Type of equiangular tight frames with $n+1$ vectors in \mathbb{R}^{n}

S. Arbabi Mohammad-Abadi, M. Najafi
Department of Mathematics, Anar Branch, Islamic Azad University, Anar, Iran
Email: s.arbabi1579@yahoo.com
Email: m_najafi82@yahoo.com

Abstract

An equiangular tight frame (ETF) is a $d \times n$ matrix that has orthogonal rows and unit-norm columns. ETFs have applications in communications, coding theory and quantum computing. In this paper we investigate type of ETFs that have $n+1$ vectors in \mathbb{R}^{n}. Also we state the connection between these frames with the complete graphs that containing $n+1$ vertices.

Keywords: Equiangular tight frame, Complete graph, Mercedes-Benz frame, Siedel mateix, Adjacency matrix.

1 Introduction

Equiangular tight frames are an important class of finite dimensional frames. These frames play an important role in several areas of mathematics, ranging from signal processing (see, e.g. [1,3,5,9,10], and references therein) to quantum computing (see, e.g. [2,4,12,13] and references therein). A detailed study of this class of frames was initiated by Strohmer and Heath [14], and Holmes and Paulsen [6]. The problem of the existence of equiangular tight frames is known to be equivalent to the existence of a certain type of matrix called a Seidel matrix [11] or signature matrix [6] with two eigenvalues. A matrix Q is a Seidel matrix provided that it is self-adjoint, its diagonal entries are 0 , and its off diagonal entries are all of modulus one. In the real case, these
off-diagonal entries must all be ± 1; such matrices can then be interpreted as adjacency matrices of graphs. There is a well established correspondence between graph-theory and Seidel matrices of real equiangular tight frames as seen in [6], and recently in [16].Type genus of equiangular tight frames are Mercedes-Benz frames which containing $n+1$ vectors in \mathbb{R}^{n}.
A system of unit vectors $\left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n+1}\right\}$ in the space \mathbb{R}^{n} is called a MercedesBenz system if $<\varphi_{j}, \varphi_{k}>=-\frac{1}{n}$ for $j \neq k$.
This paper is organized as follows. We start by giving definitions and preliminaries of frame theory in Section 2. In Section 3, we explore the construction of the Mercedes-Benz frames and thair properties and in section 4 we characterize equiangular tight frames with $n+1$ vectors in the space \mathbb{R}^{n}. The paper is concluded in section 5 .

2 Definitions and preliminaries

Definition 2.1 A family of vectors $\left\{f_{j}\right\}_{j=1}^{m}$ is a frame for $\mathbb{R}^{n}, m \geq n$, provided that there exist two constants $A, B>0$ such that the equality

$$
A\|x\|^{2} \leq \sum_{j=1}^{m}\left|\left\langle f, f_{j}\right\rangle\right|^{2} \leq B\|x\|^{2}
$$

satiesfies for all $x \in \mathbb{R}^{n}$. When $A=B=1$, then the frame is called normalized frame or Parseval frame.

Definition 2.2 Let $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\}$ be a frame in \mathbb{R}^{n}, linear mapping

$$
V: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad\left(V x_{j}\right)=<x, f_{j}>\quad \text { for all } j \in\{1,2, \cdots, m\}
$$

which is called the analysis operator of frame.
Because V is linear, we may identify V with an $m \times n$ matrix and the vectors $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\}$ are columns of V^{*}. If V is the analysis operator of Parseval frame, then V is an isometry. We see that $V^{*} V=I_{n}$ and the $m \times m$ matrix $V V^{*}$ is a self-adjoint projection of rank n. $V V^{*}$ has entires $\left(V V^{*}\right)_{i j}=(<$ $\left.f_{i}, f_{j}>\right)$ and is Grammian matrix of frame.

Definition 2.3 A frame $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\}$ in \mathbb{R}^{n} is called equal norm if there is $b>0$ such that $\left\|f_{j}\right\|=b$.

Definition 2.4 A finite family $\left\{f_{1}, f_{2}, \cdots, f_{m}\right\}$ in \mathbb{R}^{n} is called an equiangular tight frame if it is equal norm and if there is $b \geq 0,\left|<f_{i}, f_{j}>\right|=b$ for all $i, j \in\{1,2, \cdots, m\}$ with $i \neq j$.

3 The Mercedes-Benz frames in \mathbb{R}^{n}

Consider three vectors in \mathbb{R}^{2} :

$$
f_{1}^{2}=\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)^{T} \quad, \quad f_{2}^{2}=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)^{T} \quad, \quad f_{3}^{2}=(0,1)^{T}
$$

where the superscript indicates the dimension of vectors. Compose the matrix with columns f_{1}^{2}, f_{2}^{2} and f_{3}^{2} :

$$
A_{2}=\left[\begin{array}{ccc}
-\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & 0 \\
-\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right]
$$

It is easily shown that $A_{2} A_{2}^{T}=\frac{3}{2}$.
Hence the system $\left\{f_{j}^{2}\right\}_{j=1}^{3}$ is a tight frame, known as the Mercedes-Benz frame.Note

$$
\begin{equation*}
\sum_{j=1}^{3} f_{j}^{2}=0,<f_{j}^{2}, f_{k}^{2}>=-\frac{1}{2} \quad \text { for } \quad k \neq j \tag{1}
\end{equation*}
$$

In \mathbb{R} there are only two unit vectors $f_{1}^{1}=-1$ and $f_{2}^{1}=1$. These vectors have a property similar to (1):

$$
f_{1}^{1}+f_{2}^{1}=0, \quad<f_{1}^{1}, f_{2}^{1}>=-1
$$

It is natural to call the system $\left\{f_{1}^{1}, f_{2}^{1}\right\}$ a Mercedes-Benz frame in \mathbb{R}. Figure 1 shows that the Mercedes-Benz frames in \mathbb{R} and \mathbb{R}^{2}.

Figure 1: Mercedes-Benz frames in \mathbb{R} and \mathbb{R}^{2}.
We see that the system $\left\{f_{1}^{2}, f_{2}^{2}, f_{3}^{2}\right\}$ is obtained from the system $\left\{f_{1}^{1}, f_{2}^{1}\right\}$ in
the following way.The vectors f_{1}^{1} and f_{2}^{1} rotate downward by the system angle until are formed vectors f_{1}^{2} and f_{2}^{2}. Then we add $f_{3}^{2}=(0,1)^{T}$ to f_{1}^{2} and f_{2}^{2}. This observation is influence for Mercedes-Benz constructingin the space \mathbb{R}^{n} by induction.
Let the system of unit vectors $\left\{f_{1}^{n-1}, f_{2}^{n-1}, \cdots, f_{n}^{n-1}\right\}$ has been constructed in \mathbb{R}^{n-1} and

$$
\sum_{j=1}^{n} f_{j}^{n-1}=0,<f_{j}^{n-1}, f_{k}^{n-1}>=-\frac{1}{n-1} \quad \text { for } k \neq j
$$

We set $f_{n+1}^{n}=(0,0, \cdots, 1)^{T}$ and for $j \in\{1,2, \cdots, n\}$

$$
f_{j}^{n}=c_{n}\left(f_{j}^{n-1},-h_{n}\right)^{T}
$$

Since the vectors are unit, we have

$$
1=\left\|f_{j}^{n}\right\|^{2}=c_{n}^{2}\left(1+h_{n}^{2}\right)
$$

Since the vectors are unit, we have

$$
1=\left\|f_{j}^{n}\right\|^{2}=c_{n}^{2}\left(1+h_{n}^{2}\right)
$$

Hence

$$
c_{n}=\frac{1}{\sqrt{1+h_{n}^{2}}}
$$

The equality $\sum_{j=1}^{n+1} f_{j}^{n}=0$ results $c_{n} h_{n}=\frac{1}{n}$. For the constants c_{n} and h_{n}, we have

$$
c_{n}=\frac{\sqrt{n^{2}-1}}{n} \quad, \quad h_{n}=\frac{1}{\sqrt{n^{2}-1}}
$$

With the right choice of c_{n} and h_{n} for $j \neq k$, we have

$$
<f_{j}^{n}, f_{k}^{n}>=c_{n}^{2}\left(<f_{j}^{n-1}, f_{k}^{n-1}>+h_{n}^{2}\right)=-\frac{n+1}{n^{2}}+\frac{1}{n}=-\frac{1}{n}
$$

For $j \in\{1,2, \cdots, n\}$ and $k=n+1$, we have

$$
<f_{j}^{n}, f_{n+1}^{n}>=-c_{n} h_{n}=-\frac{1}{n}
$$

Thus for all natural numbers n, we can construct a system of unit vectors $\left\{f_{1}^{n}, f_{2}^{n}, \cdots, f_{n+1}^{n}\right\}$ in \mathbb{R}^{n} such that

$$
\sum_{j=1}^{n+1} f_{j}^{n}=0,<f_{j}^{n}, f_{k}^{n}>=-\frac{1}{n} \text { for } k \neq j
$$

The construction of the system $\left\{f_{j}^{n}\right\}_{j=1}^{n+1}$ was first described in $[7,8]$.

Definition 3.1 A finite family of unit vectors $\left\{\varphi_{j}\right\}_{j=1}^{n+1}$ in \mathbb{R}^{n} is called a Mercedes-Benz system if

$$
<\varphi_{j}, \varphi_{k}>=-\frac{1}{n} \text { for } k \neq j
$$

Theorem 3.2 A Mercedes-Benz system $\left\{f_{j}^{n}\right\}_{j=1}^{n+1}$ in \mathbb{R}^{n} is a tight frame.
Proof. We apply the induction on n.
For $n=1$ and $n=2$, since $A_{1} A_{1}^{T}=2 I_{1}$ and $A_{2} A_{2}^{T}=\frac{3}{2} I_{2}$, then $\left\{f_{j}^{1}\right\}_{j=1}^{2}$ and $\left\{f_{j}^{2}\right\}_{j=1}^{3}$ are tight frames.
By induction assume $\left\{f_{j}^{n-1}\right\}_{j=1}^{n}$ in \mathbb{R}^{n-1} be a tight frame such that

$$
\sum_{j=1}^{n}\left|<x, f_{j}^{n-1}>\right|^{2}=\frac{n}{n-1}\|x\|^{2} \quad \forall x \in \mathbb{R}^{n-1}
$$

Consider $x \in \mathbb{R}^{n}$ and set $x=\left(x^{n-1}, x_{n}\right)^{T}$, we find

$$
\begin{aligned}
\sum_{j=1}^{n+1}\left|<x, f_{j}^{n}>\right|^{2} & =\sum_{j=1}^{n}\left|<x, f_{j}^{n}>\left.\right|^{2}+\left|<x, f_{n+1}^{n}>\right|^{2}\right. \\
& =c_{n}^{2} \sum_{j=1}^{n+1}\left|<x^{n-1}, f_{j}^{n-1}>\right|^{2}+\left(n c_{n}^{2} h_{n}^{2}+1\right) x_{n}^{2} \\
& =c_{n}^{2} \frac{n}{n-1}\left\|x^{n-1}\right\|^{2}+\left(n c_{n}^{2} h_{n}^{2}+1\right) x_{n}^{2} \\
& =\frac{n+1}{n}\left\|x^{n-1}\right\|^{2}+\frac{n+1}{n} x_{n}^{2} \\
& =\frac{n+1}{n}\left(\left\|x^{n-1}\right\|^{2}+x_{n}^{2}\right) \\
& =\frac{n+1}{n}\|x\|^{2}
\end{aligned}
$$

Theorem 3.3 A Mercedes-Benz system $\left\{f_{j}^{n}\right\}_{j=1}^{n+1}$ in \mathbb{R}^{n} is an equiangular tight frame.

Proof. By Theorem (3.2), $\left\{f_{j}^{n}\right\}_{j=1}^{n+1}$ is tight frame.
Because $\left\{f_{j}^{n}\right\}_{j=1}^{n+1}$ is a Mercedes-Benz system, then by definition (3.1), for $j \neq k$ we have

$$
<f_{j}^{n}, f_{k}^{n}>=-\frac{1}{n}
$$

Thus since the angle between any pair of frame vectors is a constant, therefore a Mercedes-Benz system $\left\{f_{j}^{n}\right\}_{j=1}^{n+1}$ is equiangular tight frame.

4 Classification equiangular tight frames

In this section the first we define the adjacency matrix of a graph. Then show that there exists a one-to-one correspondence between real equiangular tight frames and graphs. This one-to-one correspondence has recently been studied in the case of equiangular tight frames (see, e.g., [2,14,15]). At last by induction on n (space dimensional), we get the number of equiangular tight frames with $n+1$ vectors.

Definition 4.1 The Seidel matrix or adjacency matrix Q of a graph G with n vertices is the $n \times n$ matrix with $a-1$ in the (j, k)-entry if the j and k vertices are adjacent (connected by an edge), a 1 if they are nonadjacent, and 0 diagonal entries.

Since frames are determined to unitary equivalence by their Gramian matrices, the Gramian of an equiangular frame that $\left\langle f_{j}, f_{k}>=C>0\right.$ and $\left\|f_{j}\right\|^{2}=r$ has the form

$$
G=\left[\begin{array}{ccccc}
r & c f_{12} & c f_{13} & \cdots & c f_{1 n} \\
c \overline{f_{21}} & r & c f_{23} & \ldots & c f_{2 n} \\
c \overline{f_{31}} & c \overline{f_{31}} & r & \cdots & c f_{3 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
c \overline{f_{n 1}} & c \overline{f_{n 2}} & c \overline{f_{n 2}} & \cdots & r
\end{array}\right]=r I+c Q
$$

, where Q is Seidel matrix corresponding to equiangular frame.
Consider the vectors $\left\{f_{j}^{n}\right\}_{j=1}^{n+1}$ in \mathbb{R}^{n} that defined in section 3 . Now by induction on n (space dimension) we have:

If $\mathbf{n}=\mathbf{1}$, there are only two vectors $f_{1}^{1}=1, f_{2}^{1}=-1$ in \mathbb{R} that form an equiangular tight frame. Let A_{1} and A_{1}^{T} be the synthesis and analysis operator associated to $\left\{f_{j}^{1}\right\}_{j=1}^{2}$. The Gramian matrix of frame has the form

$$
G=A_{1}^{T} A_{1}=\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right]=I+Q
$$

which $Q=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$, is the Siedel matrix correspondence to equiangular tight frame. The corresponding graph to Q is Complete graph K_{2} and is as follows:

Figure 2: The complete graph K_{2} corresponding equiangular tight frame of two vectors in \mathbb{R}.

If $\mathbf{n}=\mathbf{2}$, we investigate two cases.
Case 1: The vectors $f_{1}^{2}=(0,1)^{T}, f_{2}^{2}=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)^{T}, f_{3}^{2}=\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)^{T}$ in \mathbb{R}^{2} that form an equiangular tight frame. Consider A_{2} and A_{2}^{T} be the synthesis and analysis operator associated to $\left\{f_{j}^{2}\right\}_{j=1}^{3}$. The Gramian matrix of frame has the form

$$
G=A_{2}^{T} A_{2}=\left[\begin{array}{rrr}
1 & -\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 1 & -\frac{1}{2} \\
-\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right]=I+\frac{1}{2} Q
$$

which $Q=\left[\begin{array}{rrr}0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0\end{array}\right]$, is the Siedel matrix correspondence to
equiangular tight frame. The corresponding graph to Q is complete graph K_{3}. (Figure3 (a))

(a)

(b)

Figure 3: The complete graph K_{3} and complete bigraph $\left\{K_{1}, K_{2}\right\}$ corresponding equiangular tight frames of three vectors in \mathbb{R}^{2}.

Case 2: If the one of the frame vectors change in the opposite direction, then the vectors $f_{1}^{2}=(0,-1)^{T}, f_{2}^{2}=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)^{T}, f_{3}^{2}=\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)^{T}$ in \mathbb{R}^{2} that form an equiangular tight frame. Consider A_{2} and A_{2}^{T} be the synthesis and analysis
operator associated to $\left\{f_{j}^{2}\right\}_{j=1}^{3}$. The Gramian matrix of frame has the form

$$
G=A_{2}^{T} A_{2}=\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 1 & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right]=I+\frac{1}{2} Q
$$

which $Q=\left[\begin{array}{rrr}0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]$, is the Siedel matrix correspondence to
equiangular tight frame. The corresponding graph to Q is bigraph complete graph $\left\{K_{1}, K_{2}\right\}$. (Figure3 (b))

If $\mathbf{n}=\mathbf{3}$, we investigate three cases.
Case 1: The vectors $f_{1}^{3}=(0,0,1)^{T}, f_{2}^{3}=\left(0, \frac{2 \sqrt{2}}{3},-\frac{1}{3}\right)^{T}, f_{3}^{3}=\left(\frac{\sqrt{6}}{3},-\frac{\sqrt{2}}{3},-\frac{1}{3}\right)^{T}$ and $f_{4}^{3}=\left(-\frac{\sqrt{6}}{3},-\frac{\sqrt{2}}{3},-\frac{1}{3}\right)^{T}$ in \mathbb{R}^{3} that form an equiangular tight frame. Consider A_{3} and A_{3}^{T} be the synthesis and analysis operator associated to $\left\{f_{j}^{3}\right\}_{j=1}^{4}$. The Gramian matrix of frame has the form

$$
G=A_{3}^{T} A_{3}=\left[\begin{array}{rrrr}
1 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & 1 & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & 1 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 1
\end{array}\right]=I+\frac{1}{3} Q
$$

which $Q=\left[\begin{array}{rrrr}0 & -1 & -1 & -1 \\ -1 & 0 & -1 & -1 \\ -1 & -1 & 0 & -1 \\ -1 & -1 & -1 & 0\end{array}\right]$, is the Seidel matrix correspondence to
equiangular tight frame. The corresponding graph to Q is complete graph K_{4}. (Figure4 (a))

(a)

(b)

(c)

Figure 4: The complete graph K_{4}, complete bigraph $\left\{K_{1}, K_{3}\right\}$ and complete bigraph $\left\{K_{2}, K_{2}\right\}$ corresponding equiangular tight frames of four vectors in \mathbb{R}^{3}.

Case 2: If the one of the frame vectors change in the opposite direction, then the vectors $f_{1}^{3}=(0,0,-1)^{T}, f_{2}^{3}=\left(0, \frac{2 \sqrt{2}}{3},-\frac{1}{3}\right)^{T}, f_{3}^{3}=\left(\frac{\sqrt{6}}{3},-\frac{\sqrt{2}}{3},-\frac{1}{3}\right)^{T}$ and $f_{4}^{3}=\left(-\frac{\sqrt{6}}{3},-\frac{\sqrt{2}}{3},-\frac{1}{3}\right)^{T}$ in \mathbb{R}^{3} that form an equiangular tight frame. Consider A_{3} and A_{3}^{T} be the synthesis and analysis operator associated to $\left\{f_{j}^{3}\right\}_{j=1}^{4}$. The Gramian matrix of frame has the form

$$
G=A_{3}^{T} A_{3}=\left[\begin{array}{cccc}
1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & 1 & -\frac{1}{3} & -\frac{1}{3} \\
\frac{1}{3} & -\frac{1}{3} & 1 & -\frac{1}{3} \\
\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 1
\end{array}\right]=I+\frac{1}{3} Q .
$$

which $Q=\left[\begin{array}{cccc}0 & 1 & 1 & 1 \\ 1 & 0 & -1 & -1 \\ 1 & -1 & 0 & -1 \\ 1 & -1 & -1 & 0\end{array}\right]$, is the seidel matrix correspondence to
equiangular tight frame. The corresponding graph to Q is complete bigraph $\left\{K_{1}, K_{3}\right\}$. (Figure4 (b))
Case 3: If the two of the frame vectors change in the opposite direction, then the vectors $f_{1}^{3}=(0,0,-1)^{T}, f_{2}^{3}=\left(0, \frac{-2 \sqrt{2}}{3}, \frac{1}{3}\right)^{T}, f_{3}^{3}=\left(\frac{\sqrt{6}}{3},-\frac{\sqrt{2}}{3},-\frac{1}{3}\right)^{T}$ and $f_{4}^{3}=\left(-\frac{\sqrt{6}}{3},-\frac{\sqrt{2}}{3},-\frac{1}{3}\right)^{T}$ in \mathbb{R}^{3} that form an equiangular tight frame. Consider A_{3} and A_{3}^{T} be the synthesis and analysis operator associated to $\left\{f_{j}^{3}\right\}_{j=1}^{4}$. The

Gramian matrix of frame has the form

$$
G=A_{3}^{T} A_{3}=\left[\begin{array}{cccc}
1 & -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & 1 & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & 1 & -\frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & -\frac{1}{3} & 1
\end{array}\right]=I+\frac{1}{3} Q
$$

which $Q=\left[\begin{array}{cccc}0 & -1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & 0\end{array}\right]$, is the seidel matrix correspondence to
equiangular tight frame. The corresponding graph to Q is complete bigraph $\left\{K_{2}, K_{2}\right\}$. (Figure4 (c))

With continued this process, we can obtain the number of equiangular tight frames with $n+1$ vectors in \mathbb{R}^{n}.
If n be an odd number, the number of equiangular tight frames with $n+1$ vectors in \mathbb{R}^{n} is $\frac{n+3}{2}$. The set $\left\{\left\{K_{0}, K_{n+1}\right\},\left\{K_{1}, K_{n}\right\}, \ldots,\left\{K_{n+1-\frac{n+1}{2}}, K_{\frac{n+1}{2}}\right\}\right\}$ is consisting of complete bigraph that $\left\{K_{0}, K_{n+1}\right\}$ is complete graph K_{n+1}. Also if n be an even number, the number of equiangular tight frames with $n+1$ vectors in \mathbb{R}^{n} is $\frac{n+2}{2}$. The set $\left\{\left\{K_{0}, K_{n+1}\right\},\left\{K_{1}, K_{n}\right\}, \ldots,\left\{K_{n+1-\frac{n}{2}}, K_{\frac{n}{2}}\right\}\right\}$ is consisting of complete bigraph that $\left\{K_{0}, K_{n+1}\right\}$ is complete graph K_{n+1}.

5 Conclusion

In this paper, the Mersedes-Benz frames have been investigated. By using of the correspondence one-to-one between equiangular tight frames, Seidel matrix and graph theory, we obtained the number of these frames with $n+1$ vectors in \mathbb{R}^{n}.

References

[1] A. Aldroubi, "Portraits of frames", Amer.Math, 123 (1995) 1661-1668.
[2] B.G. Bodmann, V.I. Paulsen, Frames, graphs and erasures, Linear Algebra Appl 404 (2005) 118-146.
[3] P.G. Casazza, "The art of frame theory", Taiwanese J. Math, Vol.4, No.2, (2000), pp.129-201.
[4] Y.C. Eldar, G.D. Forney, "Optimal tight frames and quantum measurement", IEEE Trans. Inform, Vol.48, No.3, (2002), pp.599-610.
[5] V.K. Goyal, J. Kovacevic, J.A. Kelner, Quantized frame expansions with erasures, Appl. Comput. Harmon. Anal 10 (2001) 203-233.
[6] R. Holmes, V.I. Paulsen, Optimal frames for erasures, Linear Algebra Appl 377 (2004) 31-51.
[7] M. N. Istomina and A. B. Pevnyi, "On location of points on a sphere and the Mercedes-Benz frame [In Russian]", Mat. Prosveschenic, Vol.3, No.11, (2007), pp.105-112.
[8] M. N. Istomina and A. B. Pevnyi, "The Mercedes-Benz frame in the n- dimensional space [In Russian]", Vestnik Syktyvkar. Gos. Univ, Vol.1, No.6, (2006), pp.219-222.
[9] J. Kovacevic, A. Chebira, "Life beyond bases: the advent of frames (part i)", IEEE Signal Process. Mag, Vol.24, No.4, (2007), pp.86-104.
[10] J. Kovacevic, A. Chebira, "Life beyond bases: the advent of frames (part ii)", IEEE Signal Process. Mag, Vol.24, No.5, (2007), pp.115-125.
[11] P.W.H. Lemmens, J.J. Seidel, Equiangular lines, J. Algebra 24 (1973) 494-512.
[12] J.M. Renes, Equiangular spherical codes in quantum cryptography, Quantum Inf. Comput 5 (2005) 81-92.
[13] J.M. Renes, R. Blume-Kohout, A.J. Scott, C.M. Caves, Symmetric informationally complete quantum measurements, J. Math.Phys 45 (2004) 2171-2180.
[14] T. Strohmer, R.W. Heath, "Grassmannian frames with applications to coding and communication", Appl. Comput. Harmon. Anal, Vol.14, No.3, (2003), pp.257-275.
[15] M.A. Sustik, J.A. Tropp, I.S. Dhillon, R.W. Heath, On the existence of equiangular tight frames, Linear Algebra Appl 426 (2007) 619-635.
[16] S.Waldron, "On the construction of equiangular frames from graphs", Linear Algebra Appl, Vol.431, No.11, (2009), pp.2228-2242.

