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Abstract

In this paper, we establish existence of positive solutions of the nonlinear problems of one - dimensional p-Laplacian
with nonlinear parameter

ϕp(u
′(t))′ + a(t)f(λ, u) = 0, t ∈ (0, 1), u(0) = u(1) = 0.

where a : Ω→ R is continuous and may change sign, λ > 0 is a parameter, f(λ, 0) > 0 for all λ > 0. By applying
Leray-Schauder fixed point theorem we obtain the existence of positive solutions.
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1. Introduction

The boundary value problem for one- dimensional p-Laplacian{
ϕp(u

′(t))′ + λa(t)f(u) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(1)

where ϕp(u(t)) = |u|p−2 u, p > 1, has been studied extensively. For details, see for example, Refs [1,2,5], in
the case p=2 see [6], and for case λ = 1, see [7,8,9].
In a recent paper [4], Hai considered the boundary value problem{

∆u+ λa(t)f(u) = 0, t ∈ Ω,

u = 0, t ∈ ∂Ω,
(2)

where Ω is a bounded domain in RN , a : Ω → R is continuous and changes its sign, f(0) > 0, and λ > 0 is
sufficiently small, under the following assumptions
(A1) f : [0,∞)→ R is continuous and f(0) > 0.
(A2) a : Ω̄→ R is continuous, a 6≡ 0, and there exists a number k > 1 such that
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∫
Ω
G(t, s)a+(s)ds ≥ k

∫
Ω
G(t, s)a−(s)ds, t ∈ Ω,

where a+ (resp. a− ) is the positive (resp. negative) part of a, and G(t, s) is the Green’s function of −∆ with
Dirichlet boundary conditions.

They obtained the following interesting result:

Theorem A. Let (A1), (A2) hold. Then there exists a positive number λ?, such that (2) has a positive solution
for λ < λ?. In another recent paper [3], Ma et al investigated the boundary value problem{

∆u+ a(t)f(λ, u) = 0, t ∈ Ω,

u = 0, t ∈ ∂Ω,
(3)

By applying Leray-Schauder fixed point theorem they obtained that the problem (3) has a positive solution for
λ < λ?. Motivated by the results mentioned in [3,4] above, in this paper we study the existence of positive solutions
of the nonlinear one- dimensional p-Laplacian{
ϕp(u

′(t))′ + a(t)f(λ, u) = 0, t ∈ (0, 1),

u(0) = u(1) = 0,
(4)

where ϕp(u(t)) = |u|p u, p > 1, and hence ϕp(u
′(t))′ is the one- dimensional p-Laplacian, and a : Ω → R is

continuous and changes its sign, λ > 0 is a parameter, f(λ, 0) > 0 for all λ > 0.
The following hypotheses are adopted throughout this paper:

(H1) f ∈ C([0,∞)× [0,∞), R) and f(λ, 0) > 0 for all λ > 0, f(0, u) = 0 for u ∈ [0,∞)
(H2) a : Ω̄→ R is continuous, a 6≡ 0, and there exists a number k > 1 such that∫ t

0
ϕ−1
p

(
h(a+) +

∫ s
0
a+(τ)dτ

)
ds ≥ k

∫ t
0
ϕ−1
p

(
h(a−) +

∫ s
0
a−(τ)dτ

)
ds,

where h : L1(0, 1)→ R is continuous function satisfying∫ 1

0
ϕ−1
p

(
h(a) +

∫ s
0
a(τ)dτ

)
ds = 0.

The main result of this paper is as follows
Theorem 1.1. Let (H1), (H2) hold. Then there exists a positive number λ?, such that (4) has a positive solution
for λ < λ?.

The proof of theorem 1.1 is based on the Leray -Schauder theorem see [ 10], for more details.
Remark 1.1. If we let f(λ, u) := λf(u) and ϕp(u) = ∆u, in (4), then (4) reduces to (2), (H1) reduces to

(A1). Therefore, [4, Theorem 1.1], (see Theorem A above), is the direct consequence of Theorem 1.1.
Clearly, Theorem 1.1 is an extension and improvement of the existence results in [4, Hai], [3, Ma]
The rest of this paper is arranged as follows. In Section 2, we will give some notations and preliminary results,

in Section 3, we prove Theorem 1.1 via the Leray - Schauder fixed point theorem.

2. Preliminaries

Throughout the paper, we assume that f(λ, u) = f(λ, 0) for u ≤ 0 and given λ > 0.
For u ∈ C1

0 [0, 1], define the operator T by

Tu(t) =
∫ t

0
ϕ−1
p

(
h(a+)f(λ, u(s)) +

∫ s
0
a+(τ)f(λ, u(s))dτ

)
ds.

It’s not difficult to see that T : C1
0 [0, 1]→ C1

0 [0, 1] is completely continuous.

Lemma 2.1. Let 0 < δ < 1. Then there exists a positive number λ̄ such that, for 0 < λ < λ̄, the equation

ϕp(u
′(t))′ = −a+(t)f(λ, u), 0 < t < 1 , u(0) = u(1) = 0

has a positive solution ũλ with ‖ũλ‖0 → 0 as λ→ 0, and
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ũλ(t) ≥ δf(λ, 0)p(t), t ∈ Ω,

where p(t) =
∫ t

0
ϕ−1
p

(
h(a+) +

∫ s
0
a+(τ)dτ

)
ds.

Proof. We shall apply the Leray-Schauder fixed point theorem to prove that T has a fixed point for λ small. Let
ε > 0 be such that

f(λ, u) ≥ δf(λ, 0), for 0 ≤ u ≤ ε. (5)

From f(0, u) ≡ 0,∀u ≥ 0, we can suppose that 0 < λ < ελ/2‖p‖0f̃(λ, ε), for given λ > 0, where f̃(λ, t) =
max0≤s≤t f(λ, s). Then there exists Aλ ∈ (0, ε) such that

f̃(λ,Aλ)

λAλ
=

1

2λ‖p‖0
. (6)

Let u ∈ C1
0 [0, 1] and θ ∈ (0, 1) be such that u = θTu. Then we have

‖u‖0 ≤ λ‖p‖0 f̃(λ,‖u‖0)
λ

or

f̃(λ,‖u‖0)
λ‖u‖0 ≥ 1

λ‖p‖0 ,

which implies that ‖u‖0 6= Aλ. Note that Aλ → 0 as λ→ 0. By the Leray-Schauder fixed point theorem, T has

a fixed point ũλ with ‖ũλ‖0 ≤ Aλ < ε. Consequently, ũλ(t) ≥ λδ f(λ,0)
λ p(t), t ∈ [0, 1], and the proof is completed.

3. Proof of the Theorem 1.1

Let q(t) =
∫ t

0
ϕ−1
p

(
h(a−) +

∫ s
0
a−(τ)dτ

)
ds. By (H2), there exist positive numbers α, γ ∈ (0, 1) such that

q(t)|f(λ, s)| ≤ γp(t)f(λ, 0) (7)

for s ∈ [0, α], t ∈ [0, 1]. Fix δ ∈ (γ, 1) and let λ∗ > 0 be such that

‖ũλ‖0 + λδ
f(λ, 0)

λ
‖p‖0 ≤ α (8)

for 0 < λ < λ∗, where ũλ is given by Lemma 2.1, and

|f(λ, x)− f(λ, y)| ≤ f(λ, 0)

(
δ − γ

2

)
(9)

for x, y ∈ [−α, α] with |x− y| ≤ λ∗δ f(λ,0)
λ ‖p‖0.

Let 0 < λ < λ∗. We look for a solution uλ of (4) of the form ũλ + vλ. Thus vλ satisfies

vλ(t) =

∫ t

0

ϕ−1
p

(
h(af(λ, ũλ + vλ)) +

∫ s

0

a(τ)f(λ, ũλ + vλ)dτ

)
ds

−
∫ t

0

ϕ−1
p

(
h(a+f(λ, ũλ)) +

∫ s

0

a+(τ)f(λ, ũλ)dτ

)
ds , 0 < t < 1.

For each w ∈ C1
0 [0, 1], let v = Tw be the solution of

v(t) =

∫ t

0

ϕ−1
p

(
h(af(λ, ũλ + ω)) +

∫ s

0

a(τ)f(λ, ũλ + ω)dτ

)
ds

−
∫ t

0

ϕ−1
p

(
h(a+f(λ, ũλ)) +

∫ s

0

a+(τ)f(λ, ũλ)dτ

)
ds , 0 < t < 1.
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Then T : C1
0 [0, 1] → C1

0 [0, 1] is completely continuous. Let v ∈ C1
0 [0, 1] and θ ∈ (0, 1) be such that v = θTv.

Then we have

v = θ

∫ t

0

ϕ−1
p

(
h(af(λ, ũλ + v)) +

∫ s

0

a(τ)f(λ, ũλ + v)dτ

)
ds

− θ
∫ t

0

ϕ−1
p

(
h(a+f(λ, ũλ)) +

∫ s

0

a+(τ)f(λ, ũλ)dτ

)
ds.

We claim that ‖v‖0 6= δf(λ, 0)‖p‖0. Suppose on the contrary that ‖v‖0 = δf(λ, 0)‖p‖0. Then, by (8) and (9),
we obtain

‖ũλ + v‖0 ≤ ‖ũλ‖0 + ‖v‖0 ≤ α
and

|f(λ, ũλ + v)− f(λ, ũλ)| ≤ f(λ, 0) δ−γ2 ,
which together with (7) implies that

|v(t)| ≤ λδ − γ
2

f(λ, 0)

λ
p(t) + λγ

f(λ, 0)

λ
p(t)

= λ
δ + γ

2

f(λ, 0)

λ
p(t),

(10)

In particular

‖v‖0 ≤ λ δ+γ2
f(λ,0)
λ ‖p‖0 < λδ f(λ,0)

λ ‖p‖0,

a contradiction, and the claim is proved. By the Leray -Schauder fixed point theorem, T has a fixed point vλ
with ‖vλ‖0 ≤ δf(λ, 0)‖p‖0. Hence vλ satisfies (10) and, using Lemma 2.1, we obtain

uλ(t) ≥ ũλ(t)− vλ(t)

≥ λδ f(λ, 0)

λ
p(t)− λδ + γ

2

f(λ, 0)

λ
p(t)

= λ
δ − γ

2

f(λ, 0)

λ
p(t),

i.e., uλ is a positive solution of (4). This completes the proof of Theorem 1.1.
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