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Abstract

In this paper, a new algorithm based on SQP method is presented to solve the nonlinear inequality constrained
optimization problem. As compared with the other existing SQP methods, per single iteration, the basic feasible
descent direction is computed by solving at most two equality constrained quadratic programming. Furthermore,
there is no need for any auxiliary problem to obtain the coefficients and update the parameters. Under some suitable
conditions, the global and superlinear convergence are shown.
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1. Introduction

In this paper, we consider the following nonlinear problem (NLP),

min f(x),
s.t. gj(x) ≤ 0, j = 1, 2, ..., m,

(1)

where f, gj : <n → <(j = 1 ∼ m) are continuously differentiable functions. The method of feasible directions (MFD)
is widely acknowledged for solving problem (1). SQP algorithms generate iteratively the main search direction d0

by solving the following quadratic programing subproblem:

min ∇f(x)T d + 1
2dT Hd,

s.t. gj(x) +∇gj(x)T d ≤ 0, j = 1, 2, ..., m,
(2)

where H ∈ <n×n is a symmetric positive definite matrix.
Denote the feasible set of (1) by

X = {x ∈ <n|gj(x) ≤ 0, j = 1, 2, ..., m}.
In [14], feasible sequential quadratic programing (FSQP) algorithms are presented to construct a feasible points
sequence of problem (1). As it is pointed out in [11], feasible iterates are desirable for algorithm and its application
because
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• the QP subproblems (2) are always consistent, i.e., a feasible solution to (2) always exists;

• the objective function may be used directly as a merit function in the line search;

• the optimization process may be stopped after a few iterations, yielding a feasible point.

So it is very important to develop the FSQP methods, see [3,15,9]. Generally, in order to obtain the restoring
feasible descent direction which assures the global convergence and the high-order direction which avoids Maratos
effect, the FSQP algorithm requires solving two or three QP subproblem like (2) with inequality constraints in
single iteration. In [23], a feasible descent direction is obtained only by solving one QP problem.
In addition, it is also a hot topic to solve the QP problem like (2) in the field of optimization. There exist a lot of
algorithms to solve step by step a series of corresponding QP problem with only equality constraints to obtain the
optimum solution to the QP subproblem (2). Obviously, it is simpler to solve the equality constrained QP problem
than to solve the QP problem with inequality constraints.
In [20], another SQP algorithm is presented to solve general nonlinear programs with mixed equality and inequality
constraints. Compared with most conventional SQP methods, this algorithm is merely necessary to solve QP
subproblems with only equality constraints, and it is a superior numerical method due to its new computation of
penalty weights and adequate efficient numerical experiments.
For the problem (1) without equality constraints, the algorithm in [20] defines an exact penalty function

Φ(x;u) = f(x) +
m∑

j=1

uj max{0, gj(x)}

and obtains the error d0 in the KKT conditions by solving the following quadratic problem with only equality
constraints:

min ∇f(x)T d + 1
2dT Hd,

s.t. ∇gj(x)T d = 0, j ∈ A ⊆ {1, 2, ..., m}, (3)

where the so-called working set A ⊆ {1, 2, ..., m} is suitably determined. Then, the search direction d and the
multiplier estimates λ are obtained by solving another QP subproblem with only equality constraints:

min ∇f(x)T d + 1
2dT Hd,

s.t. hj(x) +∇gj(x)T d = 0, j ∈ A,
(4)

where hj(x) is defined according to the multiplier vector of the subproblem (3). If d = 0 and λ ≥ 0, the algo-
rithm stops. Otherwise, given new penalty weights ũ, the stepsize σ is obtained by combining backtracking with
interpolation. Finally, a better point x̄ is generated

x̄ = x + σd.

However, unlike conventional SQP methods, from (4), it cannot guarantee that the corresponding approximating
multipliers are nonnegative during iterations, that is to say, it holds that x is a KKT point of (1), only when d = 0
and λ ≥ 0. Thereby, if d = 0, but λ ≥ 0 does not hold, the algorithm in [20] will not implement successfully, because
there is no method to remedy this bad case.
In this paper, we modify the feasible sequential equality constrained programming algorithm, presented in [24], with
less complexity and computations to solve the nonlinear inequality constrained programming problem. In [24], in
order to have a feasible descent direction d, of the objective function, it is necessary to solve some systems of linear
equations that are defined by the corresponding multiplier vector and parameters µk

j . In addition, µk
j is updated

in each iteration by the parameter µ̄. Furthermore, for obtaining the rate of convergence, it is necessary that the
corresponding multiplier vector u∗ according to KKT point x∗ satisfies u∗j ≤ µ̄, j = 1 ∼ m. Here, without this
assumption, a new algorithm is proposed, in which, basic feasible descent direction is computed by solving at most
two equality constrained quadratic programing. But, here, unlike [24], we do not compute any auxiliary problem
to obtain d. Under some suitable assumptions, global convergence is obtained. Using the techniques given in [23],
superlinear convergence rate is shown.
The plan of this paper is as follows: in section 2, the algorithm is proposed. In section 3, we show that the
algorithm is globally convergent. The superlinear convergence rate is analyzed in section 4. In section 5, some
numerical experiments are implemented. Because of similarity to paper [24], the proofs of some theorems and
lemmas have been eliminated. So for reader’s comfort, we preserved the structure of [24] in our paper.
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2. Description of algorithm

Let I(x) denote the active constraints set of (1.1):

I(x) = {j ∈ I|gj(x) = 0}, I = {1, 2, ...,m}. (5)

Now, the algorithm for solving Problem (1.1) can be presented as follows.

Algorithm A. Step 0. Initialization: Given a starting point x0 ∈ X, and an initial symmetric positive definite
matrix H0 ∈ <n×n. Choose parameter ε0, ν ∈ (0, 1), α ∈ (0, 1

2 ), τ ∈ (2, 3), ρ > 0. Let k = 0;
Step 1. Computation of an approximate active set Jk:
Step 1.1. Let i = 0, εk,i = ε0;
Step 1.2. Let

Jk,i = {j ∈ I| − ε ≤ gj(xk) ≤ 0}, Ak,i = (∇gj(xk), j ∈ Jk,i). (6)

If Ak,i is not of full column rank, then set i = i+1, εk,i = 1
2εk,i−1 and go to Step 1.2; Otherwise, let Jk = Jk,i, Ak =

Ak,i, ik = i, and go to Step 2.
Step 2. Computation of the vector ak which is important to the criterion of the KKT point:
Step 2.1. Reorder the rows of Ak as follows:

Ak
∆=

(
A1

k

A2
k

)
,

where the invertible matrix A1
k, is the matrix whose rows are |Jk| linearly independent rows of Ak, and A2

k is the
matrix whose rows are the remaining n− |Jk| rows of Ak. Correspondingly, let ∇f(xk) be decomposed as ∇f1(xk)
and ∇f2(xk), i.e,

∇f(xk) ∆=
( ∇f1(xk)
∇f2(xk)

)
.

Step 2.2. Solve the following system of linear equations:

A1
ku = −∇f1(xk). (7)

Let ak = (ak
j , j ∈ Jk) ∈ <|Jk| be the unique solution;

Step 3. Computation of the direction dk
0 : Solve the following equality constrained QP subproblem at xk:

min ∇f(xk)T d + 1
2dT Hkd

s.t. gj(xk) +∇gj(xk)T d = −min{0, ak
j } j ∈ Jk.

(8)

Let dk
0 be the KKT point of (8) and bk = (bk

j , j ∈ Jk) be the corresponding multiplier vector. If dk
0 = 0, STOP.

Otherwise, Let
ηk = min{‖dk

0‖ν , ρ},
continue.
Step 4. Computation of the feasible direction with descent dk which guarantees the global convergence:
Step 4.1. Solve the following constrained QP subproblem at xk :

min z + 1
2dT Hkd,

s.t. ∇f(xk)T d = z
∇gj(xk)T d = ηkz j ∈ Jk.

(9)

Let dk be the KKT point of (9) and λk = (λk
j , j ∈ Jk) be the corresponding multiplier vector.

If dk 6= 0 go to Step 5.
Step 4.2. If for all j ∈ Jk, λk

j ≥ 0 and the complementary condition holds, such that,

gj(xk) · λk
j = 0 for all j ∈ Jk,

then STOP and xk is the KKT point of the main problem.
Step 4.3. Else if, there is some multiplier λk

j < 0 then set

j′ = arg min{λk
j |λk

j < 0}.
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and delete j′ from the working set Jk and resolve the subproblem (9), it is proved that dk 6= 0. In this case go to
Step 5.
Step 4.4. Else remove the indices from the working set, whose corresponding constraints are not satisfying the
complementarity condition and resolve the subproblem (9) with the new working set Jk.
Let dk be the KKT point of this subproblem and λk = (λk

j , j ∈ Jk) be the corresponding multiplier vector. If dk 6= 0
then go to step 5.
If dk = 0 and for all j ∈ Jk, λk

j ≥ 0 then STOP and xk is the KKT point of the main problem. Else go to Step 4.3.
Step 5. Computing of the high-order revised direction d̃k which avoids Maratos effect.
Step 5.1. Obtain dk

1 by solving the following |Jk| × |Jk| system of linear equations.

(A1
k)T dk

1 = −ψke− gk, (10)

where
ψk = max{‖dk‖τ ,−ηkzk‖dk‖}, e = (1, ..., 1)T ∈ <|Jk|, gk = (gj(xk + dk), j ∈ Jk).

Let dk
1 be the solution.

Step 5.2. According to the transformation of Ak, define

d̃k ∆=
(

dk
1

0

)
,

so, it holds that
AT

k d̃k = (A1
k)T dk

1 + (A2
k)T 0 = (A1

k)T dk
1 .

If ‖d̃k‖ > ‖dk‖, set d̃k = 0;
Step 6. The line search: Compute tk, the first number t in the sequence {1, 1

2 , 1
4 , 1

8 , ...} is satisfying

f(xk + tdk + t2d̃k) ≤ f(xk) + αt∇f(xk)T dk, (11)

gj(xk + tdk + t2d̃k) ≤ 0, j ∈ I (12)

Step 7.Update:
Obtain Hk+1 by updating the positive definite matrix Hk using some quasi-Newton formula.
Set

xk+1 = xk + tdk + t2d̃k.

Set k = k + 1, Go back to Step 1.

Remarks.

• Firstly, in Step 1.2, 4.3 and 4.4 if Jk = ∅, then xk is a strict feasible interior point of main problem, in
addition, Ak and ak will have no definitions. Here, Algorithm A will be very simple, since Steps 2 and 3 will
not proceed.

• Secondly, if m À n, that is to say, the number of constraints is much greater than the variable dimension,
then |Jk| = n (Obviously, according to H 3.3, it is impossible to have |Jk| > n, else the number of linear
independent vectors would be greater than n in the space <n.) Here Ak ∈ <n×n is nonsingular, and we might
as well denote that Jk is the set of some indices such that Ak = (∇gj(xk), j ∈ Jk) and |Jk| = n. So, it is not
necessary to decompose Ak and ∇f(xk), and the high-order revised direction d̃k in step 5.2 is equal to dk

1 .

3. Global convergence of algorithm

In this section, at first, we show that Algorithm A given in section 2 is well-defined. To do this, we make the
following general assumptions and let them hold throughout the paper:
H 3.1. The feasible set is nonempty, i.e, X 6= ∅;
H 3.2. The functions f(x), gj(x)(j = 1 ∼ m) are two-times continuously differentiable;
H 3.3. ∀x ∈ X, the vectors {∇gj(x), j ∈ I(x)} are linearly independent.
H 3.4. {xk} is bounded, which is the sequence generated by the algorithm.
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Lemma 3.1 For any iteration, there is no infinite cycle in Step 1. Moreover, if {xk}k∈K → x∗ then there exists a
constant ε̄ > 0, such that εk,ik

≥ ε̄, for k ∈ K, k large enough.

Proof. The proof of this lemma is similar to the proof of Lemma 3.1 in [24].

Lemma 3.2 (zk, dk) is the unique solution of the QP subproblem (9) at xk, and {dk
0 , dk, zk, ak, bk} is bounded.

Proof.According to H 3.3-H 3.4, it is obvious that the claim holds.

Lemma 3.3 For QP subproblem (9) at xk, it holds that,
(1) zk + 1

2 (dk)T Hkdk ≤ 0.
(2) zk = 0 ⇔ dk = 0 ⇔ zk + 1

2 (dk)T Hkdk = 0.
(3) If dk 6= 0, then zk < 0, and dk is a feasible direction of descent at xk.

Proof. The proof of this lemma is similar to the proof of Lemma 3.4 in [4].

Lemma 3.4 If dk = 0 then xk is a KKT point of main problem or there is a feasible direction of descent at xk

that obtained by resolving the subproblem corresponding to the working set Jk.

proof. According to subproblem (9) and its KKT conditions, we have,
(

1
Hkdk

)
+ µ̂k

( −1
∇f(xk)

)
+

∑

j∈Jk

λ̂k
j

( −ηk

∇gj(xk)

)
= 0, (13)

since dk = 0, it holds that

µ̂k∇f(xk) +
∑

j∈Jk

λ̂k
j∇gj(xk) = 0, (14)

1− µ̂k −
∑

j∈Jk

ηkλ̂k
j = 0. (15)

We obtain µ̂k such that µ̂k ≥ 0. If µ̂ < 0 then denote µ̂k = −µ̂k , λ̂k
j = −λ̂k

j . From the equation (14), it is obvious
that µ̂k 6= 0. Therefore from the equation (14) we obtain

∇f(xk) +
∑

j∈Jk

λ̂k
j

µ̂k
∇gj(xk) = 0,

By defining λk
j = λ̂k

j

µ̂k
we have

∇f(xk) +
∑

j∈Jk

λk
j∇gj(xk) = 0.

Now, we consider three cases:
i) If for all j ∈ Jk, λk

j ≥ 0 and
λk

j gj(xk) = 0 for all j ∈ Jk

Then for all j ∈ I \ Jk we define λk
j = 0 and xk is the KKT point of main subproblem.

ii) If there are some λk
j < 0, then according to Step 4.3, we remove the constraint j′ from Jk and resolve the

subproblem corresponding to the working set Jk.

min zk + 1
2 (dk)T Hkdk

s.t. ∇f(xk)T dk = zk,

∇gj(xk)T dk = ηkzk j ∈ Jk \ {j′} ≡ Ĵk.

Let (dk, zk) be the KKT point of this subproblem, then we have

µ̃k

( ∇f(xk)
−1

)
+

∑

j∈Ĵk

λ̃k
j

( ∇gj(xk)
−ηk

)
+

(
Hkdk

1

)
= 0 (16)



International Journal of Applied Mathematical Research 341

Given ηk ≥ 0 and suppose d = 0 is obtained from the above subproblem. We define the set

Nk(ηk) ∆=
{( ∇f(xk)

−1

)
,

( ∇gj(xk)
−ηk

)
, j ∈ Jk ∪ {j′}

}
,

and show this set is linearly independent. Now suppose the claim does not hold; i.e., suppose there exist scalars
vj , j ∈ {0} ∪ Ĵk, not all zero, such that

v0

( ∇f(xk)
−1

)
+

∑

j∈Ĵk

vj

( ∇gj(xk)
−ηk

)
= 0. (17)

In view of assumption H 3.3, v0 6= 0 and the scalars vj are unique modulo a scaling factor. This uniqueness, the
fact that dk = 0, and the first scalar equations in the optimality conditions (13) imply that µ̂k = 1 and

λ̂k
j =

{
vj

v0 , j ∈ Jk,
0 else

are KKT multipliers for subproblem (9). Thus, in view of (13),

ηk

∑

j∈Jk

vj

v0
= 0.

But this contradicts (17), which gives

ηk

∑

j∈Jk

vj

v0
= −1;

hence Nk(ηk) is linearly independent.
Now by subtracting (13) from (16) we obtain

(µ̃k − µ̂k)
( ∇f(xk)

−1

)
+

∑

j∈Ĵk

(λ̃k
j − λ̂k

j )
( ∇gj(xk)

−ηk

)
− λ̂k

j′

( ∇gj′(xk)
−ηk

)
+

(
Hkdk

0

)
= 0. (18)

and multiplying by
(

dk

zk

)T

we have,

λ̂k
j′

(
dk

zk

)T ( ∇gj′(xk)
−ηk

)
= ((dk)T zk)

(
Hkdk

0

)
= (dk)T Hkdk ≥ 0,

since Hk is positive definite, we have (dk)T Hkdk = 0 only if dk = 0. But if dk = 0, then by substituting into
(18) and using linear independence of Nk(ηk) we have that λ̂j′ = 0, which contradicts our choice of j′. Hence we
conclude that (dk)T Hkdk > 0, and since λ̂k

j′ < 0 by assumption, it follows immediately that

( ∇gj′(xk)
−ηk

)T (
dk

zk

)
< 0.

This shows that dk 6= 0 and dk is a feasible direction of descent at xk.
iii) If some of the constraints are not satisfying the complementarity condition, we remove them from the working
set and resolve the subproblem (9) with the new working set Jk.
Let dk be the KKT point of this subproblem, and λk = (λk

j , j ∈ Jk) be the corresponding multiplier vector. If
dk 6= 0 then dk is a feasible direction of descent at xk.
In summary, if dk = 0 and for all j ∈ Jk, λk

j ≥ 0 then from the above discussion, xk is the KKT point of the main
problem.

Otherwise if dk = 0 and there exist j ∈ Jk such that λk
j < 0 or some of the constraints are not satisfying the

complementarity, then according to cases (ii) and (iii) we obtain a feasible direction of descent at xk.

Lemma 3.5 The line search in Step 6 yields a stepsize tk = ( 1
2 )i for some finite i = i(k).

Proof. According to (3) of lemma 3.3, Lemma 3.4 and assumption H3.2, it is easy to finish the proof.
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Lemma 3.6 For the QP subproblem (9) xk, if dk
0 = 0, then xk is a KKT point of main problem. If dk

0 6= 0 then dk

computed in Step 4 is a feasible direction of descent for the main problem at xk or dk = 0 and xk is the KKT point
for the main problem at xk.

Proof. The proof of the first claim is similar to the proof of Lemma 3.3 in [24] and the second claim according to
Lemma 3.4 is obvious.
The above discussion shows that the Algorithm A is well defined.
In the sequel, the global convergence of Algorithm A is shown. For this purpose we make the following additional
assumption.
H 3.5. There exist a, b > 0, such that a‖d‖2 ≤ dT Hkd ≤ b‖d‖2, for all k and all d ∈ <n.
Since there are only finite choices for set Jk ⊂ I, from H 3.4, H 3.5 and Lemma 3.2, we might as well assume that
there exist a subsequence K, such that

xk → x∗, Hk → H∗, dk
0 → d∗0, dk → d∗, zk → z∗,

ak → a∗, bk → b∗ Jk ≡ J 6= ∅, k ∈ K, (19)

where J is a constant set.

Theorem 3.7 The algorithm either stops at the KKT point xk of the problem (1.1) in finite number of steps, or
generates an infinite sequance {xk} any accumulation point of which is a KKT point of the problem (1.1).

Proof. The first statement is easy to show, since the only stopping point is in Step 3 and Step 4. Thus, assume
that the algorithm generates an infinite sequence {xk} and (19) holds. According to Lemma 3.3, it is only necessary
to prove that d∗0 = 0.
Suppose by contradiction that d∗0 6= 0. Then, it is easy to see that d∗ is the sole solution of the following quadratic
subproblem:

min z + 1
2dT H∗d,

s.t. ∇f(x∗)T d = z
∇gj(x∗)T d = η∗z j ∈ I(x∗),

so, imitating the proof of Lemma 3.4, it is obvious that d∗ is well defined, and it holds that

∇f(x∗)T d∗ < 0, ∇gj(x∗)T d∗ < 0, j ∈ I(x∗) ⊆ J. (20)

Thus, from (20), it is easy to see that the stepsize tk obtained in Step 6 are bounded away from zero on K, i.e.,

tk ≥ t∗ = inf{tk, k ∈ K} > 0, k ∈ K. (21)

In addition, from (11) and Lemma 3.6, it is obvious that {f(xk)} is monotonously decreasing. So according to
assumption H 3.2, the fact {xk}K → x∗ implies that

f(xk) → f(x∗), k →∞.

So, from (11), (20) and (21), it holds that

0 = lim
k∈K

(f(xk+1)− f(xk)) ≤ lim
k∈K

(αtk∇f(xk)T dk) ≤ 1
2
αt∗f(x∗)T d∗ < 0,

which is a contradiction. Thus, x∗ is a KKT point of (1.1).

4. The rate of convergence

Now we discuss the convergent rate of the algorithm, and prove that sequence {xk} generated by the algorithm is
one-step superlinearly convergent. For this purpose, we add some stronger regularity assumptions.
H 4.1. The second-order sufficiency conditions with strict complementary slackness are satisfied at the KKT point
x∗ and the corresponding multiplier vector u∗.
H 4.2. Hk → H∗, k →∞.
H 4.3. Let

‖Pk(Hk −∇2
xx`(x∗, u∗)dk‖ = o(‖dk‖),
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where
Pk = In −Ak(AT

k Ak)−1AT
k , ∇2

xx`(x∗, u∗) = ∇2f(x∗) +
∑

j∈I

u∗j∇2gj(x∗).

Under assumption H 4.1, we know that the KKT point x∗ is isolated.
Meanwhile, if x∗ is an interior point, then for k large enough, Algorithm A will eternally become the quasi Newton
method to unconstrained optimization. Obviously, this method is superlinearly convergent. In the sequel, we might
as well assume that x∗ is not an interior point of (1.1), i.e., I(x∗) 6= ∅.
Lemma 4.1 It holds, for k large enough, that

Jk ≡ I(x∗) ∆= I∗, dk
0 → 0, ak → uI∗ = (u∗j , j ∈ I∗), bk → (u∗j , j ∈ I∗),

µk → 1 zk = O(‖dk‖).
Proof. The proof of this lemma is similar to the proof of Lemma 4.1 in [24] and Lemma 4.3 in [23].

Lemma 4.2 For k large enough, (dk, λk) obtained from step 4 satisfies

‖dk‖ ∼ ‖dk
0‖, λk → u∗I∗ .

Proof. From ak → uI∗ = (u∗j , j ∈ I∗) and the conditions with strict complementary, we know, for k large enough,
that ak

j > 0, gj(xk) = 0, j ∈ I∗, thereby, from (8), it holds, for k large enough, that

Hkdk
0 + Akbk +∇f(xk) = 0

∇gj(xk)T dk
0 = 0 j ∈ I∗,

(22)

From (9), it holds, for k large enough, that

Hkdk + Akλk +∇f(xk) = 0
∇gj(xk)T dk = ηkzk j ∈ I∗.

(23)

Denote
dk = dk

0 + ∆dk, λk = bk + ∆λk.

According to (22) and (23), it holds that

Hk∆dk + Ak∆λk = 0
∇gj(xk)T ∆dk = ηkzk j ∈ I∗,

i.e.,

(∆dk)T Hk∆dk + (AT
k ∆dk)T ∆λk = 0

AT
k ∆dk = zk‖dk

0‖νe j ∈ I∗.
(24)

Since zk = O(‖dk‖) so, it is easy that ‖∆dk‖2 = ‖dk‖‖dk
0‖ν and ‖dk‖2 ≤ ‖dk‖‖dk

0‖ν + ‖dk
0‖2 and from Lemma 4.1

thereby, we have

‖dk‖ ∼ ‖dk
0‖, dk → 0, k →∞. (25)

From the KKT conditions for the subproblem (9) we have

Hkdk + Akλk + µk∇f(xk) = 0.

and according to Lemma 4.1 and (25) it holds that

Akλk +∇f(xk) = 0,

and imitating the proof of Lemma 4.1, it holds that λk → u∗I∗ , k →∞.

Lemma 4.3 for k large enough, d̃k obtained from Step 5 satisfies:

‖d̃k‖ = O(max{‖dk‖2,−ηkzk}) = o(‖dk‖).
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Proof. By expanding gj(xk + dk) around xk, we have

gj(xk + dk) = gj(xk) +∇gj(xk)T dk + O(‖dk‖2).

and from (8) it holds that

gj(xk + dk) = −∇gj(xk)T dk
0 −min{0, aj}+∇gj(xk)T dk + O(‖dk‖2).

From ak → uI∗ = (u∗j , j ∈ I∗) and the conditions with strict complementarity, we know, for k large enough, that
ak

j > 0, j ∈ I∗, thereby from above, it holds, for k large enough, that

gj(xk + dk) = ∇gj(xk)T (dk − dk
0) + O(‖dk‖2).

and from (24)and (25) we have
gj(xk + dk) = ηkzk + O(‖dk‖2).

Definitions of ψk and Lemma 4.1 implies that ψk = o(‖dk‖2). So, from (10), it is clear that

‖dk
1‖ = O(max{‖dk‖2,−ηkzk}) = o(‖dk‖).

Thereby, we have
‖d̃k‖ = O(max{‖dk‖2,−ηkzk}) = o(‖dk‖).

Denote

∇2
xx`(xk, µk, λk) = ∇2f(xk) +

∑

j∈I∗

λk
j

µk
∇2gj(xk)

Due to Lemma 4.1, Lemma 4.2 and H 4.4, it holds that

‖Pk(Hk −∇2
xx`(xk, µk, λk))dk‖ = o(‖dk‖). (26)

Lemma 4.4 For k large enough, the step tk ≡ 1 is accepted by the line search.

Proof. The proof of this lemma is similar to the proof of Lemma 4.5 in [23] with some little differences since the
QP (9) is different from that of [23].

Theorem 4.5 Under all above-mentioned assumptions, the algorithm is superlinearly convergent, i.e., the sequence
{xk} generated by the algorithm satisfies ‖xk+1 − x∗‖ = o(‖xk − x∗‖).
Proof. The proof is analogous to Theorem 4.1 in [5] but with some technical differences since the QP (9) is different
from that of [5].
Denote

∇2
xx`(x∗, u∗) = ∇2f(x∗) +

∑

j∈I

u∗j∇2gj(x∗) = ∇2f(x∗) +
∑

j∈I∗

u∗j∇2gj(x∗).

From the KKT conditions for the subproblem (9), the fact Jk ≡ I∗ implies that

µk∇f(xk) + Hkdk + Akλk
I∗ = 0,

AT
k dk = ηkzk, j ∈ I∗.

(27)

So, from definition of Pk(PkAk = 0) and (27), it holds that

PkHkdk = −µkPk∇f(xk) = −µkPk(∇f(xk) + Aku∗I∗) = −µkPk∇2
xx`(x∗, u∗)(xk − x∗) + O(‖xk − x∗‖2).

i.e.,

Pk∇2
xx`(x∗, u∗)(xk + dk − x∗) = −Pk(

1
µk

Hk −∇2
xx`(x∗, u∗))dk + O(‖xk − x∗‖2).

Therefore, according to ‖d̃k‖ = o(‖dk‖) one gets

Pk∇2
xx`(x∗, u∗)(xk + dk + d̃k − x∗) = −Pk(

1
µk

Hk −∇2
xx`(x∗, u∗))dk + O(‖xk − x∗‖2) + o(‖dk‖). (28)



International Journal of Applied Mathematical Research 345

Consider j ∈ I∗, expanding gj(xk + dk + d̃k) around xk + dk we obtain

gj(xk + dk + d̃k) = gj(xk + dk) +∇gj(xk + dk)T d̃k + O(‖d̃k‖) = gj(xk + dk) +∇gj(xk)T d̃k + O(‖dk‖.‖d̃k‖).

From (10), we get
AT

k d̃k = (A1
k)T dk

1 = ψke− gk,

i.e.,
∇gj(xk)T d̃k = −gj(xk + dk)− ψk, j ∈ I∗.

Thereby, according to Lemma 4.3, it holds that

gj(xk + dk + d̃k) = −ψk + O(max{‖dk‖2,−ηkzk‖dk‖}). (29)

From (29) and expanding gj(xk) around x∗, we obtain

AT
k (xk − x∗) + O(‖xk − x∗‖2) + AT

k (dk + d̃k) +
1
2
(dk)T∇2gj(xk)dk = O(‖dk‖2),

i.e.,

AT
k (xk + dk + d̃k − x∗) = O(‖xk − x∗‖2) + o(‖dk‖). (30)

Thereby, from (28) and (30), it holds that

(
Pk∇2

xx`(x∗, u∗)
AT

k

)
(xk+1 − x∗) =

(
−Pk

(
1

µk
Hk −∇2

xx`(x∗, u∗)
)

dk

o(‖dk‖)

)
+ O(‖xk − x∗‖2).

While, it is not difficult to show that the matrix Gk =
(

Pk∇2
xx`(x∗, u∗) Ak

AT
k 0

)
is nonsingular. For nonsingularity,

we show that the system of Gk

(
y
ȳ

)
= 0 have unique solution zero. So

AT y = 0, Pk∇2
xx`(x∗, u∗)y + Akȳ = 0.

From of definition of Pk and AT y = 0 we have yT Pk = yT and multiply above equation to yT , we obtain

yT Pk∇2
xx`(x∗, u∗)u + yT Akȳ = 0

which implies that yT∇2
xx`(x∗, u∗)y = 0. And from positive definite of ∇2

xx`(x∗, u∗) , we have that y = 0 and from
the full column rank of Ak we have ȳ = 0. Therefore Gk is nonsingular. So, according to (26) and µk → 1, we get

‖xk+1 − x∗‖ = o(‖dk‖) + O(‖xk − x∗‖2).

Thereby we have,

‖xk+1 − x∗‖ = O(‖xk − x∗‖2) + o(‖dk‖)
= O(‖xk − x∗‖2) + o(‖dk + d̃k‖)

= O(‖xk − x∗‖2) +
o(‖dk + d̃k)
‖dk + d̃k‖ (‖(xk+1 − x∗)− (xk − x∗)‖)

≤ O(‖xk − x∗‖2) +
o(‖dk + d̃k)
‖dk + d̃k‖ (‖xk+1 − x∗‖ − ‖xk − x∗‖)

= o(‖xk+1 − x∗‖) + o(‖xk − x∗‖)

So, it holds that ‖xk+1 − x∗‖ = o(‖xk − x∗‖).
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Table 1: The detailed information of numerical experiments

No. NIT EQPs NF FV ‖dk
0‖

012 22 44 22 −29.9999991789812 8.4568e− 09
024 17 34 17 −0.98766543423900 3.7665e− 10
029 18 36 18 −22.6274571000400 7.1230e− 09
030 22 44 22 1.00000764398900 5.3546e− 09
033 35 70 35 −4.5867557899000 5.9646e− 09
034 30 60 60 −0.8434000000000 3.9765e− 10
035 09 18 09 0.11100026545000 7.1418e− 09
036 100 200 100 −3270.6543343000 5.3464e− 09
037 100 200 100 −3443.9678909000 2.7645e− 09
043 44 88 44 −43.678899886500 6.5112e− 10
045 90 180 90 1.10009873456800 8.5954e− 09
065 14 28 28 0.95352921678900 5.8765e− 10
076 40 80 40 −4.6837650017800 4.2315e− 09
083 70 140 70 −29980.999997500 5.9012e− 09
084 70 140 70 6954034.76688900 3.6721e− 10
100 53 106 53 680.626765545400 3.0897e− 09
118 101 202 101 664.897553232100 4.0234e− 09

5. Numerical experiments and conclusions

In this section, we carry out some limited numerical experiments based on the algorithm was presented in section
2. In the implementations we set ν = 0.5, α = 0.25, β = 0.4, τ = 2.25, ρ = 1 and H0 = I. The n× n unit matrix
Hk is updated by the BFGS formula [18]. Of course, the Hessian matrix of the objective function of subproblem
(9) is an (n + 1)× (n + 1) matrix

Gk =
(

Hk 0
0 0

)
.

Obviously, Gk is singular and in the implementation, we define

Gk =
(

Hk 0
0 δk

)
, δk = max{min{ηk, 0.5}, 10−4},

therefore, the QP subproblem (9) is replaced by the following QP subproblem:

min z + 1
2dT Hkd + δkz2,

s.t. ∇f(xk)T d = z
∇gj(xk)T dk = ηkz j ∈ Jk.

However, the fact zk = O(‖dk‖) → 0 implies that this replacement would not have an effect on the global convergence
and the superlinear convergence rate of the proposed algorithm.

In the implementation, the stopping criterion of Step 3 and Step 4 is changed to
If ‖dk‖ ≤ 10−8, STOP.
Following [11], this algorithm has been tested on some standard problems in [8] and a feasible initial point

is provided for each problem. The results are summarized in Table 1. For each problem, No. is the number
of the test problem in [8], NIT is the number of iterations, EQPs is the number of the total times solving the
quadratic programing subproblem with only equality constraints, NF is the number of evaluations of the objective
functions, and FV is the final value of the objective function. Comparison the computation results in Table 1 and
the computation results of the algorithm given in [11] shows our algorithm is more efficient on these numerical
problems.
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