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A hybrid randomized algorithm for image compression
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Abstract

In this paper, we present a randomized algorithm for image compression by improving the Markov chain Monte
Carlo algorithm and by applying the principal component analysis method. Some Numerical examples are provided
to show that the proposed algorithm is effective.
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1 Introduction

Image compression is addresses the problem of reducing the amount of data required to represent a digital image.
The image transformation from color to the gray-level (intensity) image I belongs to the most common algorithms.
Its implementation is usually based on the weighted sum of three color components R, G, and B according to
relation [1]

I = αR+ βB + γG

The R, G, and B matrices contain image color components, the weights α, β, and γ were determined with regards
to the possibilities of human perception [2]. There is a huge amount of algorithms [1, 2, 5, 7] based on various
principles leading to the image compression. Algorithms based on the image color reduction are mostly lossy but
their results are still acceptable for some applications. Among various qualified statistical procedures, the principal
component analysis (PCA) is the most classical and popular one. Since it uses only simple linear algebra and avoids
any probabilistic assumption on the data, PCA has been widely used in applications [2, 5-7]. Our objective in
this paper is to derive randomized PCA method from robust Markov chain Monte Carlo algorithm , with the aim
of providing a better dimension reduction tool for real images. Consequently, the proposed algorithm it is more
efficient in applications.

2 The PCA method and computation of PCs

Principal component analysis (PCA) is an exploratory statistical method for graphical description of the information
present in large data sets. In most applications, PCA consists of studying p variables measured on n individuals.
When n and p are large, the aim is to synthesize the huge quantity of information into an easy and understandable
form. With minimal additional effort PCA provides a road map for how to reduce a complex data set to a lower
dimension to reveal the sometimes hidden, simplified structure that often underlie it. Finding principal components
(PCs) reduces to finding the eigenvalues and eigenvectors of a positive-semidefinite matrix [6, 7].
Suppose that X is a vector of p random variables with a known covariance matrix Σ, and that the variances of the
p random variables and the structure of the covariances or correlations between the p variables are of interest. The
first step is to look for a linear function vT1 x of the elements of x having maximum variance, where v1 is a vector
of p constants v11, v12, ..., v1p and so that

vT1 x = v11x1 + v12x2 + · · ·+ v1pxp
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Next, look for a linear function vT2 x, uncorrelated with vT1 x having maximum variance, and so on, so that at the kth

stage a linear function vTk x is found that has maximum variance subject to being uncorrelated with vT1 , v
T
2 , ..., v

T
k−1.

The kth derived variable, vkx is the kth PC. Up to p PCs could be found, but it is hoped, in general, that most of
the variation in x will be accounted for by m PCs, where m� p. Suppose that z be the vector whose kth element
is zk, the kth PC, k = 1, 2, ..., p. Let z = ATx, where A is the orthogonal matrix whose kth column, vk, is the kth

eigenvector of Σ. Thus, the Pcs are defined by an orthonormal linear transformation of x. We can write [6]

ΣA = AΛ,

where Λ is the orthogonal matrix whose kth diagonal element is λk, the kth eigenvalue of Σ and λ = var(vTk x) =
var(zk).

Theorem 2.1 Suppose that we wish to predict each random variable, xj in x by a linear function of y, where
y = BTx, and B is a p×q matrix, If σ2

j is the residual variance in predicting xj from y, then
∑p
j=1 σ

2
j is minimized

if B = Aq, where Aq consist of the first q column of A.
Proof. See [6]

According to the above theorem, if we wish to get the best linear predictor of x in a q-dimensional subspace, in
the sense of minimizing the sum over elements of x of the residual variances, then this optimal subspace is defined
by the first q PCs. It can be shown that [7], finding the PCs reduces to finding the eigenvalues and eigenvectors
of a positive-semidefinite matrix. Also, in [7] is presented PCA-MCMC algorithm for computing the PCs. We now
propose a robust MCMC (RMCMC) algorithm based on control variates variance reduction that can be used to
solve such an eigenpair problem.

3 The proposed algorithm

Monte Carlo methods gives statistical estimates for the functional of the solution by performing random sampling
of a certain random variable whose mathematical expectation is the desired functional [3]. The basic power method
[8] is the traditional starting point for a Monte Carlo determination of the eigenpair associated with the eigenvalues
of largest absolute value λ1. While various versions of the Monte Carlo power method often compute this dominant
eigenvalue very well, computing subdominant eigenvalues λ2, λ3, ... has often proven much more difficult and is
much less frequently attempted. We will present a robust Markov chain Monte Carlo (RMCMC) algorithm that
allows the simultaneous determination of a few extremal eigenpairs of a very large matrix without the need to
orthogonalize pairs of vectors to each other or store all the components of any vector.
Consider the following problem of calculating eigenvalues performed by,

Ax = λx (1)

Suppose A ∈ Rn×n is a symmetric matrix and also

λmin = λn < λn−1 ≤ · · · ≤ λ2 < λ1 = λmax

Consider the following Markov chain Ti with length i:

Ti : k0 → k1 → · · · → ki

where kj ∈ {1, 2, · · · , n} for j = 1, · · · , i are natural numbers. The statistical nature of constructing the above
Markov chain follow as:

p(k0 = α) = pα, p(kj = β|kj−1 = α) = pαβ

where pα and pαβ show the probability of starting chain at α and transition probability from state α to β, respectively
[3].
Now, define the random variable Wj using the following recursion for

Wj = Wj−1

akj−1kj

pkj−1kj

, j = 1, 2, ..., i, W0 = 1. (2)

From all possible permissible densities, we choose the following

pα =
|hα|∑n
α=1 |hα|

pαβ =
|aαβ |∑n
β=1 |aαβ |

α = 1, 2, ..., n
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where h ∈ Rn. It can be shown that [3] for a vector f ∈ Rn and large value of i:

λ1 ≈
E[Wifki ]

E[Wi−1fki−1
]

(3)

Using deflation techniques [7, 8 ], once having the eigenpair (λi, vi), we can obtain eigenpairs (λi+1, vi+1), i =
1, 2, ..., n.
In [4] is shown that the accuracy of the eigenpairs has been soared by using RMCMC. In this paper, we use this
algorithm for finding PCs.

Algorithm. Execute the following steps:

(1) Set [M,N] = size(data).
(2) Set mn = mean(data,2).
(3) Set data=data-repmat(mn, 1, N).
(4) Compute COV=covariance(data).
(5) Compute [PC, V] = RMCMC algorithm (covariance).
(6) V = diag(V).
(7) V = V (rindices).
(8) PC = PC(:, rindices).
(9) Signals = PCt∗ data.
(10) Input color image C.
(11) Decompose C to R,G,B.
(12) Call the MCMC-PCA algorithm for R,G,B.
(13) Output the compressed image Ĉ = R

⊕
G
⊕
B.

4 Numerical experiments

We performed two images using PCA-MCMC and PCA-RMCMC algorithms and some of results for finding PC’s
are presented. In Table 1 and Figs. 1 and 2 we can see that the RMCMC algorithm gives better results than the
MCMC algorithm. Also, the original images and their compressed images are shown in Figs 3-6. The numerical
tests are made on Intel(R), Core(TM)i5 CPU, 2.5 GHz, personal machine using MATLAB software.

Table 1: Relative error for computing three eigenvalue by using MCMC and RMCMC algorithms

λ1(MCMC) λ1(RMCMC) λ2(MCMC) λ2(RMCMC) λ3(MCMC) λ3(RMCMC)

0.1600× 10−2 3.1289× 10−4 1.0526× 10−2 5.1689× 10−4 2.8726× 10−2 6.8916× 10−4

5 Conclusion

The paper presents a new algorithm for image compression based on PCA and RMCMC methods. The hybrid
algorithm has enabled us to have better accuracy than the standard MCMC algorithm.
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Figure 1: Comparison of relative error between MCMC and RMCMC algorithms

Figure 2: Average PSNR vs. number of PCs by using MCMC and RMCMC algorithms



International Journal of Applied Mathematical Research 5

Figure 3: Original image, Size= 845941 bytes

Figure 4: Compressed image with q = 20 PCs, Size=67910 bytes
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Figure 5: Original image, Size= 45,414 bytes

Figure 6: Compressed image with q = 20 PCs, Size= 14,101 bytes
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