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Abstract

In this study, we investigate the convergence behavior of fixed points for generalized α-nonexpansive mappings using the Picard-Thakur
hybrid iterative scheme. We obtain weak and strong convergence results for generalized α-nonexpansive mappings in a uniformly convex
Banach space. Numerically, we demonstrate that the Picard-Thakur hybrid iterative scheme converges more rapidly than other well-known
schemes. Additionally, we present findings on data dependence and provide a numerical example to illustrate the concept. The obtained
results are expanded and generalized to be consistent with relevant findings in the existing literature.
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1. Introduction

Let M be a nonempty subset of a Banach space B. A mapping G : M → M is;
(1) a contraction mapping if for all a,b ∈ M and ζ ∈ (0,1) such that

∥G a−G b∥ ≤ ζ∥a−b∥.

(2) a nonexpansive mapping if for all a,b ∈ M
∥G a−G b∥ ≤ ∥a−b∥.

(3) a quasi-nonexpansive if there exists an element a∗ ∈ F(G ) such that

∥G a−a∗∥ ≤ ∥a−a∗∥, for all a ∈ M .

We denote the set of all fixed points of the mapping G : M → M by F(G ).
In [7] Browder showed that, for any nonempty closed convex subset M of uniformly convex Banach space (UCBS) B has a fixed point for a
nonexpansive self mapping.
Suzuki [28] presented a new kind of mapping called Condition (C) in 2008, which is weaker than nonexpansive mappings but stronger than
quasi-nonexpansive mappings. Suzuki discussed the fixed point existence results for a mapping that satisfies the condition (C).
G : M → M is said to satisfy Condition (C) if

1
2
∥a−G a∥ ≤ ∥a−b∥⇒ ∥G a−G b∥ ≤ ∥a−b∥, ∀ a,b ∈ M . (1)

In 2011, Aoyama and Kohshaka [3] defined a new type of mappings in Banach spaces, known as α-nonexpansive mapping, and explored its
fixed points. A mapping G from M to M is said to be α-nonexpansive if for all a,b ∈ M there is an α < 1 such that

∥G a−G b∥2 ≤ α∥b−G a∥2 +α∥a−G b∥2 +(1−2α)∥a−b∥2. (2)

A nonexpansive mapping is clearly a 0-nonexpansive mapping. An example of a discontinuous α-nonexpansive mapping (with α > 0) has
been given in [3]. In general, an α-nonexpansive mapping and a mapping that satisfies the Condition (C) are not continuous, as demonstrated
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in [21].

Pant and Shukla [19] defined a new type of mappings known as the generalized α-nonexpansive mapping, which is defined in such a way
that:

1
2
∥a−G a∥ ≤ ∥a−b∥

implies

∥G (a)−G (b)∥ ≤ α∥b−G (a)∥+α∥a−G (b)∥+(1−2α)∥a−b∥, (3)

for all a,b ∈ M where α ∈ (0,1).
Several researchers used this mapping to approximate the fixed points in Banach spaces. For instance, we refer to [4, 8, 19, 25].
In 1922, Banach [5] introduced the Banach Contraction Principle which states that fixed points of a contraction mapping can be approximated
by Picard iterative scheme [20]. The Picard sequence {an} defined as follows{

a1 ∈ M , n ∈ Z+

an+1 = G an.
(4)

The above sequence generated by the Picard scheme is not converging to a fixed point of nonexpansive mappings. For more details, we refer
the reader to [6].
Many novel iterative techniques have been developed by authors in order to obtain the relative effective rate of convergence and overcome
this kind of difficulty (see:[16, 12, 1, 29]) and many more. Among these iterative schemes, some authors introduced hybrid schemes that
converge faster than simple schemes.
In 2013, Khan [14] gave the concept of Picard-Mann hybrid iterative scheme. This scheme is defined as follows:

a1 = a ∈ M
an+1 = G bn
bn = (1−αn)an +αnG an

n ∈ Z+ (5)

where {αn} ∈ (0,1).
In 2019, following Khan, Okeke [17] gave the Picard-Ishikawa hybrid iterative scheme which is defined as:

a1 = a ∈ M
an+1 = G bn
bn = (1−αn)an +αnG cn
cn = (1−βn)an +βnG an

n ⊆ Z+ (6)

where {αn},{βn} ⊆ (0,1).
Recently, Srivastava [27] introduced Picard-S hybrid iterative scheme which is defined as:

a1 = a ∈ M
an+1 = G bn
bn = (1−αn)G an +αnG cn
cn = (1−βn)an +βnG an

n ∈ Z+ (7)

where {αn},{βn} ⊆ (0,1).
Also, Lamba and Panwar [15] introduced the Picard -S∗-iterative scheme which is defined as:

a1 = a ∈ M
an+1 = G bn
bn = (1−αn)G an +αnG cn
cn = (1−βn)G an +βnG dn
dn = (1− γn)an + γnG an

n ∈ Z+ (8)

where {αn},{βn},{γn} ⊆ (0,1).

Recently, Jia Jie et al. [13] proposed Picard-Thakur-iterative scheme which is defined as:

a1 ∈ M

an+1 = G bn

bn = (1−αn)G dn +αnG cn

cn = (1−βn)dn +βnG dn, n ∈ Z+

dn = (1− γn)an + γnG an

(9)

where {αn}, {βn}, and {γn} are sequences in (0,1).
By using the iterative scheme (9) we prove some fixed point results and discuss a numerical example for generalized α−nonexpansive
mappings that demonstrates how (9) converges more quickly than all Picard hybrid schemes. Data dependence results for almost contraction
mappings are also presented.
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2. Preliminaries

Definition 2.1. Let M be a nonempty closed convex subset of a Banach space B. A mapping G : M → M is called demiclosed w.r.t b ∈ B,
if for each {an} ⊆ M and a ∈ M , {an}⇀ a and {G an}→ b ⇒ G a = b.

Sentor and Dotson [24] gave the concept of Condition (I) which is as follows:

Definition 2.2. Let G : M → M be a self mapping. It is said to satisfy Condition (I), if there exists an increasing function r from [0,∞) to
[0,∞) with r(0) = 0 and r(s)> 0, for all, s > 0 such that

d(a,G a∗)≥ r(d(a,F(G ))), for all a ∈ M ,

where d(a,F(G )) = inf{d(a,a∗) : a∗ ∈ F(G )}.

Definition 2.3. Let B be a Banach space and {an} be bounded in B. Define a mapping ra({an},a) : B → R+ by

ra({an},a) = limsup
n→∞

∥an −a∥.

For a ∈ B, the value ra({an},a) is the asymptotic radius of {an} at a.
The asymptotic radius of {an} w.r.t. to M ⊂ B is defined as:

ra(M ,{an}) = inf{ra({an},a) : a ∈ M }.

The asymptotic center of {an} w.r.t. to M is

A(M ,{an}) = {a ∈ M : ra(M ,{an}) = ra(a,{an})}.

The asymptotic centre of {an} with respect to M is nonempty and convex whenever M is weakly compact [2, 10]. One of the known
properties of the set A(M ,{an}) is the singleton property in a UCBS B [9].

Definition 2.4. [18]
A Banach space B obeys the Opial’s property if for each weakly convergent sequence {an} to a ∈ B,

liminf
n→∞

∥an −a∥< liminf
n→∞

∥an −b∥

holds, for all b ∈ B with a ̸= b.

Proposition 2.1. [19] Every mapping that satisfies Condition (C) is also a generalized α-nonexpansive mapping, but the converse is not
true.

Proposition 2.2. [19] let M be a nonempty subset of Banach space B and G : M → M is a generalized α-nonexpansive mapping. Then

∥a−G (a)∥ ≤ (3+α)

(1−α)
∥a−G (a)∥+∥a−b∥. ∀ a,b ∈ M .

Theorem 2.1. [28] Let G be a mapping on M , where M is a convex and weakly compact subset of a uniformly Banach space B.
Let G satisfies Condition (C). Then G has a fixed point.

Lemma 2.1. [23] Let 0 < x ≤ αn ≤ y < 1 for all n ∈ Z+ and B be a UCBS and {an} and {bn} are sequences such that limsup
n→∞

∥an∥ ≤ d,

limsup
n→∞

∥bn∥ ≤ d and limsup
n→∞

∥(1−αn)an +αnbn∥= d holds for some d ≥ 0. Then lim
n→∞

∥an −bn∥= 0.

Lemma 2.2. [19] Let G be a generalized α-nonexpansive mapping satisfying the Opial’s property. If {an}⇀ c and limn→∞ ∥an−G (an)∥= 0,
then G (c) = c, i.e. I −G is demiclosed at zero, where I : B → B is the identity mapping.

Definition 2.5. Let G be an α-nonexpansive mapping and M be a non-empty subset of Banach space B such that G : M → M , then
F(G ) is closed. In addition, F(G ) is convex provided that B is strictly convex and M is convex.

Proposition 2.3. [22] Let G : M → M be a Generalized α-nonexpansive mapping. Then the following holds.

i) If condition (C) is satisfied by G , then condition (Cα ) is satisfied as well.
ii) If F(G ) ̸= /0 and condition (Cα ) holds for G , then G is quasi-nonexpansive.

Next, we review some definitions and lemmas that helped us to demonstrate the validity of our data dependence results. The following
general definition for contractive-like operators was taken into consideration by Imoru and Olatinwo [11].

Definition 2.6. An operator G is called a contractive-like operator if there exist a constant q ∈ [0,1) and a strictly increasing continuous
function φ : [0,∞)→ (0,∞) with φ(0) = 0, such that for each a,b ∈ B,

∥G a−G b∥ ≤ φ
(
∥a−G a∥

)
+q∥a−b∥. (10)

Definition 2.7. [26] Let G ,S : M → M be two operators. We say that S is an appropriate operator of G if for fixed ε > 0, and for all
a ∈ M , we have

∥G a−S a∥ ≤ ε.

Lemma 2.3. [26] Let {xn} be a nonnegative sequence for which there exists n0 ∈N such that for all n ≥ n0, one has the following inequality,

xn+1 ≤ (1−λn)xn +λnqn,

where λn ∈ (0,1), ∀ n ∈ N, ∑
∞
n=1 λn = ∞ and qn ≥ 0, for all n ∈ N. Then,

0 ≤ limsup
n→∞

xn ≤ limsup
n→∞

qn.
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3. Rate of Convergence

By using (9), we demonstrate convergence results for generalized α-nonexpansive mappings in UCBS B.

Lemma 3.1. Let M be a nonempty closed convex subset of UCBS B. Let G : M → M be a generalized α-nonexpansive mapping with
F(G ) ̸= /0. Let {an} is defined by the Picard-Thakur hybrid iterative scheme (9), then lim

n→∞
∥an −a∗∥ exists ∀ a∗ ∈ F(G ).

Proof. Since G satisfies condition (Cα ), therefore by proposition 2.3, G is α-nonexpansive mapping that is

1
2
∥a−G (a)∥ ≤∥a−b∥ implies

∥G (a)−G (b)∥ ≤α∥b−G (a)∥+α∥a−G (b)∥+(1−2α)∥a−b∥

Let a∗ ∈ F(G ). By (9)
dn = (1− γn)an + γnG (an).

So,

∥dn −a∗∥=∥(1− γn)an + γnG (an)−a∗∥
=∥(1− γn)an + γnG (an)−a∗+ γna∗− γna∗∥
=∥(1− γn)(an −a∗)+ γn(G (an)−a∗)∥
≤(1− γn)∥an −a∗∥+ γn∥G (an)−a∗∥

and
∥G (an)−a∗∥ ≤ α∥an −G (a∗)∥+α∥G (an)−a∗∥+(1−2α)∥an −a∗∥

that is,
∥G (an)−a∗∥= α∥an −a∗∥+α∥G (an)−a∗∥+(1−2α)∥an −a∗∥

Hence,
(1−α)∥G (an)−a∗∥ ≤ (1−α)∥an −a∗∥.

Therefore,
∥G (an)−a∗∥ ≤ ∥an −a∗∥.

So,

∥dn −a∗∥ ≤(1− γn)∥an −a∗∥+ γn∥an −a∗∥
≤∥an −a∗∥. (11)

As, cn = (1−βn)dn +βnG (dn), then

∥cn −a∗∥=∥(1−βn)dn +βnG (dn)−a∗∥
≤(1−βn)∥dn −a∗∥+βn∥G (dn)−a∗∥.

From (11), we have
∥dn −a∗∥ ≤ ∥an −a∗∥

and

∥G (dn)−a∗∥ ≤α∥dn −G (a∗)∥+α∥G (dn)−a∗∥+(1−2α)∥dn −a∗∥.
≤α∥dn −a∗∥+α∥G (dn)−a∗∥+(1−2α)∥dn −a∗∥.

Hence,
(1−α)∥G (dn)−a∗∥ ≤ (1−α)∥dn −a∗∥.

Therefore,

∥G (dn)−a∗∥ ≤∥dn −a∗∥
≤ ∥an −a∗∥,

which implies
∥cn −a∗∥ ≤ ∥an −a∗∥. (12)

For third step of (9), as bn = (1−αn)G (dn)+αnG (cn), then we have

∥bn −a∗∥=∥(1−αn)G (dn)+αnG (cn)−a∗∥
≤(1−αn)∥G (dn)−a∗∥+αn∥G (cn)−a∗∥.

As, from above ∥G (dn)−a∗∥ ≤ ∥an −a∗∥ and

∥G (cn)−a∗∥ ≤ α∥G (cn)−a∗∥+α∥cn −G (a∗)∥+(1−2α)∥cn −a∗∥,

so,
(1−α)∥G (cn)−a∗∥ ≤ (1−α)∥cn −a∗∥,



38 International Journal of Applied Mathematical Research

which implies that

∥G (cn)−a∗∥ ≤∥cn −a∗∥
≤∥an −a∗∥,

which implies
∥bn −a∗∥ ≤ ∥an −a∗∥. (13)

Next
∥an+1 −a∗∥ ≤ ∥G (bn)−a∗∥

We know that
∥G (bn)−a∗∥ ≤ α∥bn −G (a∗)∥+α∥G (bn)−a∗∥+(1−2α)∥bn −a∗∥

so,
(1−α)∥G (bn)−a∗∥ ≤ (1−α)∥bn −a∗∥

and hence

∥G (bn)−a∗∥ ≤∥bn −a∗∥
≤∥an −a∗∥.

This implies,
∥an+1 −a∗∥ ≤ ∥an −a∗∥. (14)

Equation (14) show that {an} is non decreasing and bounded. Hence lim
n→∞

∥an −a∗∥ exists for every a∗ belongs to F(G ).

Lemma 3.2. Let M , B, G and {an} are as in Lemma 3.1. Then F(G ) ̸= /0 if and only if {an} is bounded and lim
n→∞

∥an −G an∥= 0.

Proof. Let a∗ ∈ F(G ), {an} be bounded and from Lemma 3.1, the limit exists for a∗ ∈ F(G ). Let

lim
n→∞

∥an −a∗∥= d. (15)

Using the proof of Lemma 3.1 and keeping equation (11), we obtain

∥dn −a∗∥ ≤ ∥an −a∗∥. (16)

By applying limsup as n → ∞, we get
limsup

n→∞

∥dn −a∗∥ ≤ limsup
n→∞

∥an −a∗∥= d. (17)

By above Lemma 3.1, we have
∥G (an)−G (a∗)∥ ≤ ∥an −a∗∥.

Applying limsup as n → ∞, we get
limsup

n→∞

∥G (an)−G (a∗)∥ ≤ limsup
n→∞

∥an −a∗∥ ≤ d. (18)

From Lemma 3.1, we also have
∥an+1 −a∗∥ ≤ ∥dn −a∗∥.

Applying further liminf as n → ∞ we get
d ≤ liminf

n→∞
∥dn −a∗∥. (19)

From (18) and (17), we have
lim
n→∞

∥dn −a∗∥= d.

Hence,

d = lim
n→∞

∥dn −a∗∥

= lim
n→∞

∥(1− γn)an + γnG an −a∗∥

= lim
n→∞

∥(1− γn)(an −a∗)+ γn(G an −a∗)∥. (20)

From (20), (18), (15) and Lemma 2.1 we have
lim
n→∞

∥an −G an∥= 0.

Conversely, if {an} is bounded and lim
n→∞

∥an −G an∥= 0, then F(G ) ̸= /0.

Let a∗ ∈ A(M ,{uk}); by Proposition 2.2 we have

ra(G (a∗),{uk}) = limsup
n→∞

∥G (a∗)−an∥

≤ limsup
n→∞

(
(3+α)

(1−α)
∥an −G (an)∥+∥an −a∗∥

≤ limsup
n→∞

∥an −a∗∥

so,
ra(M ,{an}) = ra({an},a∗)

which implies G a∗ ∈ A(M ,{an}).
Since B is uniformly convex then A(M ,{an}) is singleton. Hence, G a∗ = a∗.
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Theorem 3.1. Let M , B, G and {an} be are as in Lemma 3.1. Let B satisfies Opial condition. Then {an} converges weakly to a point of
F(G ).

Proof. Let a∗ ∈ F(G ). Then by Lemma 3.1 lim
n→∞

∥an−a∗| exists. In the next step, we demonstrate that F(G ) has a unique weak subsequential

limit for {an}.
Suppose l and m are the weak limits of {ani} and {an j} as subsequences of {an}. By Lemma 3.2, lim

n→∞
∥an −G (an)∥ = 0 and I −G is

demiclosed at zero.
Using Lemma 2.2 we can conclude that (I −G )l = 0 ⇒ l = G (l), similarly m = G (m).
Further, we show the uniqueness of the solution. If l ̸= m, using the Opial condition, we have

lim
n→∞

∥an − l∥= lim
l→∞

∥anl − l∥

< lim
l→∞

∥anl − l∥

= lim
n→∞

∥an − l∥

= lim
m→∞

∥anm − l∥

< lim
n→∞

∥anm −m∥

= lim
n→∞

∥an − l∥.

Hence,

lim
n→∞

∥an − l∥ ≤ lim
n→∞

∥an − l∥

which is a Contradiction; then l = m. Consequently, {an}⇀ F(G ).

Theorem 3.2. Let M , B, G and {an} be as in Lemma 3.1. Then {an} converges to a point of F(G ) ⇔ liminf
n→∞

d(an,F(G )) = 0 or

limsup
n→∞

d(an,F(G )) = 0, where d(an,F(G )) = inf{∥an −a∗∥ : a∗ ∈ F(G )}.

Proof. If the sequence {an}→ a∗ ∈ F(G ), then it is evident that liminf
n→∞

d(an,F(G )) = 0 or limsup
n→∞

d(an,F(G )) = 0.

On the other hand, suppose that liminf
n→∞

d(an,F(G )) = 0. From Lemma 3.1, lim
n→∞

∥an−a∗∥ exists, for all a∗ ∈ F(ϕ). Therefore, by assumption

lim
n→∞

d(an, we get F(G )) = 0.

Now we show {an} is Cauchy in G . As
lim
n→∞

d(an,F(G )) = 0,

for ε > 0, there is m0 ∈ Z+ such that for all n ≥ m0, we have

d(an,F(G )<
ε

2

which yields that

inf{∥an −a∗∥ : a∗ ∈ F(G )<
ε

2
.

In particular, d(an,F(G )) = inf{∥an −a∗∥ : a∗ ∈ F(G ))}< ε

2 .
Therefore, there is a∗ ∈ F(G )) such that

∥am0 −a∗∥< ε

2
.

For m,n ≥ m0,

∥an+m −an∥ ≤∥am+n −a∗∥+∥an −a∗∥
≤∥am0 −a∗∥+∥am0 −a∗∥
=2∥am0 −a∗∥
<ε,

which implies {an} is Cauchy in M . As M is closed in B, so there is k ∈ M such that, lim
n→∞

an = k. lim
n→∞

d(an,F(G )) = 0 gives that

lim
n→∞

d(an,F(G )) = 0 implies k ∈ F(G ).

Theorem 3.3. Let M , B, G be as in Lemma 3.1. If F(G )) ̸= /0 and liminf
n→∞

∞∥an −F(G ))∥= 0, then {an} defined by (9) converges strongly

to F(G ).
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Proof. Assume that
liminf

n→∞
∥an −F(G )∥= 0. (21)

Then there is, {gn} a subsequence of {an} such that:

liminf
n→∞

∥gn −F(G )∥= 0.

Suppose, {gn j} is again a subsequence of gn for which

∥gn j − f j∥ ≤
1
2 j , ∀ j ≥ 1.

such that { f j} ⊂ F(G ), then by Lemma 3.3:

∥gn j+1 − f j∥ ≤ ∥gn j − f j∥ ≤
1
2 j .

Now, we show { f j} is Cauchy in F(G ). By (21) and triangular inequality:

∥ f j+1 − f j∥ ≤ ∥ f j+1 −gn j+1∥ ≤ ∥gn j+1 − f j∥<
1

2 j−1 .

Hence, the above argument implies that { f j} is Cauchy in F(G ). By definition 2.5,F(G ) is a closed convex subset of the Banach space B.
Thus { f j} converges to the fixed point f , we have

∥gn j − f∥ ≤ ∥gn j − f j∥+∥ f j − f∥.

Let j → ∞ implies {gn j} converges strongly to f .
Accordingly, lim

n→∞
∥un − f∥ exists. For f ∈ F(G ), by Theorem 3.1 we get {an} converges strongly to F(G ).

Further, we demonstrate the strong convergence result due to Condition (I).

Theorem 3.4. Let M , B, G be as in Lemma 3.1 and satisfying the property (I). Then the sequence {an} defined by (9) converges strongly
to F(G ).

Proof. From Lemma 3.2, we can conclude that
liminf

n→∞
∥G (an)−an∥= 0. (22)

Since G fulfills Condition (I), we have
liminf

n→∞
∥an −F(G )∥= 0.

Since, the conditions of theorem 3.2 are all met, its conclusion shows strong the convergence to F(G ).

4. Numerical Example

Now, we provide a numerical example to support our results.

Example 4.1. Let M =[0,4] endowed with the usual norm | · | in Banach space R. Let G : M → M , such that

G (a) =

{
2a+3

2 if a ∈ [0,2.50)
a+3

2 if a ∈ [2.50,4].

Then

1. G does not satisfies Condition (C).
2. G is a generalized α-nonexpansive mapping.

For (1), let a = 2.85 and b = 2.37. Then we get

1
2

∣∣∣∣a−G (a)
∣∣∣∣=1

2

∣∣∣∣2.85− a+3
2

∣∣∣∣
=

1
4

∣∣∣∣2(2.85)−2.85−3
∣∣∣∣= 0.15

4
= 0.375

and,
∣∣∣∣a−b

∣∣∣∣= ∣∣∣∣2.85−2.37
∣∣∣∣= 0.48.

So, 1
2

∣∣∣∣a−G (a)
∣∣∣∣< ∣∣∣∣a−b

∣∣∣∣.
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Now, ∣∣∣∣G (a)−G (b)
∣∣∣∣=∣∣∣∣a+3

2
− 2b+3

2

∣∣∣∣
=

∣∣∣∣a+3−2b−3
2

∣∣∣∣
=

∣∣∣∣a−2b
2

∣∣∣∣
=

∣∣∣∣2.85−2(2.37)
2

∣∣∣∣
=

1.89
2

= 0.945.

Hence, |G (a)−G (b)| ≥ |a−b|. Then G does not fulfill the Condition (C).
The following step is to demonstrate that G is an generalized α-generalized mapping. The following cases are taken into account for this.
Case−1 : When a,b ∈ [0, 1

6 ), then

∥G (a)−G (b)∥= |2a+3
2

− 2b+3
2

|= |a−b|

and

α∥b−G (a)∥+α∥a−G (b)∥+(1−2α)∥a−b∥=1
3
|b− 2a+3

2
|+ 1

3
|a− 2b+3

2
|+ 1

3
|a−b|

≥1
3
[|b− 2a+3

2
−a+

b+3
2

|]+ 1
3
|a−b|

=
1
3
[|b− 2a

2
− 3

2
−a+

2b
2

+
3
2
|]+ 1

3
|a−b|

=
1
3
|a−2b−b+2a

2
|+ 1

3
|a−b|

=
1
3
|b−a−a+b|+ 1

3
|a−b|

=
1
3
|2a−2b|+ 1

3
|a−b|

=
2
3
|a−b|+ 1

3
|a−b|

=|a−b|= ∥G (a)−G (b)∥.

Case−2 : If a,b ∈ [ 5
2 ,4), then

∥G (a)−G (b)∥= |a+3
2

− b+3
2

|= 1
2
|a−b|.

Then we have the following estimation:

α∥b−G (a)∥+α∥a−G (b)∥+(1−2α)∥a−b∥=1
3
|b− a+3

2
|+ 1

3
|a− b+3

2
|+ 1

3
|a−b|

≥1
3
|a+3

2
−b− b+3

2
−a|+ 1

3
|a−b|

=
1
3
|b− a

2
− 3

2
−a+

b
2
+

3
2
|+ 1

3
|a−b|

=
1
3
|−a−2a

2
+

b+2b
2

|+ 1
3
|a−b|

=
1
3
|3a

2
− 3b

2
|+ 1

3
|a−b|

=
5
6
|a−b| ≥ 1

2
|a−b|= ∥G (a)−G (b)∥.
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Case−3 : If a ∈ [0, 1
6 ) and b ∈ [ 1

6 ,4), then

α∥b−G (a)∥+α∥a−G (b)∥+(1−2α)∥a−b∥

=
1
3
|b− 2a+3

2
|+ 1

3
|a− b+3

2
|+ 1

3
|a−b|

=
1
3
|b− 2a

2
− 3

2
−a+

b
2
+

3
2
|+ 1

3
|a−b|

=
1
3
|3b

2
− 4a

2
|+ 1

3
|a−b|

=
1
3
|3b

2
− 4a

2
|− (a−b)|

=
1
3
|3b−2a−2a+2b

2
|

=
1
3
|−4a+5b

2
|

=
1
3
|4a−5b

2
|

≥1
2
|2a−b|= ∥G (a)−G (b)∥.

G is therefore a generalized 1
3−nonexpansive mapping.

Next, we perform some experiment to compare convergence behaviour of the scheme (9). In the Table 1 we perform some tests for
the convergence behaviour of an iterative scheme for various initial points. Let the parameters are αn = 1− n

n+2 , βn = n
n2+n+1 and

γn =
√

n
n+7 and fix the stopping criteria to ∥a−a∗∥< 10−10 where a∗ is a fixed point. Here, we found that the fixed point of the generalized

α-nonexpansive mapping is reached more quickly by the iterative scheme (9).

Table 1: Comparison of the convergence of iteration processes for various starting points

Initial points Hybrid Iteration Processes
Picard- Picard- Picard- Picard- Picard-
Mann Ishikawa S iteration S∗ Thakur

0.2 29 27 15 14 12
0.4 28 27 14 14 12
1.6 27 26 14 13 12
2.7 25 24 13 12 12
3.8 26 25 15 14 12

In the Figure 1, we perform the convergence for different choices of parameters. For this, assume a1 = 0.5 and we observe that iterative
scheme (9) reached faster to the fixed point of the generalized α−nonexpansive mapping.

5. Data Dependence

We show the data dependent result for iterative scheme (9) in this section, and use a numerical example to support our theoretical result.

Theorem 5.1. Let B be a Banach space and G be a contractive-like operator on a nonempty closed convex subset M of B , with F(G ) ̸= /0.
Let {an} is generated by (9). Then {an}→ F(G ).

Proof. Let a∗ ∈ F(G ) and from (9), we have

∥dn −a∗∥=∥(1− γn)an + γnG (an)−a∗∥
≤(1− γn)∥an −a∗∥+ γn∥G (an)−G (a∗)∥
≤(1− γn)∥an −a∗∥+δγn∥a∗−an∥+ γnφ∥a∗−G (a∗)∥
=(1− γn)∥an −a∗∥+δγn∥an −a∗∥

∥dn −a∗∥ ≤(1− γn(1−δ ))∥an −a∗∥,

∥cn −a∗∥=∥(1−βn)dn +βnG (dn)−a∗∥
≤(1−βn)∥dn −a∗∥+βn∥G (dn)−G (a∗)∥
≤(1−βn)∥dn −a∗∥+δβn∥a∗−dn∥+βnφ∥a∗−G (a∗)∥
=(1−βn)∥dn −a∗∥+δβn∥dn −a∗∥

∥cn −a∗∥ ≤(1−βn(1−δn))∥dn −a∗∥,
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Figure 1: Comparison of the iteration processes for different parameter selections.

∥bn −a∗∥=∥(1−αn)G (dn)+αnG (cn)−a∗∥
≤(1−αn)∥G (dn)−a∗∥+αn∥G (cn)−a∗∥
≤(1−αn)δ∥dn −a∗∥+αnδ∥cn −a∗∥
≤(1−αn)δ (1− γn(1−δ ))∥an −a∗∥+αnδ (1−βn(1−δ ))(1− γn(1−δ ))∥an −a∗∥
=(1−αn)δ +αnδ (1−βn(1−δ ))(1− γn(1−δ ))∥an −a∗∥
=δ −δαn +δαn(1−βn(1−δ ))(1− γn(1−δ ))∥an −a∗∥
=δ −δαn(1− (1−βn(1−δ ))(1− γn(1−δ ))∥an −a∗∥
=δ (1−αn(1− (1−βn(1−δ ))(1− γn(1−δ ))∥an −a∗∥
=δ (1−αnβn(1−δ ))(1− γn(1−δ ))∥an −a∗∥.

Let αn βn = νn. Then we have

∥bn −a∗∥=δ (1−νn(1−δ ))(1− γn(1−δ ))∥an −a∗∥
∥an+1 −a∗∥=∥G (bn)−a∗∥

≤δ∥bn −a∗∥
≤δ (δ (1−νn(1−δ ))(1− γn(1−δ ))∥an −a∗∥)

=δ
2(1−νn(1−δ ))(1− γn(1−δ ))∥an −a∗∥

...

=δ
2n[(1−ν(1−δ ))(1− γ(1−δ ))]n∥a1 −a∗∥

Since, 0 ≤ δ < 1, then limn→∞ δ 2n = 0 which yields that lim
n→∞

∥an+1 −a∗∥= 0, which completes the proof. Hence, {an} converges to the

F(G ).
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Theorem 5.2. Let M ,B, G and {an} be as in Theorem 5.1 and S be an approximate operator of G . Now, define {gn} for S as follows:

g1 ∈ M

hn = (1− γn)gn + γnS gn

en = (1−βn)hn +βnS hn n ∈ N
fn = (1−αn)S hn +αnS en

gn+1 = S fn,

(23)

where {γn}, {βn} and {αn} ⊂ (0,1). Let a∗ ∈ F(G ) and a∗∗ ∈ F(S ). If {gn}→ a∗∗ as n → ∞, then we have

∥a∗−a∗∗∥ ≤ ε

1−δ
.

Proof.

∥dn −hn∥=∥(1− γn)an + γnG (an)− (1− γn)gn − γnS (gn)∥
≤(1− γn)∥an −gn∥+ γn∥G (an)−S (gn)∥
=(1− γn)∥an −gn∥+ γn∥G (an)−G (gn)+G (gn)−S (gn)∥
≤(1− γn)∥an −gn∥+ γn∥G (an)−G (gn)∥+ γn∥G (gn)−S (gn)∥
≤(1− γn)∥an −gn∥+ γn[δ∥an −gn]∥+φ∥an −G (an)∥]+ γnε

=(1− γn)∥an −gn∥+ γnδ∥an −gn]∥+ γnφ∥an −G (an)∥+ γnε

=(1− γn + γnδ )∥an −gn∥+ γnφ∥an −G (an)∥+ γnε

=(1− γn(1−δ ))∥an −gn∥+ γnφ∥an −G (an)∥+ γnε.

Since, a∗ ∈ F(G ) and G is a contractive-like operator, Theorem 5.1 implies
lim
n→∞

∥an −a∗∥= 0. Hence

0 ≤ ∥an −G (an)∥ ≤ ∥an −a∗∥+∥G (a∗)−G an∥
≤∥an −a∗∥+δ∥an −a∗∥
≤(1+δ )∥an −a∗∥→ 0 as n → ∞.

So,
∥dn −hn∥ ≤ (1− γn(1−δ ))∥an −gn∥+ γnε, (24)

∥cn − en∥=∥(1−βn)dn +βnG (dn)− (1−βn)hn −βnS (hn)∥
≤(1−βn)∥dn −hn∥+βn∥G (dn)−S (hn)∥
≤(1−βn)∥dn −hn∥+βn[δ∥dn −hn]∥+φ∥dn −G (dn)∥]+βnε

=(1−βn)∥dn −hn∥+βnδ∥dn −hn]∥+βnφ∥dn −G (dn)∥]+βnε

=(1−βn(1−δ ))∥dn −hn∥+βnφ∥dn −G (dn)∥+βnε.

Since, a∗ ∈ F(G ) and G is a contractive-like operator, Theorem 5.1 implies
lim
n→∞

∥an −a∗∥= 0. Hence

0 ≤ ∥dn −G (dn)∥ ≤ ∥dn −a∗∥+∥G a∗−G (dn)∥
≤∥dn −a∗∥+δ∥dn −a∗∥
≤(1+δ )∥dn −a∗∥
≤(1+δ )∥(1− γn)an + γnG (an)−G (a∗)∥
≤(1+δ )

[
(1− γn)∥an −a∗∥+ γn∥G (an)−G (a∗)∥

]
≤(1+δ )

[
(1− γn)∥an −a∗∥+δγn∥an −a∗∥

]
≤(1+δ )(1− (1−δ )γn)∥an −a∗∥→ 0 as n → ∞.

So,
∥cn − en∥ ≤ (1−βn(1−δ ))∥dn −hn∥+βnε, (25)

∥bn − fn∥=(1−αn)G (dn)+αnG (cn)− (1−αn)S (hn)−αnS (en)∥
≤(1−αn)∥G (dn)−S (hn)∥+αn∥G (cn)−S (en)∥
≤(1−αn)

[
∥G (dn)−G (hn)∥+∥G (hn)−S (hn)∥

]
+αn

[
∥G (cn)−G (en)∥+∥G (cn)−S (en)∥

]
=(1−αn)

[
φ(∥dn −G (dn)∥)+δ∥dn −hn∥+ ε

]
+αn

[
φ(∥cn −G (cn)∥)+δ∥cn − en∥+ ε

]
=(1−αn)

[
φ(∥dn −G (dn)∥)+δ∥dn −hn∥

]
+αn

[
φ(∥cn −G (cn)∥)+δ∥cn − en∥

]
+ ε.
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Since, a∗ ∈ F(G ) and G is a contractive-like operator, Theorem 5.1 implies
lim
n→∞

∥an −a∗∥= 0. Hence

0 ≤ ∥cn −G (cn)∥ ≤ ∥cn −a∗∥+∥G (a∗)−G (cn)∥
≤∥cn −a∗∥+δ∥cn −a∗∥
≤(1+δ )∥cn −a∗∥
≤(1+δ )∥(1−βn)dn +βnG (dn)−a∗∥
≤(1+δ )

[
(1−βn)∥dn −a∗∥+βn∥G (dn)−G a∗∥

]
≤(1+δ )

[
(1−βn)∥dn −a∗∥+δβn∥dn −a∗∥

]
≤(1+δ )(1− (1−δ )βn)∥dn −a∗∥→ 0 as n → ∞.

So,
∥bn − fn∥= (1−αn)δ∥dn −hn∥+αnδ∥cn − en∥+ ε, (26)

and

∥an+1 −gn+1∥=∥G (bn)−S ( fn)∥
≤∥G (bn)−G ( fn)∥+∥G ( fn)+S ( fn)∥
≤φ(∥bn −G (bn)∥)+δ∥bn − fn∥+ ε.

Since, a∗ ∈ F(G ) and G is a contractive-like operator, Theorem 5.1 implies
lim
n→∞

∥an −a∗∥= 0. Hence

0 ≤ ∥bn −G (bn)∥ ≤ ∥bn −a∗∥+∥G (a∗)−G (bn)∥
≤∥bn −a∗∥+δ∥bn −a∗∥
≤(1+δ )∥bn −a∗∥
≤(1+δ )∥(1−αn)G (dn)+αnG (cn)−a∗∥
≤(1+δ )

[
(1−αn)∥G (dn)−a∗∥+αn∥G (cn)−G (a∗)∥

]
≤(1+δ )

[
(1−αn)δ∥dn −a∗∥+δαn∥cn −a∗∥

]
≤δ (1+δ )

[
(1−αn)∥dn −a∗∥+αn∥cn −a∗∥

]
→ 0 as n → ∞,

and
∥an+1 −gn+1∥ ≤ δ∥bn − fn∥+ ε.

Put the values from (26), we get

∥an+1 −gn+1∥ ≤δ
[
(1−αn)δ∥dn −hn∥+αnδ∥cn − en∥+ ε

]
+ ε

≤δ
2[(1−αn)∥dn −hn∥+αn∥cn − en∥

]
+δε + ε.

Put the values from (25) and (24), we have

∥an+1 −gn+1∥ ≤δ
2[(1−αn)∥dn −hn∥+αn

{
(1−βn(1−δ ))∥dn −hn∥+βnε

}]
+δε + ε

=δ
2[(1−αn)+αn(1−βn(1−δ ))∥dn −hn∥+αnβnε

]
+δε + ε

=δ
2[(1−αn +αn −αnβn(1−δ ))∥dn −hn∥+αnβnε

]
+δε + ε

=δ
2[(1−αnβn(1−δ ))∥dn −hn∥+αnβnε

]
+δε + ε

≤δ
2[(1−αnβn(1−δ ))(1− γn(1−δ ))∥an −gn∥+ γnε +αnβnε

]
+δε + ε.

As 1− γn(1−δ )< 1, then:

∥an+1 −gn+1∥ ≤ (1−αnβn(1−δ ))δ 2∥an −gn∥+δ
2
γn +(δ 2

αnβn +δ )ε + ε.

Here, xn = ∥an −gn∥,λn = αnβn(1−δ ), and qn =
δ 2αnβn+δ )ε+ε

1−δ
.

All requirements of Lemma 2.3 are fulfilled. Hence, we have

0 ≤ limsup
n→∞

∥an −gn∥ ≤ limsup
n→∞

qn =
ε

1−δ
,

additionally, Theorem 2.5 yields

∥a∗−a∗∗∥ ≤ ε

1−δ
.

In addition, we present an example of numerical validation of Theorem 5.2.
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Example 5.1. Let B = R and M = [0,6]. Let G : M → M be defined as:

G (a) =

{
a
3 , i f a ∈ [0,3,)
a
6 , i f a ∈ [3,6].

Clearly, 0 = a ∈ F(G ). Firstly, we establish G as a contractive-like operator rather than a contraction. Since the operator G is not continuous
at a = 3 ∈ [0,6], G is not a contraction. We demonstrate that the operator G is a contractive-like.
For this define a continuous and strictly increasing function φ : [0,∞)→ [0,∞) as φ(a) = a

4 . We have to prove that

∥G a−G b∥ ≤ φ(∥a−G a∥)+δ∥a−b∥, (27)

for all a,b ∈ [0,6] where δ ∈ [0,1).
Here, we considered the four cases:

Case: A. Let a,b ∈ [0,3), then

∥a−G a∥= ∥a− a
3
∥= 2a

3
so,

φ(∥a−G a∥) = φ(
2a
3
) =

a
6

which implies

∥G a−G b∥=∥a
3
− b

3
∥

≤1
3
∥a−b∥

≤1
3
∥a−b∥+∥a

6
∥

≤1
3
∥a−b∥+φ(

2a
3
)

≤1
3
∥a−b∥+φ(∥a−G a∥).

Hence, (27) is satisfied with δ = 1
3 .

Case: B. Let a,b ∈ [3,6], then

∥a−G a∥= ∥a− a
6
∥= 5a

6
so,

φ(∥a−G a∥) = φ(
a
2
) =

5a
24

,

which implies

∥G a−G b∥=∥a
6
− b

6
∥

≤1
6
∥a−b∥

≤1
6
∥a−b∥+∥5a

24
∥

≤1
3
∥a−b∥+φ(

5a
6
)

≤1
3
∥a−b∥+φ(∥a−G a∥).

Hence, (27) is satisfied with δ = 1
3 .

Case: C. Let a ∈ [0,3),b ∈ [3,6], then

∥a−G a∥= ∥a− a
3
∥= 2a

3
so,

φ(∥a−G a∥) = φ(
2a
3
) =

a
6
,

which implies

∥G a−G b∥=∥a
3
− b

6
∥

=∥a
6
+

a
6
− b

6
∥

≤1
6
∥a−b∥+∥a

6
∥

≤1
3
∥a−b∥+φ(

2a
3
)

≤1
3
∥a−b∥+φ(∥a−G a∥).
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Hence, (27) is satisfied with δ = 1
3 .

Case: D. Let a ∈ [3,6],b ∈ [0,3), then

∥a−G a∥= ∥a− a
6
∥= 5a

6
so,

φ(∥a−G a∥) = φ(
5a
6
) =

5a
24

,

which implies

∥G a−G b∥=∥a
6
− b

3
∥

=∥a
3
− 5a

24
− b

3
∥

≤1
3
∥a−b∥+∥5a

24
∥

≤1
3
∥a−b∥+φ(

5a
6
)

≤1
3
∥a−b∥+φ(∥a−G a∥).

Hence, (27) is satisfied with δ = 1
3 .

Consequently, for all viable cases, (27) is satisfied. As a result, G is a mapping which is contractive-like.
Next, we define an operator S : M → M as:

S(g) =

{
g
3 +

1
10,000 , i f g ∈ [0,3),

g
6 +

1
10,000 , i f g ∈ [3,6], ∀g ∈ M .

It is simple to demonstrate that S is an appropriate operator for G with ε = 0.0001 as ∥G a−Sa∥< ε = 0.0001. Also, 0 = a∗ ∈ F(G ) and
0.000149999 = a∗∗ ∈ S . Table 2 of iterated values is obtained with an initial estimate of 5 and αn =

n+4
n+5 , βn =

n
n+2 and γn =

1
n+3 for all

n ∈ N. Also, we have ∥a∗−a∗∗∥= ∥0−0.000149999∥ ≤ 0.00015 = ε

1−δ
. As a result, we can assert that in situations where it is difficult to

determine F(G ), we can select a mapping S which is closer to G so that will also reduce the distance between the two fixed points.

Table 2: Comparative iteration values of the operators G and S

Step Operator G Operator S Difference
1 5 5 0
2 0.30135460 0.17803375 0.1233208
3 0.02072809 0.01238539 0.0083427
4 0.00133069 9.35481837×10−4 0.000395211
5 8.09245977×10−5 1.97768214×10−4 0.000116844
6 4.70989722×10−6 1.52780161×10−4 0.000148070
7 2.64303997×10−7 1.50156014×10−4 0.000149892
8 1.43814246×10−8 1.50008489×10−4 0.000149994
9 7.62092586×10−10 1.50000450×10−4 0.000149999

10 3.94670363×10−11 1.50000023×10−4 0.000149999

6. Conclusion

Our article presents a comprehensive study of the convergence behavior of an iterative scheme (9) applied to α-nonexpansive mappings
in UCBS. Some strong and weak convergence results support the effectiveness of our approach. The numerical comparison demonstrates
the superior performance of the Picard-Thakur hybrid iterative scheme with other well-known methods in the literature. Additionally, the
data dependence analysis enriches our understanding about the behavior of the iterative scheme under varying data conditions. Overall, our
findings contribute valuable insights for researchers and practitioners in related fields and underscore the practical utility of our proposed
scheme.
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