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Abstract

The aim of this paper is to solve analytically fluid flow problems in a porous medium, the Laplace-Adomian method gives algorithms that
converge faster to achieve the exact solution when it exists.
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1. Introduction

The mathematical models associated with the flow in porous medium,
with possible transport of solutes are represented by the systems of
partial differential equations based on reaction- diffusion-convection.
The study of flows in porous media is central to the oil industry dur-
ing the exploitation of an oil or gas deposit, in the management of
water resources, pollution by chemical, agricultural or radioactive
wastes, and also many environmental problems.
Natural porous media are heterogeneous at several scales, which
complicates experimental studies, if not impossible, while predic-
tions are vital and the need for reliable numerical simulation models
remains [10, 15].
In this paper, we focus on nonlinear partial differential equations
and the use of Laplace transforms and the Adomian decompositional
method to analytically solve these equations[2, 4, 5].

2. About the Laplace-Adomian method

The mathematical modeling of physical systems leads to functional
equations (ordinary differential equations (ODE), partial differential
equations (PDEs), integro-differential equations and integral equa-
tions, ...). The search for exact or approximate solutions, when they
exist, uses several methods. Among then, we find the Adomian
decomposition methods of homotopy perturbation method, Laplace-
Adomian method , variational iterations method, ...
Laplace transforms do not allow us to solve nonlinear equations,
because there is no Laplace transform of nonlinear terms[6, 7, 8, 9].
To circumvent the difficulty or to overcome this insufficiency of the
Laplace transform, a coupling is made between the Laplace trans-
forms and the Adomian decomposition method. It is this coupling

that gives the Laplace-Adomian method[11, 12, 13, 14].
The purpose of this work is to experiment this Laplace-Adomian
method by avoiding the linearization and the discretization of the
space and of time for better to solve the models of the partial differ-
ential equations of the porous media problems.
The presentation below is shows how the Laplace-Adomian method
works. It is the algorithm of the method.[1, 4, 5]
Consider a functional equation

Au = h (1)

With A = L+R+N (2)

The equation (1) becomes:

Lu+Ru+Nu = h (3)

Where u is a unknown function of H into H (H is a Hilbert space), L
and R are linear operators; and L invertible, with L−1 as inverse. N
is a nonlinear operator from a Hilbert space H into H. h is a given
fonction in H.
By applying the transform L of Laplace at the equation (3), we
have:

L (Lu)+L (Ru)+L (Nu) = L (h) (4)

Case of a partial differential equation

Let’s set Ltt(.) =
∂ 2

∂ t2 (.) with the initial and boundary conditions, we

have the following relation:

u(x,0) = α1(x) et ut(x,0) = α2(x) (5)
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Finally, with the conditions (5), the Laplace transform, into the
equation (4) we have:

L (Lu(x, t))+L (Ru(x, t))+L (Nu(x, t)) = L h(x, t) (6)

Let:

s2L (u(x, t)) = su(x,0)+ut(x,0)+L (h(x, t))
−L (Ru(x, t)−L (Nu(x, t))

(7)

This gives the expression:

L (u(x, t)) =
1
s

u(x,0)+
1
s2 ut(x,0)+

1
s2 L (h(x, t))

− 1
s2 L (Ru(x, t))− 1

s2 L (Nu(x, t))
(8)

Or again

L (u(x, t)) =
1
s

α2(x)+
1
s2 α1(x)+

1
s2 L (h(x, t))

− 1
s2 L (Ru(x, t))− 1

s2 L (Nu(x, t))
(9)

We look for the solution u when it exists, the equation (1) in the form
of a series:

u(x, t) =
∞

∑
n=0

un(x, t) (10)

The non-linear part is also expressed as a series of polynomials:

N(u(x, t)) =
∞

∑
n=0

An(x, t) (11)

where An are Adomian polynomials defined by the formula .
Substituting (10) and (11) in (9) we obtain the expression:

∞

∑
n=0

L (un(x, t)) =
1
s

α1(x)+
1
s2 α2(x)+

1
s2 L (h(x, t))

−
∞

∑
n=0

(
1
s2 L (Run(x, t))+

1
s2 L (An(x, t))

) (12)

We deduce the following Laplace-Adomian algorithm:

L (u0(x, t)) =
1
s

α1(x)+
1
s2 α2(x)+

1
s2 L (h(x, t))

L (un+1(x, t)) =

−
(

1
s2 L (Run(x, t))+

1
s2 L (An(x, t))

)
,n > 0

(13)

By applying the inverse L −1 of the Laplace transform into the
expressions of u0(x, t) and un+1(x, t) are established:



u0(x, t) = L −1
(

α1(x)
s

)

+L −1
(

1
s2 α2(x))+

1
s2 L [h(x, t)]

)
un+1(x, t) =

−L −1
(

1
s2 L [Run(x, t)]−

1
s2 L [An(x, t)]

)
,n > 0

(14)

3. Numerical Applications

3.1. Example 1

Let us consider the following equation [2]
∂u(x, t)

∂ t
= u2(x, t)

∂ 2u(x, t)
∂x2 +u3(x, t)+

∂u(x, t)
∂x

+u(x, t)

u(x,0) = sin(x)
(15)

Or:

∂u(x, t)
∂ t

= u2(x, t)
∂ 2u(x, t)

∂x2 +u3(x, t)+
∂u(x, t)

∂x
+u(x, t) (16)

By applying the Laplace transform in relation witch (16), we have:

L

(
∂u(x, t)

∂ t

)
=L

(
u2(x, t)

∂ 2u(x, t)
∂x2 +u3(x, t)+

∂u(x, t)
∂x

+u(x, t)
)

(17)

We obtain:

L (u(x, t) =
u(x,0)
s−1

+
1

s−1
L (Nu(x, t))+

1
s−1

L

(
∂u(x, t)

∂x

)
(18)

With:

Nu(x, t) = u2(x, t)
∂ 2u(x, t)

∂x2 +u3(x, t) (19)

The application of the inverse Laplace transform gives the following
result:

u(x, t)= et sin(x)+L −1
(

1
s−1

L (Nu(x, t))+
1

s−1
L

(
∂u(x, t)

∂x

))
(20)

Let us look for the solution of u(x, t) in the form (21) below:

u(x, t) =
∞

∑
n=0

un(x, t) (21)

And:

Nu(x, t) =
∞

∑
n=0

An(x, t) (22)

We obtain the following algorithm: u0(x, t) = et sin(x)

un+1(x, t) = L −1
(

1
s−1

L (An(x, t))+
1

s−1
L

(
∂un(x, t)

∂x

))
(23)

with:

A0(x, t) = u2
0

∂ 2u0

∂x2 +u3
0 = 0 (24)

By substitution process, we have:

u1(x, t) = L −1
(

1
s−1

L (A0(x, t))+
1

s−1
L

(
∂u0(x, t)

∂x

))
(25)

Let:

u1(x, t) = L −1
(

1
s−1

L

(
∂u0(x, t)

∂x

))
(26)

Hence:

u1(x, t) = cos(x)L −1
(

1
(s−1)2

)
(27)

Thus:

u1(x, t) = tet cos(x) (28)
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By the same process, the other terms are obtained.

u2(x, t) = L −1
(

1
s−1

L (A1(x, t))+
1

s−1
L (

∂u1(x, t)
∂x

)

)
(29)

A1(x, t) = 2u1u0
∂ 2u0

∂x2 +u2
0

∂ 2u1

∂x2 +3u1u2
0 = 0 (30)

u2(x, t) =−sin(x)L −1
(

1
(s−1)3

)
(31)

u2(x, t) =−
1
2

t2et sin(x) (32)

and:

A2(x, t) = 2u2u0
∂ 2u0

∂x2 +u2
1

∂ 2u0

∂x2 +2u1u0
∂ 2u1

∂x2 +

u2
0

∂ 2u2

∂x2 +3u2
1u0 +3u2

0u2 = 0

(33)

u3(x, t) =−cos(x)L −1
(

1
(s−1)4

)
(34)

u3(x, t) =−
1
6

t3 cos(x) (35)

{
A3(x, t) = 0

u4(x, t) =
1
4!

t4 sin(x)
(36)

Recursively, we have :

u(x, t) = u0(x, t)+u1(x, t)+u2(x, t)+u3(x, t)+u4(x, t)+ . . . (37)

Therefore:

u(x, t) = et sin(x)
(

1− 1
2 t2 + ...+(−1)n t2n

2n!

)
+

et cos(x)
(

t− 1
6 t3 + ...+(−1)n t2n+1

(2n+1)!

) (38)

That is:

u(x, t) = et (sin(x)cos(t)+ cos(x)sin(t)) = et sin(x+ t) (39)

The exact solution of the problem 1 is:

u(x, t) = et sin(x+ t) (40)

3.2. Example 2

Let us consider the following equation [8]

∂u(x, t)
∂ t

=

(
u(x, t)

∂u(x, t)
∂x

)
x
+3
(

u(x, t)
∂u(x, t)

∂x

)
+

2
(
u(x, t)−u2(x, t)

)
u(x,0) = 2

√
ex− e−4x

(41)

Let’s solve this equation by the Laplace-Adomian method.
Let’s ask:

∂u(x, t)
∂ t

=

(
u(x, t)

∂u(x, t)
∂x

)
x
+3
(

u(x, t)
∂u(x, t)

∂x

)
+

2
(
u(x, t)−u2(x, t)

) (42)

Now:

∂u(x, t)
∂ t

= Nu(x, t)+2u(x, t) (43)

With :

Nu(x, t) =
(

u(x, t)
∂u(x, t)

∂x

)
x
+

3
(

u(x, t)
∂u(x, t)

∂x

)
−2u2(x, t)

(44)

Applying the Laplace transform L to the equation (42), generates
the following:

L

(
∂u(x, t)

∂ t

)
= L (Nu(x, t))+2L (u(x, t)) (45)

Or:

sL (u(x, t))−2L (u(x, t)) = u(x,0)+L (Nu(x, t)) (46)

Or again:

L (u(x, t)) =
1

s−2
u(x,0)+

1
s−2

L (Nu(x, t)) (47)

Applying the inverse Laplace transform L −1 gives:

u(x, t) = L −1(
1

s−2
u(x,0))+L −1(

1
s−2

L (Nu(x, t))) (48)

Now,

L −1
(

1
s−2

)
= e2t (49)

therefore:

u(x, t) = 2e2t
√

ex− e−4x +L −1(
1

s−2
L (Nu(x, t))) (50)

Let’s find the solution of u(x, t) in the form

u(x, t) =
+∞

∑
n=0

un(x, t) (51)

Knowing that:

Nu(x, t) =
+∞

∑
n=0

An(x, t) (52)

We obtain the following algorithm:
u0(x, t) = 2e2t

√
ex− e−4x

un+1(x, t) = L −1
(

1
s−2

L (An(x, t))
) (53)

With:

A0(x, t) =
(

u0(x, t)
∂u0(x, t)

∂x

)
x
+

3
(

u0(x, t)
∂u0(x, t)

∂x

)
−2u2

0(x, t)

(54)

and:

A1(x, t) =
(

u0(x, t)
∂u1(x, t)

∂x
+u1(x, t)

∂u0(x, t)
∂x

)
x
+

3
(

u0(x, t)
∂u1(x, t)

∂x
+u1(x, t)

∂u0(x, t)
∂x

)
−4u0u1(x, t)

(55)
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The calculations made give:

A0(x, t) = 0

u1(x, t) = 0

A1(x, t) = 0

u2(x, t) = 0

A2(x, t) = 0

u3(x, t) = 0

·
·
·

un(x, t) = 0

(56)

Therefore, the exact solution of the problem is then :

u(x, t) = 2e2t
√

ex− e−4x (57)

3.3. Example 3

Let us consider the following equation [3]


∂w(x, t)

∂ t
= 2w(x, t)

∂ 2w(x, t)
∂x2 +2

(
∂w(x, t)

∂x

)2
−βw(x, t)

w(x,0) = x
(58)


∂w(x, t)

∂ t
= 2w(x, t)

∂ 2w(x, t)
∂x2 +2

(
∂w(x, t)

∂x

)2
−βw(x, t)

w(x,0) = x
(59)

The application of the Laplace transform L to the equation (59),
generates the following:

L

(
∂w(x, t)

∂ t

)
=

L

(
2w(x, t)

∂ 2w(x, t)
∂x2 +2

(
∂w(x, t)

∂x

)2
+βw(x, t)

) (60)

Let’s put

N (w(x, t)) = 2w(x, t)
∂ 2w(x, t)

∂x2 +2
(

∂w(x, t)
∂x

)2
(61)

We get:

sL (w(x, t))−w(x,0) = L (Nw(x, t))+βL (w(x, t)) (62)

This gives:

(s−β )L (w(x, t)) = w(x,0)+L (Nw(x, t)) (63)

Afterwards,

L (w(x, t)) =
1

(s−β )
w(x,0)+

1
(s−β )

L (Nw(x, t)) (64)

The application of the inverse Laplace transform gives the following
result:

w(x, t) = xeβ t +L −1
(

1
s−β

L (Nw(x, t))
)

(65)

Let’s look for the solution of u(x, t) in the form (66) below :

u(x, t) =
∞

∑
n=0

un(x, t) (66)

and :

Nu(x, t) =
∞

∑
n=0

An(x, t) (67)

We obtain the following algorithm:

w0(x, t) = xeβ t

wn+1(x, t) = L −1(
1

s−2
L (An((x, t))

(68)

With :

A0(x, t) =
(

w0(x, t)
∂ 2w0(x, t)

∂x2

)
+

(
∂w0(x, t)

∂x

)2
(69)

and :

A1(x, t)=
(

w0(x, t)
∂ 2w1(x, t)

∂x2 +w1(x, t)
∂ 2w0(x, t)

∂x2

)
+2
(

∂w1(x, t)
∂x

)(
∂w0(x, t)

∂x

)
(70)

The calculations made give:

A0(x, t) = e2β t

w1(x, t) =−
1
β
(eβ t − e2β t)

A1(x, t) = 0

w2(x, t) = 0

A2(x, t) = 0

w3(x, t) = 0

·
·
·

wn(x, t) = 0, ∀n > 2

(71)

Finally, the sum of the terms of the series gives:

w(x, t) = w0(x, t)+w1(x, t) = (x− 1
β
)eβ t +

1
β

e2β t (72)

The exact solution of the problem is then:

w(x, t) =
(

x− 1
β

)
eβ t +

1
β

e2β t (73)
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4. Conclusion

The application of the Laplace-Adomian method has allowed us to
obtain the exact solutions of the problems studied in this article. The
manipulation of Adomian polynomials and Laplace transforms have
allowed us to obtain efficient algorithms that converge faster to the
exact solution of the problem. We can conclude that this method is
well suited for solving nonlinear partial differential equations not
only in the case of flows in porous media, but also in many physical
phenomena of high complexity.
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