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Abstract

In this paper we have conceived an original deterministic model for the propagation of Covid-19 dynamics. Mathematical analysis of the
model has been done and reveals the existence of a single disease-free equilibrium witch is locally and asymptotically stable. The basic
reproduction number R0 has also been evaluated and gives an idea on the disease evolution in the world. This is because if R0 < 1, the
disease disappears whereas if R0 > 1, the disease remains in the population. Numerical results are consistent with the theoretical results and
highlight the effect of the infectious contact rate α on the evolution of the pandemic.
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1. Introduction

The coronavirus epidemic known as Covid-19, has been discovered in the end of December 2019 in Wuhan region of China. It quickly
spread in worldwide [1, 2, 16, 26]. As early as January 2020, Europe was already affected, whereas in Africa the first cases were recorded in
Egypt in February 2020 [2, 16, 14, 26]. The causal virus was identified by WHO on February 11, 2020 as the new coronavirus SARS-CoV-2
(Severe Acute Respiratory Syndrome Coronavirus 2) [1, 15, 16, 24]. On March 11, 2020, the WHO declared this epidemic a pandemic
[1, 2, 26].
After one year, this flu pandemic has caused more than one hundred million victims with more than two million deaths in the end of January
2021 [27, 30, 31]. By its speed of propagation and its capacity to cause harm, it created panic, thus arousing enough reactions in the scientific
world, as witnessed by the number of scientific productions and activities carried out. Many scientific researches including mathematical
models have been done in the world but the best solution is not yet found. In this paper, we propose an original deterministic model using
compartimental modelling to explain its propagation dynamics. Our work includes three parts. The first one aimed for the development of
the model, the second one is devoted to the mathematical analysis of the model and the last one is based on numerical simulation.

2. Formulation of the model

2.1. Assumptions

Our model is built on the following assumptions in order to find number Ro:

H1) Transmission is from man to man through direct or indirect contacts[30, 20]
H2) We note N the size of the population who is divided into 5 compartments S , E, Ir, Iu and R respectively including susceptible

individuals, exposed individuals, treated infectious individuals, asymptomatic infectious individuals and recovered individuals.
H3) The only vectors are the infectious individuals in the compartiments Ir et Iu [20]
H4) Vertical transmission is neglected
H5) Deaths do not contribute to the chain of disease transmission
H6) The recovered individuals are healthy
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H7) Asymptomatic patients are discovered over time
H8) There is no acquired immunity.
H9) The total population density is governed by a logistic law [22, 10].

2.2. Transmission Diagram

Under the assumptions H1) to H9), we can build the following conceptual compartimental[5] transmission diagram:

Figure 1: Diagram of covid-19 transmission

2.3. Description and estimation of parameters

The estimation of parameters has been made through the existing literature and current events on covid-19. The values are recorded in the
table below:

Table 1: Estimation of parameters

Parameters Description Values per day
α infectious contacts rate estimed
µ birth rate 0.04 [13, 22]
d1 mortality rate induced by the disease 0.03 [30]
ω natural mortality rate independent of population density 0.000016 [22]
ω1 natural mortality rate depending on population density 0.0000003 [22]

β Patient care rates
1
7

[23]

θ rate of asymptomatic patients under treatment
1

14
[23]

γ asymptomatic patient rate
1
7

[23]

εr cure rate of patients under treatment
1

14
[23]

εu cure rate of asymptomatic patients
1

14
[23]

λ vulnerability rate of recovered individuals 0.75 estimated

2.4. Interactions between compartments

The Covid-19 pandemic spreads within a population through direct or indirect contacts with droplets emitted by infectious individuals during
conversation, sneezing or coughing [19, 20, 30].

By contacting infectious individuals, α
S(Ir + Iu)

N
susceptible individuals become potential suspect cases and join latent individuals in the

compartment E .
A proportion β of latent individuals will undergo biological tests, after which they will be declared positive and placed in compartment Ir
while others in a proportion γ , although carriers of the virus won’t show any symptoms and are registered in compartment Iu.
In the case of other diseases, a proportion θ of asymptomatic patients will test positive and join the compartment Ir.
A proportion εr of Ir and another εu of Iu will evolve towards healing and form the compartment R. Recovered individuals become vulnerable
after a short period of time because there is no acquired immunity.
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In all compartments we consider a probable natural mortality with a proportion d. In compartment Ir individuals undergo in addition to
natural death, the one induced by the disease with a rate d1.

2.5. Conceptual Model

From the above diagram of the figure1, we can formulate the following model (using the compartimental modelling technic [5]):

dS
dt

= µN +λR−dS−α
S (Ir + Iu)

N
dE
dt

= α
S (Ir + Iu)

N
− (d +β + γ)E

dIr

dt
= βE +θ Iu − (d +d1 + εr)Ir

dIu

dt
= γE − (θ +d + εu)Iu

dR
dt

= εrIr + εuIu − (λ +d)R

dN
dt

= (µ −ω)

(
1− ω1N

µ −ω

)
N −d1Ir

(1)

3. Mathematical Analysis

3.1. Existence and unicity of the solution

To show that the problem (1) is mathematical well posed, we defined the following:
Taking X = (X1,X2,X3,X4,X5,X6)

T = (S,E, Ir, Iu,R,N)T ∈ R6 the state of the system at the instant t with
X0 = (S0,E0, Ir0 , Iu0 ,R0,N0)

T ∈ R6 its initial state.
Let f = ( f1, f2, f3, f4, f5, f6)T defined from R6 to R6 by:

f (X) =


f1(X)
f2(X)
f3(X)
f4(X)
f5(X)
f6(X)

=



µN +λR−dS−α
S(Ir + Iu)

N
α

S(Ir + Iu)

N
− (d +β + γ)E

βE +θ Iu − (d +d1 + εr)Ir
γE − (θ +d + εu)Iu

εrIr + εuIu − (λ +d)R

(µ −ω)

(
1− ω1N

µ −ω

)
N −d1Ir


Then the above system(1) can be written as:
dXi(t)

dt
= fi(X), with i = 1,2, ...,6

Taking the initial conditions in the compact Ω defined by:
Ω = Ω1 ×Ω2 with
Ω1 =

{
(S, E, Ir, Iu, R)t ∈ R5

+

}
and

Ω2 =

{
N ∈ R | 0 < N ≤ µ −ω

ω1

}
.

For any X ∈ Ω, the system(1) can be written as a Cauchy problem:
dXi(t)

dt
= fi(X), i = 1,2, ...,6

Xi(0) = Xi0,
We obtain the following results:

Proposition 3.1. For any initial condition X0 ∈ Ω, the model (1) admits a single solution X defined for any t ≥ 0.

Proof 3.1. The components fi (i = 1,2, ...,6) of function f are distinctively polynomial functions or sums of polynomial and rational
functions defined in Ω. Then the function f is of class C∞(Ω) and in particular of class C1(Ω). So f is locally lipschitzian. Thus by using
Cauchy-Lipschitz’s existence and uniqueness theorem [17, 11], for any initial condition X0 ∈ Ω;the model (1) admits a single maximum
solution defined for any t ≥ 0.

Theorem 3.1. For any initial condition X0 ∈ Ω, the model (1) admits a single solution X that remains in Ω for any t ≥ 0.

Proof 3.2. The existence and unity of the solution has been proved by the proposition 3.1.
It remains to show that Ω is positively invariant by the model(1) that is to say that for any initial condition X0 ∈ Ω, the state of the system
X ∈ Ω at any time t > 0.
To do this, we adopt a similar approach to the one used in [3, 4, 10, 25, 29].
Let us first assume that the initial condition X0 = (S0,E0, Ir0 , Iu0 ,R0,N0)

t ∈ Ω, that is S0 ≥ 0; E0 ≥ 0; Ir0 ≥ 0; Ir0 ≥0; R0 ≥0 and

0 < N0 ≤
µ −ω

ω1
. To show the positivity of the solution, we rewrite each equation of the model(1) as inequations that we integrate using the

variable separation method.
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- Positivity of the number of susceptible:
we have: µN +λR ≥0 so

dS
dt

≥−dS−α
S(Ir + Iu)

N
(2)

=⇒ S(t)≥ S0.exp
[
−
∫ t

0

(
d +α

Ir + Iu

N

)
dt
]

(3)

Hence S(t)≥ 0 because S0 ≥ 0 and exp
[
−
∫ t

0

(
d +α

Ir + Iu

N

)
dt
]
> 0.

- Positivity of the number of exposed individuals E:

We have: α
S(Ir + Iu)

N
≥ 0 thus

dE
dt

≥−(d +β + γ)E (4)

=⇒ E(t)≥ E0.exp [−(d +β + γ) t] (5)

Thus E(t)≥ 0 because E0 ≥ 0 and exp [−(d +β + γ) t]> 0.
By repeating this approach to the other variables, we obtain Ir ≥ 0, Iu ≥ 0, R ≥ 0. So we have shown that for any initial condition
X0 ∈ Ω, (S, E, Ir, Iu, R)T ∈ Ω1.

- Positivity of the density N:
Given that N(t) = S(t)+E(t)+ Ir(t)+ Iu(t)+R(t), we have N ≥ 0.

Let us now show that N(t)≤ µ −ω

ω1
.

Such as d1Ir ≥ 0 then
dN
dt

≤ (µ −ω)

(
1− ω1N

µ −ω

)
N =⇒ N(t) = N0exp[(µ−ω)t]

1− ω1N0
µ−ω

[1−exp(µ−ω)t]

When t −→+∞, we have: limt−→+∞ N(t)≤ µ −ω

ω1

So for every t ≥ 0, 0 < N(t)≤ µ −ω

ω1
hence N ∈ Ω2

Thus we conclude that ω is positively invariant for the model (1).
Therefore for any initial condition X0 ∈ Ω, the X solution remains in Ω for any t ≥ 0, which shows that the model (1) is mathematically
correct.

3.2. Disease-free equilibrium

Theorem 3.2. The (1) model assumes a single disease-free equilibrium.

Proof 3.3. If there is no disease, we have Ir = Iu =0. The disease free equilibrium is obtained by solving the system
dXi

dt
=0, i.e.theequationf(X)

= 0. The only solution Xd f e is given by the relation (6).

Xd f e =

(
µ −ω

ω1
, 0, 0, 0,

µ −ω

ω1

)T
(6)

3.3. Basic reproduction number

Commonly noted R0, the basic reproduction number is the average number of new cases generated by an average infectious individual.
during its infectious period ; in a population composed entirely by susceptible individuals Van, Famane, Sallet.The number R0 is a very
important parameter in epidemiology that provides information on the evolution of the disease according to the following theorem:

Theorem 3.3. [23, 10] If the basic reproduction number R0 < 1 then the epidemic will disappear while if R0 > 1, the epidemic will
persist in the population if no response measures are taken.

For R0 calculation in the model (1), we use P. van den Driessche’s method [23] which is based on the next generation matrix .This method is
also used by several authors such as those of [22, 23, 10, 25, 4].
By posing x = (x1,x2,x3) = (E, Ir, Iu), we define the matrix F (of new infections) and V (of transition) as it follows:

F =

[
∂Fi(Xd f e)

∂x j

]
1≤i, j≤3

and V =

[
∂Vi(Xd f e)

∂x j

]
1≤i, j≤3

with

F (X) =

α
S(Ir + Iu)

N
0
0

 and V (X) =

 −(d +β + γ)E
βE − (d +d1 + εr)Ir −θ Iu

γE − (d +θ + εu)Iu

 .

Then we have:
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F =

0 α α

0 0 0
0 0 0

 and V =

−(d +β + γ) 0 0
β −(d +d1 + εr) θ

γ 0 −(d +θ + εu)


The next generation matrix is:

FV−1 =
1

det(V )

A B C
0 0 0
0 0 0

 (7)

where A = αβ (d +θ + εu)+αγ(d +d1 + εr +θ); B = α(d +β + γ)(d +θ + εu)
C = α(d +β + γ)(d +d1 +θ + εr)

R0 = ρ

(
FV−1

)
(8)

R0 = α

[
β (d +θ + εu)+ γ(d +θ +d1 + εr)

(β + γ +d)(d +d1 + εr)(d +θ + εu)

]
(9)

3.4. Stability of the disease-free equilibrium

The local stability of the disease-free equilibrium depends upon the basic reproduction number R0 according to the theorem below:

Theorem 3.4. The disease-free equilibrium, Xd f e, is locally and asymptotically stable when R0 < 1 while it is unstable if R0 > 1 [22].

Proof 3.4. To establish the proof of the theorem3.4, we write the system1 as follows:

dE(t)
dt

= α
S (Ir + Iu)

N
− (d +β + γ)E

dIr(t)
dt

= βE +θ Iu − (d +d1 + εr)Ir

dIu(t)
dt

= γE − (θ +d + εu)Iu

dS(t)
dt

= µN +λR−dS−α
S (Ir + Iu)

N
dR(t)

dt
= εrIr + εuIu − (λ +d)R

(10)

The Jacobian matrix J of the model (10) at the disease-free equilibrium Xd f e is given by the relation (11):

J =


−(d +β + γ) α α 0 0

β −(d +d1 + εr) θ 0 0
γ 0 −(d +θ + εu) 0 0
0 −α −α −d 0
0 εr εu 0 −d

=

(
J11 0
J21 J22

)
(11)

where

J11 = F −V J21 =

(
0 −α −α

0 εr εu

)
J22 =

(
−d 0
0 −d

)
The equilibrium Xd f e is asymptotically stable if all eigenvalues of J have a strictly negative real part and unstable if at least one of the
eigenvalues of J has a real part positive or zero.
J is a triangular block matrix so its eigenvalues are those of the diagonal blocks J11 and J22. J22 has only one double real eigenvalue which
is −d < 0.So the stability of Xd f e depends only on the eigenvalues of the F −V matrix.
We notice that F is a non-negative matrix.
The V matrix has its negative extradiagonal elements and the sum of the components of each of its column vectors is positive. Therefore V is
non-singular a M-matrix [22], theorem A.1]. Thus, referring to the proof of theorem 2 in [23], we have the following equivalence:s

(
FV−1)<

0 (resp s
(
FV−1)> 0) ⇐⇒ ρ

(
FV−1)< 1 (resp ρ

(
FV−1)> 1)

Where the number s
(
FV−1) designates the spectral abscissa of the matrix FV−1. According to the previous section, we have R0 = ρ

(
FV−1).

So we can conclude that Xd f e is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

4. Numerical Simulation

In this section, we solve numerically the model1 by the Runge-Kutta method in order 4 using MATLAB [7, 9]. This section aims to verify
the conformity of the theoretical and numerical results. We also highlight the effect of the infectious contact rate α on the evolution of the
epidemic.
Using the values of the parameters in the table 1, we obtain the following graphs:
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(a) α = 0.1421;R0 = 1 . (b) α = 0.141;R0 = 0.9923.

(c) α = 0.139;R0 = 0.9782. (d) α = 0.125;R0 = 0.8797.

Figure 2: Evolution de la maladie pour R0 < 1.

According to the graphs of figures 2(a), 2(b), 2(c), 2(d), we notice that the number of patients decreases over time with R0 and tends to zero.

(a) α = 0.145;R0 = 1.0204 . (b) α = 0.160;R0 = 1.1260.

(c) α = 0.2;R0 = 1.4075. (d) α = 0.3;R0 = 2.1112.

Figure 3: Evolution de la maladie pour R0 > 1.

According to the graphs of figures 3(a), 3(b), 3(c), 3(d), we see that the number of patients increases over time when R0 increases so that the
total density N remains in Ω.
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Interpretation

Numerical simulations were made for R0 < 1 (figures 2(a), 2(b), 2(c), 2(d)) and R0 > 1 (figure 3(a), 3(b), 3(c), 3(d)). The results are
consistent with the theoretical results.
Indeed, the graphs of figures 2(a), 2(b), 2(c), 2(d) are obtained for R0 < 1 and show that the numbers of infectious individuals (in red and
green) decrease and cancel over time.This shows that the pandemic will go away on its own.
The graphs of the figures 3(a), 3(b), 3(c), 3(d) are obtained for R0 > 1 and show that the numbers of infectious individuals (in red and green)
increase over time. It means that the disease is raging in the population and therefore requires intervention.
For R0 = 1, we cannot conclude. However we notice that when R0 is neer to unit (1) by lower values (figures 2(a), 2(b)), the graphs move
slightly off the abscissa axis over time. It means that there is eventually a bifurcation around the unit.

5. Conclusion

In this article we have developed a deterministic model for the dynamics of corovirus transmission. During the mathematical analysis of
the model, we showed that the single disease-free equilibrium is locally stable and determined the basic reproductive number R0 wich is
proportional to the infectious contacts rate. The formula of R0 is standard and can be applied to any data in the world. If α = 0 then R0 = 0;
it means that no contact can transmit the disease. The results of the numerical simulation highlighted the effect of the number α of infectious
contacts on the evolution of the disease. Our analyses show that the pandemic becomes more and more severe when this parameter increases,
hence the need to respect barrier measures that limit the number of contacts that could lead to new cases.
We also suspected the existence of a bifurcation around the unit value of R0 which is currently being studied.
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