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Abstract

Single-term Walsh series are developed to approximate the solution of the Volterra’s population model. Volterra’s
model is a nonlinear integro-differential equation where the integral term represents the effect of toxin. Properties
of Single-term Walsh series are presented and are utilized to reduce the computation of the Volterra’s population
model to some algebraic equations. The method is computationally attractive, and applications are demonstrated
through illustrative examples. A comparison is made with existing results.
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1. Introduction

In the present paper we are concerned with the numerical solution of the Volterra model for population growth of
a species within a closed system. This equation is given in [9,15] as

κu′(t) = u− u2 − u

∫ t

0

u(x)dx , u(0) = u0, (1)

where u(t) is the scaled population of identical individuals at time t, and κ = c
ab is a prescribed nondimensional

parameter. Moreover, a > 0, b > 0 and c > 0 are the coefficients of the birth rate, crowding and toxicity, respectively.
The analytical solution [13]

u(t) = u0exp(
1
κ

∫ t

0

[1− u(τ)−
∫ τ

0

u(x)dx]dτ),

shows that u(t) > 0 if u0 > 0 for all t . The mathematical behavior of the rapid growth, u(t), was introduced by
Scudo [9] and justified by Small[13]. It was shown in [9] and [13] that for the case κ <<1, a rapid rise occurs along
the logistic curve that will reach a peak and be followed by a slow exponential decay where u(t) →0 as t → ∞.
And, for κ large, u(t) has a smaller amplitude compared to the amplitude of u(t) for the case κ <<1.

Several approximate and numerical solutions for Volterra’s population model are known. Wazwaz [15] imple-
mented the series solution method and decomposition method independently to Eq. (1) and to a related ordinary
differential equation. Furthermore, the pade approximations was used in the analysis to capture the essential be-
havior of the population u(t) of identical individuals in [15]. In [5], operational matrices of derivative and product
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of Rational Chebyshev functions are introduced and implemented for solving Eq. (1) by using tau method. In [14],
three numerical algorithms namely the Euler method, the modified Euler method and the forth order Runge-Kutta
method are given and pointwise approximations for the solution of Eq. (1) are obtained.

Walsh functions (WF) have found wide applications in signal processing, communication, and pattern recognition
[7]. Rao et al. [6] presented a method of extending computation beyond the limit of the initial normal interval
in Walsh series analysis of dynamical systems. In the last method, various time functions in the system were first
expanded as truncated WF with unknown coefficients. Then, by using the Kronecker product [4], the unknown
coefficient of the rate variable was obtained by finding the inverse of a square matrix. It was shown that this
method involves some numerical troubles if the dimension of this matrix is large. Hsiao and Chen [3] introduced
the Walsh series operational matrix of integration to solve linear integral equations. Due to the nature of the Walsh
functions, the solutions obtained were piecewise constant. Rao et al. [6] introduced single-term Walsh series (STWS)
to remove the inconveniences in WF technique. Furthermore, Balachandran and Murugesan [1,2] applied STWS
technique to the analysis of linear and nonlinear singular systems. Sepehrian and Razzaghi [10,11] implemented
STWS method to the bilinear and nonlinear time varying singular systems. Also, STWS technique was applied to
solve the nonlinear Volterra-Hammerstein integral equations in [12].

In the present article, we introduce a new computational method for solving Eq. (1). The method presented
here is computationally very attractive. It does not require the Kronecker product of matrices and there is no
need for any operational matrices. One main merit of using this technique is that it provides both pointwise and
block-Pulse approximations for solution of (1).

The paper is organized as follows. Section 2 is devoted to the basic formulation of WF and STWS required for
our subsequent development. In Section 3, the solution of (1) using STWS is considered. Section 4 is devoted to
numerical examples. In numerical examples we demonstrate the accuracy of the proposed scheme by comparing
the our numerical findings with the existing results and the exact solutions.

2. Properties of WF and STWS

2.1. Walsh functions

A function f(t), integrable in [0,1) , may be approximated using WF as

f(t) =
∞∑

i=0

fiφi(t), (2)

where φi(t) is the ith WF and fi is the corresponding coefficient. In practice, only the first m-term WF are
considered, where m is an integral power of 2. Then from Eq. (2) we get

f(t) =
m−1∑

i=0

fiφi(t) = FT Φ(t),

where

F = (f0, f1, · · · , fm−1)T ,

and

Φ(t) = (φ0(t), φ1(t), · · · , φm−1(t))T . (3)

The coefficients fi are chosen to minimize the mean integral square error

ε =
∫ 1

0

(f(t)− FT Φ(t))2dt,

and are given by

fi =
∫ 1

0

f(t)φi(t)dt.

The integration of the vector Φ(t) defined in Eq. (3) can be approximated by
∫ t

0

Φ(t′)dt′ ' EΦ(t), (4)

where Em×m is the m×m operational matrix for integration with E1×1 = 1
2 and is given in [8].
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2.2. Single-term Walsh series

With the STWS approach, in the first interval, the given function is expanded as single- term Walsh series in the
normalized interval τ ∈ [0, 1), which corresponds to t ∈ [0, 1

m ) by defining τ = mt, m being any integer. In STWS,
the matrix E in Eq. (4) becomes E = 1

2 .
Let u(τ) and u′(τ) expanded by STWS series in the first interval as

u(τ) = U (1)φ0(τ), (5)

and

u′(τ) = V (1)φ0(τ). (6)

By using Eq. (5) and integrating Eq. (6) with E = 1
2 we get

U (1) =
1
2
V (1) + u(0),

and therefore

V (1) = 2(U (1) − u(0)), (7)

where u(0) is the initial condition. Also, according to Sannuti [8] we have

u(1) =
∫ 1

0

u′(τ)dτ + y(0) = V (1) + y(0). (8)

By (6) and (8), we get

u(1) = 2U (1) − u(0). (9)

3. Solution of Volterra’s population model

In order to use STWS, we first divide interval [0, 1) to m equal subintervals, where m is any positive integer. We then
transform each interval j−1

m ≤ x ≤ t < j
m , j = 1, · · · ,m, into [0, 1) by means of transformations τj = mt − (j − 1)

and λj = mx− (j − 1). Using Eq. (1), in the first interval we have

κu′(τ1) =
1
m

u− 1
m

u2 − 1
m2

u

∫ τ1

0

u(λ1)dλ1 , u(0) = u0, (10)

and similarly in ith interval we have

κu′(τi) =
1
m

u− 1
m

u2 − 1
m2

u(
i−1∑

j=1

∫ 1

0

u(λj)dλj +
∫ τi

0

u(λi)dλi). (11)

Let u(τi) and u′(τi) are expressed by STWS as

u(τi) = U (i)φ0(τi), i = 1, · · · ,m (12)

and

u′(τi) = V (i)φ0(τi), i = 1, · · · ,m. (13)

Similarly to Eqs. (7) and (9) we get

V (i) = 2(U (i) − u(i− 1)), (14)

and

u(i) = 2U (i) − u(i− 1). (15)

In above equations U (i) and u(i) give the block-pulse and the discrete values of u(t) respectively.
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Using Eq. (4) with E = 1
2 and Eqs. (10), (12), (13) and (14), the block-pulse value U (1) in the first interval is

given by

(
1
m

+
1

2m2
)(U (1))2 + (2κ− 1

m
)U (1) − 2κu(0) = 0. (16)

Similarly by using Eq. (11) in the ith interval we have

(
1
m

+
1

2m2
)(U (i))2 + (2κ− 1

m
+

1
m2

i−1∑

j=1

U (j))U (i) − 2κu(i− 1) = 0, i = 2, · · · ,m. (17)

By solving Eq. (16) for U (1) and Eq. (17) for U (i), i = 2, · · · ,m, the block-pulse and by using Eq. (14) discrete
approximations of u(t) can be obtained.

4. Illustrative example

We applied the method presented in this paper and solved Eq. (1) for u(0)=0.1 and κ=0.02, 0.04, 0.1, 0.2 and 0.5
and then evaluated umax and tcritical, which also are evaluated in [5,15]. The resulting values using the methods in
[5] and [15] together with the exact values obtained by using [14]

umax = 1 + κ ln(
κ

1 + κ− u0
),

are presented in Table 1. In Table 2, our computational results for approximations of umax with m=20, 100, and
200 are shown. So, a comparison between methods in [5] and [15] and the present method is made. Fig. 1 and
Fig. 2, show us the mathematical behavior of the approximate solutions obtained by STWS method with m=100.
These graphs agree with the previous studies in [9] and [13].

Figure 1: Block-pulse approximations for the cases κ=0.02 (Solid), 0.1 (Dashes) and 0.5 (Dots).

Figure 2: Block-pulse approximations for the cases κ=0.04 (Solid) and 0.2 (Dashes).
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Table 1: Computational results of methods in [15] and [5] together with the exact values for umax.

κ Critical t Method in [15] Method in [5] Exact umax

0.02 0.111845 0.903838 0.923463 0.923427
0.04 0.210246 0.861240 0.873708 0.873720
0.1 0.464476 0.765113 0.769734 0.769741
0.2 0.816858 0.657912 0.659045 0.659050
0.5 1.626711 0.485282 0.485188 0.485190

Table 2: Estimated values of umax using STWS with m=20, 100 and 200.

κ Critical t m=20 m=100 m=200
0.02 0.111845 0.937866 0.923846 0.923451
0.04 0.210246 0.876359 0.873794 0.873740
0.1 0.464476 0.769689 0.769741 0.769741
0.2 0.816858 0.658853 0.659030 0.659048
0.5 1.626711 0.485106 0.485187 0.485189

5. Conclusion

The properties of STWS are used to solve the Volterra’s population model. The method provides both pointwise
and block-pulse approximations for unknown function. Furthermore, unlike the Walsh series approach, there is
no restriction on m and the method does not require the Kronecker product or the inversion of large matrices.
Illustrative examples are included to demonstrate the validity and applicability of the technique.
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