
 
Copyright © Jacob Chepkwony et al. This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Applied Mathematical Research, 13 (2) (2024) 103-109 
 

International Journal of Applied Mathematical Research 
 

Website: www.sciencepubco.com/index.php/IJAMR  

 

Research paper  

 

 

 

Coupling and synchronization of HIV/AIDS  

fisher folk metapopulations 
 

Jacob Chepkwony 1*, Titus Rotich 2, Robert Lagat 3, Jacob Bitok 3 

 
1 Mathematics and Computer Department, University of Eldoret, P.O. Box 1125 – 30100, Eldoret  

2 Department of Mathematics, Physics and Computing, Moi University, P.O Box 3900 – 30100, Eldoret 
3 Department of Mathematics and Actuarial Science, South Eastern Kenya University, P.O. Box 170-90200, Kitui 

*Corresponding author E-mail: chepwonyjacobkurui34@gmail.com 

 

 

Abstract 
 

The study of epidemiology is often done with an assumption that the population is homogeneously mixed, and the disease dynamics is 

uniform. However, this is not always true, and cultural beliefs and economic activities significantly contribute to segregation not necessarily 

in spatial dimension but on the way of life. In this study, the dynamics of HIV/AIDS is studied in four distinct fisherfolk population patches, 

both individually and under all-to-all diffusive coupling. It was found that, the dynamics of each patch is periodic, and there exist an 

attracting invariant stable manifold. The synchronization manifold of the coupled system displayed robustness under small perturbation, 

even with a small coupling strength of k≪1. This guarantees uniformity of long term metapopulation dynamics. 
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1. Introduction 

Epidemiology is the study and analysis of the patterns, causes and effects of health and disease conditions in a defined population. It is the 

cornerstone of public health and shapes policy decisions and evidence based practice by identifying risk factors for the disease and targets 

the preventive health care. One of the main area of epidemiological study is the disease surveillance which monitors the spread of a disease 

by establishing patterns of progression of the disease. The goal of the surveillance is to predict, observe and minimize the harm caused by 

the epidemic to the population. 

Contributions of mathematics in epidemiology is capture in modeling and simulation, which is seen to be a virtual laboratory, enabling the 

analysis and monitoring of the variations of various parameters which are impossible or would take ages in real life situation. 

In this paper, we focus on the study of the interactions of small subpopulations, which are distinct in HIV/AIDS dynamics and spatially 

separated. The study aims at investigating the synergic effect of coupling and possibility of synchronization. This will give vital effects of 

perturbation dynamics in terms of controlling the disease prevalence through intervention strategies including treatment, public health 

education and prevention. 

Many population models assume that the individuals mix homogeneously implying that all individuals in the population are equally likely 

to encounter each other. In reality however, many populations are structured in space and are interconnected by human travel. The popu-

lation may therefore be sub-divided into spatially separated sub-populations also known as the population patches. These population 

patches are connected to each other by movement of individuals. Moreover, each patch has its own dynamics which are influenced by both 

immigration and emigration of individuals. Such a distinct group of sub-population is known as a metapopulation (Jesse et al. 2008). 

Metapopulation is therefore defined as a fragmented population in which population dynamics occurs at two distinct levels. These levels 

are; namely, within patch dynamics and between patch dynamics. Fisher folk subpopulations are spatially separated, but interact through 

fishing in Lake Victoria. The interaction is due to population movement, through markets and fishing. 

In general, synchronization of coupled systems means that systems which previously had different patterns of behavior begin to behave in 

the same way and simultaneously so that the difference in their dynamics is zero.  

In this paper, we consider the patches from Kisumu, Homabay, Siaya and Busia, all around Lake Victoria. The coupling under study is all-

to-all coupling, which is more suitable due to fishing from one Lake, and accessing the same market.  

Consider each of the subpopulation and its dynamics denoted by 

 

żi(t) = gi(zi)                                                                                                                                                                                                 (1) 

 

Where z = (S, I, T, A, ) is an 4 dimensional vector, and g(z) represents the dynamics of each patch, which are here assumed to be homoge-

neous. We therefore consider coupling of similar oscillators. 

All – to – all coupling configuration of the four oscillators is defined as; 
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Ż(t) = A(k)Z + G(Z)                                                                                                                                                                                     (2) 

 

Where Z = (z1, z2, z3, z4)  and G(Z) = (g1(z1), g2(z2), g3(z3), g4(z4))  and A(k)  is the coupling configuration matrix with coupling 

strength k. The coupling configuration matrix for all-to-all coupling is defined here as; 

 

A(k) = kΔ ⊗ In                                                                                                                                                                                             (3) 

 

Where ⊗ is the kronecker product, and the coupling matrix Δ is defined as; 

 

Δ =

(

 
 
 

−(n − 1) 1 1 1 … 1
1 −(n − 1) 1 1 … 1

1 1 −(n − 1) 1 … 1
1 1 1 −(n − 1) … 1
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1 1 1 1 … −(n − 1))

 
 
 

                                                                                                     (4) 

 

All-to-All coupling of four identical oscillators 

In this study, the dynamics of each oscillator is represented by the SITA model defined by 

 
dS

dt
= λS − cβϕSI − μS                                                                                                                                                                                 (5a) 

 
dI

dt
= cβϕSI − (μ + τ + ω)I                                                                                                                                                                         (5b) 

 
dT

dt
= τI − (σ + δ)T + ρA                                                                                                                                                                            (5c) 

 
dA

dt
= δT − (ξ + σ + ρ)A + ωI                                                                                                                                                                     (5d) 

 

Where: β is the force of infection, with βv being the vector folk infection rate, λ is the natural recruitment rate to the susceptible group. λv 

is the corresponding recruitment rate to the vector folk group, μ natural death rate. It is here assumed to be equal in all compartments, θ is 

the modification parameter accounting for the difference in the infection rate by the infected class. ψ is the modification parameter ac-

counting for the difference in the infection rate by the treated class, ϕ is the modification parameter accounting for the difference in the 

infection rate by the AIDS class, τ is the rate at which infected class seek treatment, δ is the proportion of those under treatment, who will 

not be cured and therefore progress to AIDS class, ω is the rate at which people with AIDS seek treatment. ωv is the corresponding rate 

for vector folk class, ρ is the recovery rate from AIDS status, back to treatment class. Note that treatment for HIV is a life-long process 

and therefore forms PLWHA, ω is the rate at which infected individuals progress to AIDS class without seeking treatment, and η is the 

accelerated death rate due to opportunistic diseases or AIDS. 

2. Literature review 

Mathematical modeling of infectious diseases and analytic techniques have given great insights into the study of the evolution and control 

of epidemics [1]. The occurrence of most epidemics is seasonal and therefore periodic. Infectious diseases can be therefore be modeled as 

biological oscillators using differential equations [2-5]. Many interesting dynamics occur in the study of oscillators, but most interesting 

phenomena, physically significant is the stability and robustness of oscillators under perturbation [6]. In this regard, the epidemic focused 

in this study is HIV/AIDS. The World Health Organization (WHO) report of 2004 states that, AIDS was discovered in 1981 and has 

become one of the leading causes of death, globally, affecting mostly impoverished people already. This is done with an attempt to shed 

light to a close to four decades problem since it was first reported and labeled as AIDS [7]. According to [8], HIV/AIDS had killed an 

estimate of 25 million people globally. It was estimated that over 33 million people were living with HIV, most of whom are unaware of 

their HIV status, and as a result, unknowingly contribute to the spread of the infection [9]. The epidemic has disproportionately affected 

people residing in areas of the world that have fewer resources to combat the disease. The [9] further estimated that there were 2.7 million 

people who were newly infected with HIV in 2007 and greater than 95% of these new infections occurred among persons residing in Low 

and Middle Income Countries. Sub-Saharan Africa accounts for an estimated 22 million cases of HIV/AIDS and has an estimated preva-

lence of 5% in adults ages 15-49. In these Low and Middle Income Countries, [9] says that the HIV/AIDS epidemic has often over-

burdened the under-resourced health care infrastructure. In Kenya for example, the worst affected community is the fisherfolk as compared 

to the other populations [10-14]. Surveys conducted since 1992 in ten low or middle-income countries in Africa, Asia and Latin America 

revealed that HIV/AIDS prevalence among fishers or fishing communities are between 4 and 14 times higher than the National average 

prevalence rate for adults aged 15-49 [15, 16]. These considerable rates of HIV/AIDS infection place fisher folks among groups that are 

more usually identified as being at high risk [11, 17-19]. It is for this reason that this study focuses on dynamics of HIV/AIDS among the 

fisherfolk community around Lake Victoria Kenya, as a problem of coupled metapopulation patches, stability and robustness under small 

disease parameter perturbation. 

3. Methods and analysis 

In this section, the methods used in the analysis of the model are presented, and are discussed under the sections hereunder. 
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3.1. All-to-all coupling topology 

 

Diffusive coupling is an arrangement, where oscillators are allowed to influence each other [6]. In terms of the biological oscillators under 

study, the periodic dynamics of HIV/AIDS pandemic in four distinct population patches around Lake Victoria are interacting through 

people entering and leaving each patch, together with interacting in the markets and common fishing grounds. The interaction referred to 

her is the relationship which leads to sexual intercourse. The level of interaction which leads to sexual relationship, significant to cause 

transfer of disease is here considered. All-to-all coupling, also called global coupling is represented geometrically as in Figure 1 below 

[20]. Each terminal point represents an oscillator, while the arrows joining the oscillators represent bidirectional coupling where oscillators 

are allowed to influence each other simultaneously. 

 

 
Fig. 1: All-to-All Coupling Configuration. 

 

Each oscillator is represented by a system of ordinary differential equations, denoting a dissipative system of four variables, described by 

a set of four differential equations in equation (5), each describing the dynamics of Susceptible, Infective, Treated and AIDS cases. Using 

the notation of Zi, i = k, s, h, b (Kisumu, Siaya, Homabay and Busia) to represent the fours oscilators, we derive the system of coupled 

oscillators by 

 

(

z1̇(t)
z2̇(t)
z3̇(t)

z4̇(t)

) = k(

−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

) ⊗ (I4)(

z1

z2

z3

z4

) + (

g1(z1)
g2(z2)
g3(z3)

g4(z4)

)                                                                                                              (6) 

 

Where, using equation (5), equation (6) is given in detail as; 

 

kΔ ⊗ I4 = k(

−3I4 I4 I4 I4
I4 −3I4 I4 I4
I4 I4 −3I4 I4
I4 I4 I4 −3I4

)                                                                                                                                               (7) 

 

And 

 

zi̇(t) =

(

 
 

Ṡi(t)

İi(t)

Ṫi(t)

Ȧi(t))

 
 

= (

λSi − cβϕSiIi − μSi

cβϕSiIi − (μ + τ + ω)Ii
τIi − (μ + δ)Ti + ρAi

δTi − (ξ + σ + ρ)Ai + ωIi

)                                                                                                                                      (8) 

 

Where the subscripts i = k, h, s, b for Kisumu, Homabay, Siaya and Busia respectively. In compact vector form, equation (10) is expressed 

equivalent to equation (2) as; 

 

Ż = k(Δ ⊗ I4)Z + G(Z)                                                                                                                                                                                (9) 

 

Where Z and G(Z) are defined in equation (2) above. The coupled system (9) is said to be synchronized, if there exist a manifold 

 

ℳ ≔ {Z ∈ ℝnd: zi = zi+1 ≠ 0, i = k, s, h, b}  

 

That is, there exist an invariant attractor 𝒜k∀ k > 0 invariant under the flow defined by equation (5) which contains the ω- limit set of the 

oscillator, so that the difference zi(t) − zi+i(t) → 0 as t → ∞, ∀ i. 

3.2. Construction of synchronization manifold 

Synchronization manifold ℳ ≔ (Z ∈ ℝnd: zi = zi+1 ≠ 0, i = 1, 2, 3,… , n − 1} is guaranteed since we are coupling identical oscillators, 

and thus the diagonal is invariant [21]. Our task is therefor to show that one of the eigenvalue of the coupling topology matrix Δ is λ0 = 0 

and the corresponding generalized eigenvector spans the diagonal in ℝnd while the other eigenvalues λs, s = 1, 2, . . , n − 2 are bounded to 

the left side of the imaginary axis. 

Z1 

Z
4
 Z

3
 

Z
2
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Clearly, the eigenvalues of the matrix σ(Δ) 

Δ = (

−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

)  

 

Are; λ0 = 0 and λs = −ns, s = 1, 2, 3,… n − 1, with the corresponding generalized eigenvectors as; v0 ≔ (1, 1, 1, 1, … ,1) ∈ ℝd  which 

spans the diagonal and the other eigenvectors are; vi ≔ [(−1,1,0,0,… ,0), (−1,0,1,0,0,… ,0), (−1,0,0,1,0,… ,0), … , (−1,0,0,… ,0,1)] . 

These can be expressed as,  

The existence of a global attractor, (the diagonal) in a bounded set 𝑼 ∈ ℝ𝒏𝒅, we define a transformation, that splits the system into trans-

verse flow and tangential flow to the manifold. Consider the transformation in (Rotich, 2007) defined below. 

 

𝑧 = 𝑦𝑒 + �̃�𝑤,𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛−1)
𝑇 , 𝑤 ∈ ℝ𝑛𝑑−𝑑 , 𝑦 ∈ ℝ𝑑  

 
𝑤𝑗 = 𝑧𝑗 − 𝑧𝑗+1 , 1 ≤ 𝑗 ≤ 𝑛 − 1,

 

𝑦 =
1

𝑛
∑ 𝑧𝑗 ,

𝑛
𝑗=1

                                                                                                                                                                   (10) 

 

Where 𝑒𝑗  is the 𝑗𝑡ℎ column of an 𝑛 × 𝑛 identity matrix and �̃� = ∑ (𝑒𝑖 −
𝑗

𝑛
𝑒)

𝑗
𝑖 , with �̃� = (�̃�1, �̃�2, … , �̃�𝑛−1). The set 𝑒 , �̃�𝑗  is an orthpgonal 

basis for ℝ𝑛. 

Using transformation (10) in equation (9), we obtain  

 
�̇� = 𝑘(𝛥1 ⊗ 𝐼𝑑)𝑤 + 𝐹(𝑤, 𝑦)

 

�̇� =
1

𝑛
∑ 𝑔(𝑧𝑗)

𝑛
𝑗=1

                                                                                                                                                                     (11) 

 

Where 𝐹(𝑤, 𝑦) = (𝐹1(𝑤, 𝑦), 𝐹2(𝑤, 𝑦), 𝐹3(𝑤, 𝑦))  with 𝐹𝑖(𝑤, 𝑦) = 𝑔(𝑧𝑖) − 𝑔(𝑧𝑖+1), 1 ≤ 𝑖 ≤ 𝑛 − 1  and the matrix 𝛥1  is given by 𝛥1 =
−𝑘𝑛𝐼𝑛 ⊗ 𝐼𝑑. 

The first equation in (11) describes the dynamics transverse to the synchronization manifold, and the second equation describes the dy-

namics tangential to the synchronization manifold.  

3.3. Stability of the synchronization manifold 

Synchronization means the deviations 𝑧𝑖 − 𝑧𝑖+1 as 𝑡 → ∞ dies out, that means the solution of the first equation in (11) is expected to be 

exponentially stable, the property that 𝑤 = 0 [22]. We are interested in local synchronization, and thus we consider the fundamental matrix 

solution 𝛷(𝑡; 𝑧0), 𝑧0 ∈ ℳ of the linearization of equation (9) about ℳ defined as �̇� = 𝐴(𝑧(𝑡; 𝑧0))𝑍.  

Let  

 

𝛷(𝑡; 𝑧0) = 𝛷𝑐(𝑡; 𝑧0) ⊕ 𝛷𝑠(𝑡; 𝑧0);  
 

Be the invariant splitting where 𝛷𝑐(𝑡; 𝑧0) and 𝛷𝑠(𝑡; 𝑧0) are restrictions of 𝛷(𝑡; 𝑧0) of the tangent bundle vector 𝑇𝑧0
ℳ to the manifold at 

𝑧0 and 𝑁𝑧0
 bundle of vectors normal to the manifold at 𝑧0. 

Linearizing equation (11long the solution (0, 𝑦0(𝑡)) on the manifold ℳ yields 

 

(
�̇�
�̇�
) = (

𝑘(𝛥1 ⊗ 𝐼4 + 𝐼3 ⊗ 𝐷𝑧𝑔(𝑦0(𝑡)) 0

0 𝐷𝑧𝑔(𝑦0(𝑡))
)(

𝑤
𝑦)                                                                                                                    (12) 

 

Whose solution is of the form 

 

𝑤(𝑡) = 𝛷𝑠(𝑡; 𝑧0) ≈ 𝑒(𝑘𝜆𝜁+𝜆𝑖)𝑡, 𝜁 = 1, 2, 3, 𝑖 = 1, 2, 3
 

𝑦(𝑡) = 𝛷𝑐(𝑡; 𝑡0) ≈ 𝑒𝜆𝑡

                                                                                                                                (13) 

 

The invariant manifold ℳ is attracting and stable if the maximum of 𝑘(𝜆𝜁 + 𝜆𝑖) is less than zero. In our case, 𝑚𝑎𝑥(𝜆𝜁) = −4𝑘 and 

𝑚𝑎𝑥(𝜆𝑖) = 1.6361, thus the generalized Lyapunov exponent 

 

𝛼(𝑧0) = 𝑚𝑎𝑥(𝑘𝜆𝜁 + 𝜆𝑖) = −4𝑘 + 1.6361  

 

Giving the optimal coupling strength 𝑘0 = 0.409025 

If 𝛼(𝑧0) < 0, we require for persistence that 𝛽(𝑧0) < 1, that is 

 

𝛽(𝑧0) ≔ 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 
𝑙𝑛‖𝛷𝑠(𝑡,𝑧0)‖

𝑙𝑛 𝑚(𝛷𝑐(𝑡,𝑧0))
< 1  

 

From calculation, we obtain 𝛽(𝑧0) = 0.1993 < 1 as required. 
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4. Numerical solutions and graphical representation 

4.1. Coupled oscillators 

All-to-All coupling configuration described in section 3.1 is presented for four oscillators each of dimension four, making a system of 

sixteen ordinary differential equations, in equation 14(a-d). Consider the choice of �̇�(𝑡) = 𝑔(𝑧(𝑡))defined in equation (5) for Kisumu (k), 

Homabay (h), Siaya (s) and Busia (b) as; 

 

�̇�𝑘(𝑡) =

[
 
 
 
 
𝑆�̇� = 𝜆𝑆𝑘 − 𝑐𝛽𝜙𝑆𝑘𝐼𝑘 − 𝜇𝑆𝑘

𝐼�̇� = 𝑐𝛽𝜙𝑆𝑘𝐼𝑘 − (𝜇 + 𝜏 + 𝜔)𝐼𝑘
𝑇�̇� = 𝜏𝐼𝑘 − (𝜎 + 𝛿)𝑇𝑘 + 𝜌𝐴𝑘

𝐴�̇� = 𝛿𝑇𝑘 − (𝜉 + 𝜎 + 𝜌)𝐴𝑘 + 𝜔𝐼𝑘]
 
 
 
 

                                                                                                                                        (14a) 

 

�̇�ℎ(𝑡) =

[
 
 
 
 
𝑆ℎ̇ = 𝜆𝑆ℎ − 𝑐𝛽𝜙𝑆ℎ𝐼ℎ − 𝜇𝑆ℎ

𝐼ℎ̇ = 𝑐𝛽𝜙𝑆ℎ𝐼ℎ − (𝜇 + 𝜏 + 𝜔)𝐼ℎ
𝑇ℎ̇ = 𝜏𝐼ℎ − (𝜎 + 𝛿)𝑇ℎ + 𝜌𝐴ℎ

𝐴ℎ̇ = 𝛿𝑇ℎ − (𝜉 + 𝜎 + 𝜌)𝐴ℎ + 𝜔𝐼ℎ]
 
 
 
 

                                                                                                                                       (14b) 

 

�̇�𝑠(𝑡) =

[
 
 
 
 
𝑆�̇� = 𝜆𝑆𝑠 − 𝑐𝛽𝜙𝑆𝑠𝐼𝑠 − 𝜇𝑆𝑠

𝐼�̇� = 𝑐𝛽𝜙𝑆𝑘𝐼𝑘 − (𝜇 + 𝜏 + 𝜔)𝐼𝑠
𝑇�̇� = 𝜏𝐼𝑠 − (𝜎 + 𝛿)𝑇𝑠 + 𝜌𝐴𝑠

𝐴�̇� = 𝛿𝑇𝑠 − (𝜉 + 𝜎 + 𝜌)𝐴𝑠 + 𝜔𝐼𝑠]
 
 
 
 

                                                                                                                                          (14c) 

 

�̇�𝑏(𝑡) =

[
 
 
 
 
𝑆�̇� = 𝜆𝑆𝑏 − 𝑐𝛽𝜙𝑆𝑏𝐼𝑏 − 𝜇𝑆𝑏

𝐼�̇� = 𝑐𝛽𝜙𝑆𝑏𝐼𝑏 − (𝜇 + 𝜏 + 𝜔)𝐼𝑏
𝑇�̇� = 𝜏𝐼𝑏 − (𝜎 + 𝛿)𝑇𝑏 + 𝜌𝐴𝑏

𝐴�̇� = 𝛿𝑇𝑏 − (𝜉 + 𝜎 + 𝜌)𝐴𝑏 + 𝜔𝐼𝑏]
 
 
 
 

                                                                                                                                        (14d) 

 

Coupling equation (14a-d) as described in equation (6), and transforming to a form similar to equation (11), yields the system which 

satisfies the criteria for synchronization and persistence. 

4.2. Data and Graphical presentation 

In order to graphically the dynamics of HIV/AIDS in the four patches, namely Kisumu, Busia, Siaya and Homabay, the following data 

collected from the study area are presented in Table 1 below. Some data were approximated within plausible range. 

 
Table 1: Parameter Values from Data Collected from Samia, Kisumu, Homabay and Mbita 

No Symbol Description Value 

1 𝜆 Recruitment rate of normal community 0.01385 

2 𝜇 Natural death rate 0.00124 

3 𝛽 Probability of infectivity given sufficient contact 0.00033 

4 𝜙 Modification parameter describing sexual interaction probability 0.00177 

5 𝑐 Contact rate of susceptible with infective, sufficient to transmit HIV 0.18624 

6 𝜏 Progression rate of Treatment class to HIV patients 0.24 

7 𝜎 Progression rate of HIV patients to AIDS status 0.023 

8 𝜂 Accelerated death rate due to HIV/AIDS 0.00124 

9 𝛿 Accelerated death rate due to HIV infection, while on treatment 0.00496 

10 𝜌 Rate of seeking treatment by AIDS class 0.00354 

11 𝜔 Direct progression to AIDS class from the time of infection 0.003218 

12 𝑝 Perturbation multiplier 0.01 

13 𝑘 Coupling strength [0 , 1] 

14 𝜉 Accelerated death rate due to full blown AIDS status 0.00321 

 

The fourth order numerical integration inbuilt in MATLAB of the trajectories with initial conditions (𝑆0, 𝐼0, 𝑇0, 𝐴0) =
(300, 0.1, 0.01, 0.01). The dynamics of system (14) are shown in the figure below. Figure 2 below and subsequent figures will have (a) 

Top left – shows the orbit where we pick the initial conditions, (b) Top right – shows the invariant manifold or the diagonal, (c) Bottom 

left – shows the four graphs representing the dynamics of each class of disease dynamics, and (d) Bottom right – shows the differences of 

each oscillator versus time.  

Clearly, the first graph (a) shows existence or periodic orbit, which is the characteristic of an oscillator. This is evidenced in all the four 

equations of the SITA model. Notice the smooth diagonal and absence of deviations from the synchronization manifold as depicted in 

figure (b) and (d) respectively. 

4.3. Perturbation and coupling strength 

In biological oscillators under study, perturbation is considered here as the small changes that arise due to changes in the intensity of 

interaction, for example changes in market forces, shift of fish populations, change in tidal waves, among others which contributes to more 

or less interaction of the fisher folk in the four population patches. Now adding a small perturbation of 𝑝 ≪ 1 to uncoupled system (𝑘 = 0) 

yields the system (15) below. 
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𝑆�̇� = 𝜆𝑆𝑖 − 𝑐𝛽𝜙𝑆𝑖𝐼𝑖 − 𝜇𝑆𝑖 + 𝑘(−3𝑆𝑖 + ∑ 𝑆𝑗𝑗 ) + 𝑝(𝑎𝑖1)𝑆𝑖

𝐼�̇� = 𝑐𝛽𝜙𝑆𝑖𝐼𝑖 − (𝜇 + 𝜏 + 𝜔)𝐼𝑖 + 𝑘(−3𝐼𝑖 + ∑ 𝐼𝑗𝑗 ) + 𝑝(𝑎𝑖2)𝐼𝑖

𝑇�̇� = 𝜏𝐼𝑖 − (𝜎 + 𝛿)𝑇𝑖 + 𝜌𝐴𝑖 + 𝑘(−3𝑇𝑖 + ∑ 𝑇𝑗𝑗 ) + 𝑝(𝑎𝑖3)𝑇𝑖

𝐴𝑖
̇ = 𝛿𝑇𝑖 − (𝜉 + 𝜎 + 𝜌)𝐴𝑖 + 𝜔𝐼𝑖 + 𝑘(−3𝐴𝑖 + ∑ 𝐴𝑗𝑗 ) + 𝑝(𝑎𝑖4)𝐴𝑖

                                                                                                         (15) 

 

Where the index 𝑖 = 𝑘, 𝑠, 𝑏, ℎ  denotes the metapopulations of Kisumu, Siaya, Busia and Homabay, while the elements  𝑎𝑖𝑗 𝑖 =

𝑘, 𝑠, 𝑏, ℎ;  𝑗 = 1,2, 3, 4 represents various vlues of perturbation parameter 𝑎𝑖𝑗 ∈ ℝ. Equation (15) is equivalent to  

 

𝑍�̇� = 𝑘(𝛥 ⊗ 𝐼4)𝑍𝑖 + 𝐺(𝑍𝑖) + 𝑝(𝑍𝑖)  

 

Simulations are run with various values of the coupling strength 𝑘 ≥ 0 for the purpose of achieving the threshold coupling strength which 

eliminates all deviations from the diagonal.  

With small perturbation, we notice loss of synchronization manifold (the diagonal) and deviations in the dynamics as shown in Figure 3 

(a, b, d). As the coupling strength is increased gradually, it is found that the chaotic behavior is lost and synchronization is achieved again. 

This is achieved at 𝑘 ≥ 1.1137 as seen in Figure 4 below. 

 

  
  

  
Fig. 2: HIV/AIDS Interaction Dynamics of Coupled Oscillators with 𝑘 = 0, 𝑝 = 0. 

 

 
Fig. 3: HIV/AIDS Interaction Dynamics of Coupled Oscillators with 𝑘 = 0, 𝑝 = 1. 
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Fig. 4: HIV/AIDS Interaction Dynamics of Coupled Oscillators with 𝑘 = 1.1137, 𝑝 ≠ 0. 

5. Conclusion and recommendation 

From the analysis above, it is noted that coupled oscillators have a tendency of being synchronized, and a small perturbation gives rise to 

chaotic behavior, which can be levelled off by increasing the coupling strength to 𝑘 = 1.1137. This can be interpreted as 11% interaction 

of individuals across the metapopulations. It is recommended that a measure of the amount of chaotic deviations is expressed in terms of 

the coupling strength to assess the percentage of interaction. 
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