.062439 1.654099 0.004816 2.187467 0.987970 0.030535
3.60 4.393333 1.654753 0.002067 2.385590 0.992888 0.019329
3.80 4.724315 1.655025 0.000831 2.584499 0.995944 0.011759
4.00 5.055332 1.655132 0.000312 2.783886 0.997770 0.006874
4.20 5.386363 1.655171 0.000110 2.983555 0.998818 0.003861
4.40 5.717399 1.655184 0.000036 3.183383 0.999397 0.002084
4.60 6.048437 1.655189 0.000011 3.383296 0.999703 0.001081
4.80 6.379474 1.655190 0.000003 3.583254 0.999859 0.000538
5.00 6.710512 1.655190 0.000001 3.783235 0.999936 0.000258


