International Journal of Applied Mathematical Research, 1 (4) (2012) 391-401 ©Science Publishing Corporation www.sciencepubco.com/index.php/IJAMR

Type of equiangular tight frames

with n+1 vectors in \mathbb{R}^n

S. Arbabi Mohammad-Abadi, M. Najafi

Department of Mathematics, Anar Branch, Islamic Azad University, Anar, Iran

Email: s.arbabi1579@yahoo.com

Email: m_najafi82@yahoo.com

Abstract

An equiangular tight frame (ETF) is a $d \times n$ matrix that has orthogonal rows and unit-norm columns. ETFs have applications in communications, coding theory and quantum computing. In this paper we investigate type of ETFs that have n + 1 vectors in \mathbb{R}^n . Also we state the connection between these frames with the complete graphs that containing n + 1 vertices.

Keywords: Equiangular tight frame, Complete graph, Mercedes-Benz frame, Siedel mateix, Adjacency matrix.

1 Introduction

Equiangular tight frames are an important class of finite dimensional frames. These frames play an important role in several areas of mathematics, ranging from signal processing (see, e.g. [1,3,5,9,10], and references therein) to quantum computing (see, e.g. [2,4,12,13] and references therein). A detailed study of this class of frames was initiated by Strohmer and Heath [14], and Holmes and Paulsen [6]. The problem of the existence of equiangular tight frames is known to be equivalent to the existence of a certain type of matrix called a Seidel matrix [11] or signature matrix [6] with two eigenvalues. A matrix Q is a Seidel matrix provided that it is self-adjoint, its diagonal entries are 0, and its off diagonal entries are all of modulus one. In the real case, these

off-diagonal entries must all be ± 1 ; such matrices can then be interpreted as adjacency matrices of graphs. There is a well established correspondence between graph-theory and Seidel matrices of real equiangular tight frames as seen in [6], and recently in [16]. Type genus of equiangular tight frames are Mercedes-Benz frames which containing n + 1 vectors in \mathbb{R}^n .

A system of unit vectors $\{\varphi_1, \varphi_2, \cdots, \varphi_{n+1}\}$ in the space \mathbb{R}^n is called a Mercedes-Benz system if $\langle \varphi_j, \varphi_k \rangle = -\frac{1}{n}$ for $j \neq k$.

This paper is organized as follows. We start by giving definitions and preliminaries of frame theory in Section 2. In Section 3, we explore the construction of the Mercedes-Benz frames and thair properties and in section 4 we characterize equiangular tight frames with n + 1 vectors in the space \mathbb{R}^n . The paper is concluded in section 5.

2 Definitions and preliminaries

Definition 2.1 A family of vectors $\{f_j\}_{j=1}^m$ is a frame for \mathbb{R}^n , $m \ge n$, provided that there exist two constants A, B > 0 such that the equality

$$A||x||^{2} \leq \sum_{j=1}^{m} |\langle f, f_{j} \rangle|^{2} \leq B||x||^{2}$$

satisfies for all $x \in \mathbb{R}^n$. When A = B = 1, then the frame is called normalized frame or Parseval frame.

Definition 2.2 Let $\{f_1, f_2, \dots, f_m\}$ be a frame in \mathbb{R}^n , linear mapping

$$V : \mathbb{R}^n \to \mathbb{R}^m, \quad (Vx_j) = \langle x, f_j \rangle \quad \text{for all } j \in \{1, 2, \cdots, m\}$$

which is called the analysis operator of frame.

Because V is linear, we may identify V with an $m \times n$ matrix and the vectors $\{f_1, f_2, \dots, f_m\}$ are columns of V^* . If V is the analysis operator of Parseval frame, then V is an isometry. We see that $V^*V = I_n$ and the $m \times m$ matrix VV^* is a self-adjoint projection of rank n. VV^* has entires $(VV^*)_{ij} = (\langle f_i, f_j \rangle)$ and is Grammian matrix of frame.

Definition 2.3 A frame $\{f_1, f_2, \dots, f_m\}$ in \mathbb{R}^n is called equal norm if there is b > 0 such that $||f_j|| = b$.

Definition 2.4 A finite family $\{f_1, f_2, \dots, f_m\}$ in \mathbb{R}^n is called an equiangular tight frame if it is equal norm and if there is $b \ge 0$, $| < f_i, f_j > | = b$ for all $i, j \in \{1, 2, \dots, m\}$ with $i \ne j$.

The Mercedes-Benz frames in \mathbb{R}^n 3

Consider three vectors in \mathbb{R}^2 :

$$f_1^2 = (-\frac{\sqrt{3}}{2}, -\frac{1}{2})^T$$
, $f_2^2 = (\frac{\sqrt{3}}{2}, -\frac{1}{2})^T$, $f_3^2 = (0, 1)^T$,

where the superscript indicates the dimension of vectors. Compose the matrix with columns f_1^2, f_2^2 and f_3^2 :

$$A_2 = \begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & 0\\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix}$$

It is easily shown that $A_2A_2^T = \frac{3}{2}$. Hence the system $\{f_j^2\}_{j=1}^3$ is a tight frame , known as the Mercedes-Benz frame.Note

$$\sum_{j=1}^{3} f_j^2 = 0, \ < f_j^2, f_k^2 > = -\frac{1}{2} \quad \text{for} \quad k \neq j.$$
 (1)

In \mathbb{R} there are only two unit vectors $f_1^1 = -1$ and $f_2^1 = 1$. These vectors have a property similar to (1):

$$f_1^1 + f_2^1 = 0, \quad < f_1^1, f_2^1 > = -1.$$

It is natural to call the system $\{f_1^1, f_2^1\}$ a Mercedes-Benz frame in \mathbb{R} . Figure 1 shows that the Mercedes-Benz frames in \mathbb{R} and \mathbb{R}^2 .

Figure 1: Mercedes-Benz frames in \mathbb{R} and \mathbb{R}^2 .

We see that the system $\{f_1^2,f_2^2,f_3^2\}$ is obtained from the system $\{f_1^1,f_2^1\}$ in

the following way. The vectors f_1^1 and f_2^1 rotate downward by the system angle until are formed vectors f_1^2 and f_2^2 . Then we add $f_3^2 = (0, 1)^T$ to f_1^2 and f_2^2 . This observation is influence for Mercedes-Benz constructing in the space \mathbb{R}^n by induction.

Let the system of unit vectors $\{f_1^{n-1}, f_2^{n-1}, \cdots, f_n^{n-1}\}$ has been constructed in \mathbb{R}^{n-1} and

$$\sum_{j=1}^{n} f_j^{n-1} = 0, \ < f_j^{n-1}, f_k^{n-1} > = -\frac{1}{n-1} \quad \text{for } k \neq j.$$

We set $f_{n+1}^n = (0, 0, \dots, 1)^T$ and for $j \in \{1, 2, \dots, n\}$

$$f_j^n = c_n (f_j^{n-1}, -h_n)^T$$

Since the vectors are unit, we have

$$1 = ||f_j^n||^2 = c_n^2 (1 + h_n^2)$$

Since the vectors are unit, we have

$$1 = ||f_j^n||^2 = c_n^2 (1 + h_n^2)$$

Hence

$$c_n = \frac{1}{\sqrt{1+h_n^2}}$$

The equality $\sum_{j=1}^{n+1} f_j^n = 0$ results $c_n h_n = \frac{1}{n}$. For the constants c_n and h_n , we have

$$c_n = \frac{\sqrt{n^2 - 1}}{n}$$
 , $h_n = \frac{1}{\sqrt{n^2 - 1}}$

With the right choice of c_n and h_n for $j \neq k$, we have

$$\langle f_j^n, f_k^n \rangle = c_n^2 (\langle f_j^{n-1}, f_k^{n-1} \rangle + h_n^2) = -\frac{n+1}{n^2} + \frac{1}{n} = -\frac{1}{n}.$$

For $j \in \{1, 2, \cdots, n\}$ and k = n + 1, we have

$$\langle f_j^n, f_{n+1}^n \rangle = -c_n h_n = -\frac{1}{n}$$

Thus for all natural numbers n, we can construct a system of unit vectors $\{f_1^n, f_2^n, \cdots, f_{n+1}^n\}$ in \mathbb{R}^n such that

$$\sum_{j=1}^{n+1} f_j^n = 0, \ < f_j^n, f_k^n > = -\frac{1}{n} \text{ for } k \neq j.$$

The construction of the system $\{f_j^n\}_{j=1}^{n+1}$ was first described in [7,8].

Definition 3.1 A finite family of unit vectors $\{\varphi_j\}_{j=1}^{n+1}$ in \mathbb{R}^n is called a Mercedes-Benz system if

$$\langle \varphi_j, \varphi_k \rangle = -\frac{1}{n} \text{ for } k \neq j.$$

Theorem 3.2 A Mercedes-Benz system $\{f_j^n\}_{j=1}^{n+1}$ in \mathbb{R}^n is a tight frame.

Proof. We apply the induction on n. For n = 1 and n = 2, since $A_1A_1^T = 2$ I_1 and $A_2A_2^T = \frac{3}{2}$ I_2 , then $\{f_j^1\}_{j=1}^2$ and $\{f_j^2\}_{j=1}^3$ are tight frames.

By induction assume $\{f_j^{n-1}\}_{j=1}^n$ in \mathbb{R}^{n-1} be a tight frame such that

$$\sum_{j=1}^{n} | \langle x, f_j^{n-1} \rangle |^2 = \frac{n}{n-1} ||x||^2 \quad \forall x \in \mathbb{R}^{n-1}.$$

Consider $x \in \mathbb{R}^n$ and set $x = (x^{n-1}, x_n)^T$, we find

$$\begin{split} \sum_{j=1}^{n+1} | < x, f_j^n > |^2 &= \sum_{j=1}^n | < x, f_j^n > |^2 + | < x, f_{n+1}^n > |^2 \\ &= c_n^2 \sum_{j=1}^{n+1} | < x^{n-1}, f_j^{n-1} > |^2 + (n \ c_n^2 \ h_n^2 + 1) \ x_n^2 \\ &= c_n^2 \frac{n}{n-1} \| x^{n-1} \|^2 + (n \ c_n^2 \ h_n^2 + 1) \ x_n^2 \\ &= \frac{n+1}{n} \| x^{n-1} \|^2 + \frac{n+1}{n} x_n^2 \\ &= \frac{n+1}{n} (\| x^{n-1} \|^2 + x_n^2) \\ &= \frac{n+1}{n} \| x \|^2. \end{split}$$

Theorem 3.3 A Mercedes-Benz system $\{f_j^n\}_{j=1}^{n+1}$ in \mathbb{R}^n is an equiangular tight frame.

Proof. By Theorem (3.2), $\{f_j^n\}_{j=1}^{n+1}$ is tight frame. Because $\{f_j^n\}_{j=1}^{n+1}$ is a Mercedes-Benz system, then by definition (3.1), for $j \neq k$ we have

$$\langle f_j^n, f_k^n \rangle = -\frac{1}{n}$$

Thus since the angle between any pair of frame vectors is a constant, therefore a Mercedes-Benz system $\{f_j^n\}_{j=1}^{n+1}$ is equiangular tight frame.

4 Classification equiangular tight frames

In this section the first we define the adjacency matrix of a graph. Then show that there exists a one-to-one correspondence between real equiangular tight frames and graphs. This one-to-one correspondence has recently been studied in the case of equiangular tight frames (see, e.g., [2,14,15]). At last by induction on n (space dimensional), we get the number of equiangular tight frames with n + 1 vectors.

Definition 4.1 The Seidel matrix or adjacency matrix Q of a graph G with n vertices is the $n \times n$ matrix with a - 1 in the (j, k)-entry if the j and k vertices are adjacent (connected by an edge), a 1 if they are nonadjacent, and 0 diagonal entries.

Since frames are determined to unitary equivalence by their Gramian matrices, the Gramian of an equiangular frame that $\langle f_j, f_k \rangle = C > 0$ and $||f_j||^2 = r$ has the form

$$G = \begin{bmatrix} r & cf_{12} & cf_{13} & \cdots & cf_{1n} \\ c\overline{f_{21}} & r & cf_{23} & \cdots & cf_{2n} \\ c\overline{f_{31}} & c\overline{f_{31}} & r & \cdots & cf_{3n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ c\overline{f_{n1}} & c\overline{f_{n2}} & c\overline{f_{n2}} & \cdots & r \end{bmatrix} = rI + cQ$$

, where Q is Seidel matrix corresponding to equiangular frame. Consider the vectors $\{f_j^n\}_{j=1}^{n+1}$ in \mathbb{R}^n that defined in section 3. Now by induction on n (space dimension) we have:

If **n=1**, there are only two vectors $f_1^1 = 1$, $f_2^1 = -1$ in \mathbb{R} that form an equiangular tight frame. Let A_1 and A_1^T be the synthesis and analysis operator associated to $\{f_i^1\}_{i=1}^2$. The Gramian matrix of frame has the form

$$G = A_1^T A_1 = \begin{bmatrix} 1 & -1 \\ & & \\ -1 & 1 \end{bmatrix} = I + Q.$$

which $Q = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$, is the Siedel matrix correspondence to equiangular tight frame. The corresponding graph to Q is Complete graph K_2 and is as follows:

Figure 2: The complete graph K_2 corresponding equiangular tight frame of two vectors in \mathbb{R} .

If **n=2**, we investigate two cases. **Case 1**: The vectors $f_1^2 = (0, 1)^T$, $f_2^2 = (\frac{\sqrt{3}}{2}, -\frac{1}{2})^T$, $f_3^2 = (-\frac{\sqrt{3}}{2}, -\frac{1}{2})^T$ in \mathbb{R}^2 that form an equiangular tight frame. Consider A_2 and A_2^T be the synthesis and analysis operator associated to $\{f_j^2\}_{j=1}^3$. The Gramian matrix of frame has the form

$$G = A_2^T A_2 = \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} = I + \frac{1}{2} Q$$

which $Q = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$, is the Siedel matrix correspondence to

equiangular tight frame. The corresponding graph to Q is complete graph K_3 . (Figure 3 (a))

Figure 3: The complete graph K_3 and complete bigraph $\{K_1, K_2\}$ corresponding equiangular tight frames of three vectors in \mathbb{R}^2 .

Case 2: If the one of the frame vectors change in the opposite direction, then the vectors $f_1^2 = (0, -1)^T$, $f_2^2 = (\frac{\sqrt{3}}{2}, -\frac{1}{2})^T$, $f_3^2 = (-\frac{\sqrt{3}}{2}, -\frac{1}{2})^T$ in \mathbb{R}^2 that form an equiangular tight frame. Consider A_2 and A_2^T be the synthesis and analysis operator associated to $\{f_i^2\}_{i=1}^3$. The Gramian matrix of frame has the form

$$G = A_2^T A_2 = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} = I + \frac{1}{2} Q.$$

which $Q = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$, is the Siedel matrix correspondence to

equiangular tight frame. The corresponding graph to Q is bigraph complete graph $\{K_1, K_2\}$. (Figure 3 (b))

If **n=3**, we investigate three cases. **Case 1**: The vectors $f_1^3 = (0, 0, 1)^T$, $f_2^3 = (0, \frac{2\sqrt{2}}{3}, -\frac{1}{3})^T$, $f_3^3 = (\frac{\sqrt{6}}{3}, -\frac{\sqrt{2}}{3}, -\frac{1}{3})^T$ and $f_4^3 = (-\frac{\sqrt{6}}{3}, -\frac{\sqrt{2}}{3}, -\frac{1}{3})^T$ in \mathbb{R}^3 that form an equiangular tight frame. Consider A_3 and A_3^T be the synthesis and analysis operator associated to $(f_3^3)^4$. The Constant matrix of frame has the form ${f_j^3}_{j=1}^4$. The Gramian matrix of frame has the form

$$G = A_3^T A_3 = \begin{bmatrix} 1 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & 1 & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & 1 & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & 1 & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 1 \end{bmatrix} = I + \frac{1}{3} Q.$$

which $Q = \begin{bmatrix} 0 & -1 & -1 & -1 \\ -1 & 0 & -1 & -1 \\ -1 & -1 & 0 & -1 \\ -1 & -1 & -1 & 0 \end{bmatrix}$, is the Seidel matrix correspondence to

equiangular tight frame. The corresponding graph to Q is complete graph K_4 . (Figure 4 (a))

Figure 4: The complete graph K_4 , complete bigraph $\{K_1, K_3\}$ and complete bigraph $\{K_2, K_2\}$ corresponding equiangular tight frames of four vectors in \mathbb{R}^3 .

Case 2: If the one of the frame vectors change in the opposite direction, then the vectors $f_1^3 = (0, 0, -1)^T$, $f_2^3 = (0, \frac{2\sqrt{2}}{3}, -\frac{1}{3})^T$, $f_3^3 = (\frac{\sqrt{6}}{3}, -\frac{\sqrt{2}}{3}, -\frac{1}{3})^T$ and $f_4^3 = (-\frac{\sqrt{6}}{3}, -\frac{\sqrt{2}}{3}, -\frac{1}{3})^T$ in \mathbb{R}^3 that form an equiangular tight frame. Consider A_3 and A_3^T be the synthesis and analysis operator associated to $\{f_j^3\}_{j=1}^4$. The Gramian matrix of frame has the form

$$G = A_3^T A_3 = \begin{bmatrix} 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 1 & -\frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & 1 & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & 1 & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 1 \end{bmatrix} = I + \frac{1}{3} Q.$$

which $Q = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & -1 & -1 \\ 1 & -1 & 0 & -1 \\ 1 & -1 & -1 & 0 \end{bmatrix}$, is the seidel matrix correspondence to

equiangular tight frame. The corresponding graph to Q is complete bigraph $\{K_1, K_3\}$. (Figure 4(b))

Case 3: If the two of the frame vectors change in the opposite direction, then the vectors $f_1^3 = (0, 0, -1)^T$, $f_2^3 = (0, \frac{-2\sqrt{2}}{3}, \frac{1}{3})^T$, $f_3^3 = (\frac{\sqrt{6}}{3}, -\frac{\sqrt{2}}{3}, -\frac{1}{3})^T$ and $f_4^3 = (-\frac{\sqrt{6}}{3}, -\frac{\sqrt{2}}{3}, -\frac{1}{3})^T$ in \mathbb{R}^3 that form an equiangular tight frame. Consider A_3 and A_3^T be the synthesis and analysis operator associated to $\{f_j^3\}_{j=1}^4$. The Gramian matrix of frame has the form

$$G = A_3^T A_3 = \begin{bmatrix} 1 & -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & 1 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} & 1 \end{bmatrix} = I + \frac{1}{3} Q.$$

which $Q = \begin{bmatrix} 0 & -1 & 1 & 1 \\ -1 & 0 & 1 & 1 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & -1 & 0 \end{bmatrix}$, is the seidel matrix correspondence to

equiangular tight frame. The corresponding graph to Q is complete bigraph $\{K_2, K_2\}$. (Figure 4(c))

With continued this process, we can obtain the number of equiangular tight frames with n + 1 vectors in \mathbb{R}^n .

If n be an odd number, the number of equiangular tight frames with n + 1 vectors in \mathbb{R}^n is $\frac{n+3}{2}$. The set $\{\{K_0, K_{n+1}\}, \{K_1, K_n\}, ..., \{K_{n+1-\frac{n+1}{2}}, K_{\frac{n+1}{2}}\}\}$ is consisting of complete bigraph that $\{K_0, K_{n+1}\}$ is complete graph K_{n+1} . Also if n be an even number, the number of equiangular tight frames with n + 1 vectors in \mathbb{R}^n is $\frac{n+2}{2}$. The set $\{\{K_0, K_{n+1}\}, \{K_1, K_n\}, ..., \{K_{n+1-\frac{n}{2}}, K_{\frac{n}{2}}\}\}$ is consisting of complete bigraph that $\{K_0, K_{n+1}\}, \{K_1, K_n\}, ..., \{K_{n+1-\frac{n}{2}}, K_{\frac{n}{2}}\}\}$ is consisting of complete bigraph that $\{K_0, K_{n+1}\}$ is complete graph K_{n+1} .

5 Conclusion

In this paper, the Mersedes-Benz frames have been investigated. By using of the correspondence one-to-one between equiangular tight frames, Seidel matrix and graph theory, we obtained the number of these frames with n + 1 vectors in \mathbb{R}^n .

References

[1] A. Aldroubi, "Portraits of frames", Amer. Math, 123 (1995) 1661-1668.

- [2] B.G. Bodmann, V.I. Paulsen, Frames, graphs and erasures, *Linear Algebra Appl* 404 (2005) 118-146.
- [3] P.G. Casazza, "The art of frame theory", *Taiwanese J. Math*, Vol.4, No.2, (2000), pp.129-201.
- [4] Y.C. Eldar, G.D. Forney, "Optimal tight frames and quantum measurement", *IEEE Trans. Inform*, Vol.48, No.3, (2002), pp.599-610.
- [5] V.K. Goyal, J. Kovacevic, J.A. Kelner, Quantized frame expansions with erasures, *Appl. Comput. Harmon. Anal* 10 (2001) 203-233.
- [6] R. Holmes, V.I. Paulsen, Optimal frames for erasures, *Linear Algebra Appl* 377 (2004) 31-51.
- [7] M. N. Istomina and A. B. Pevnyi, "On location of points on a sphere and the Mercedes-Benz frame [In Russian]", *Mat. Prosveschenic*, Vol.3, No.11, (2007), pp.105-112.
- [8] M. N. Istomina and A. B. Pevnyi, "The Mercedes-Benz frame in the n- dimensional space [In Russian]", Vestnik Syktyvkar. Gos. Univ, Vol.1, No.6, (2006), pp.219-222.
- [9] J. Kovacevic, A. Chebira, "Life beyond bases: the advent of frames (part i)", *IEEE Signal Process. Mag*, Vol.24, No.4, (2007), pp.86-104.
- [10] J. Kovacevic, A. Chebira, "Life beyond bases: the advent of frames (part ii)", *IEEE Signal Process. Mag*, Vol.24, No.5, (2007), pp.115-125.
- [11] P.W.H. Lemmens, J.J. Seidel, Equiangular lines, J. Algebra 24 (1973) 494-512.
- [12] J.M. Renes, Equiangular spherical codes in quantum cryptography, Quantum Inf. Comput 5 (2005) 81-92.
- [13] J.M. Renes, R. Blume-Kohout, A.J. Scott, C.M. Caves, Symmetric informationally complete quantum measurements, J. Math.Phys 45 (2004) 2171-2180.
- [14] T. Strohmer, R.W. Heath, "Grassmannian frames with applications to coding and communication", *Appl. Comput. Harmon. Anal*, Vol.14, No.3, (2003), pp.257-275.
- [15] M.A. Sustik, J.A. Tropp, I.S. Dhillon, R.W. Heath, On the existence of equiangular tight frames, *Linear Algebra Appl* 426 (2007) 619-635.
- [16] S.Waldron, "On the construction of equiangular frames from graphs", *Linear Algebra Appl*, Vol.431, No.11, (2009), pp.2228-2242.