k-trees, k-ctrees and Line Splitting Graphs

Veena Mathad* and B.Basavanagoud**

*DOS in Mathematics, University of Mysore, Manasagangotri, Mysore-570 006, Karnataka State, India. Email:veena_mathad@rediffmail.com **Department of Mathematics, Karnatak University, Dharwad-580 003, Karnataka State, India. Email:b.basavanagoud@gmail.com

Abstract

Let G = (V, E) be a graph. For each edge e_i of G, a new vertex e'_i is taken and the resulting set of vertices is denoted by $E_1(G)$. The line splitting graph $L_s(G)$ of a graph G is defined as the graph having vertex set $E(G) \bigcup E_1(G)$ with two vertices adjacent if they correspond to adjacent edges of G or one corresponds to an element e'_i of $E_1(G)$ and the other to an element e_j of E(G) where e_j is in $N(e_i)$. In this paper we characterize graphs whose line splitting graphs are k - trees and k - ctrees.

Keywords: k - trees, k - ctrees, line splitting graph, splitting graph.

1 Introduction

By a graph G = (V, E), we mean a finite, undirected graph without loops or multiple edges. For graph theoretic terminology, we refer to [1].

A vertex v of a graph G is called a star-vertex if all its neighboring vertices are independent.

A graph G is said to be n - degenerate if every subgraph of G has a vertex of degree at most n [3].

The open neighborhood N(u) of a vertex u in V(G) is the set of vertices adjacent to u. For each vertex u_i of G, a new vertex u'_i is taken and the resulting set of vertices is denoted by $V_1(G)$.

The splitting graph S(G) of a graph G is defined as the graph having vertex set $V(G) \bigcup V_1(G)$ with two vertices adjacent if they correspond to adjacent vertices of G or one corresponds to an element u'_i of $V_1(G)$ and the other to an element w_j of V(G) where w_j is in $N(u_i)$ [7]

The open neighborhood $N(e_i)$ of an edge e_i in E(G) is the set of edges adjacent to e_i . For each edge e_i of G, a new vertex e'_i is taken and the resulting set of vertices is denoted by $E_1(G)$.

The line splitting graph $L_s(G)$ of a graph G is defined as the graph having vertex set $E(G) \bigcup E_1(G)$ with two vertices adjacent if they correspond to adjacent edges of G or one corresponds to an element e'_i of $E_1(G)$ and the other to an element e_j of E(G) where e_j is in $N(e_i)$ [2].

Remark 1.1. If G = L(H) for some graph H, then G = S(L(H)).

The simplest way to define a k-tree for $k \ge 1$ is by recursion. A k-tree of order k+1 is a complete graph of order k+1. A k-tree of order $p+1, p \ge k+1$, can be obtained by joining a new vertex to any k mutually adjacent vertices of a k-tree of order p. Note that 1-trees are generally known as 'trees' [4].

Remark 1.2. [6] Every 2 - tree is planar.

The class of k - ctrees (for $k \ge 1$) is the set of all graphs that can be obtained by the following recursive construction rule.

- 1. A totally disconnected graph of order k (i.e., $\overline{K_k}$) is a k ctree.
- 2. To a k ctree Q' of order n 1 (where n > k), insert a new n^{th} vertex and join it to any set of k independent vertices of Q'.

Note that 1 - ctrees are generally known as trees [5].

Theorem 1.3. [2] The line splitting graph $L_s(G)$ of a graph G is planar if and only if G is planar and (i) or (ii) holds :

- 1. G is either $K_{1,4}$ or C_{2n} , $n \ge 2$.
- 2. $\triangle(G) \leq 3$ and G has no subgraph homeomorphic from the subdivision graph of $K_{1,3}$ and also every block of G is either a K_2 or a triangle such that each triangle has atmost one cut-vertex.

Theorem 1.4. [4] Let G be a graph of order p and let k < p. Then the following assertions are equivalent :

- 1. G is a k tree.
- 2. G is k-connected, triangulated and K_{k+2} -free.
- 3. G is k-connected, triangulated of size $kp \binom{k+1}{2}$

Theorem 1.5. [1] If G is a (p,q) graph whose vertices have degree d_i , then the line graph of G, L(G) has q vertices and Q_L edges, where $q_L = -q + \frac{1}{2} \sum d_i^2$.

Theorem 1.6. [5] Let G be a graph of order $p \ge 2k$. Then G is k - ctree if and only if G is a k - degenerate, triangle-free graph of size k(p - k).

Theorem 1.7. [5] A graph G of order $\geq k + 1$ is a k-ctree if and only if G has a star-vertex v of degree k and G - v is a k-ctree.

Theorem 1.8. [5] Every k – ctree is a k – degenerate, triangle-free graph.

2 Main Results

2.1 k-trees and Line splitting graphs

Theorem 2.1. There are only two graphs whose line splitting graphs are 2 - trees. These graphs are $K_{1,3}$ and C_3 .

Proof. Suppose the line splitting graph $L_s(G)$ of a graph G is a 2-tree. Clearly G is connected. By Remark 1.2, $L_s(G)$ is planar and hence by Theorem 1.3, G is planar and is either $K_{1,4}$ or C_{2n} , $n \ge 2$ or $\Delta(G) \le 3$ and G has no subgraph homeomorphic from the subdivision graph of $K_{1,3}$ and also every block of G is either a K_2 or a triangle such that each triangle has atmost one cut-vertex. We consider the following cases depending on the magnitude of $\Delta(G)$.

Case 1. $\triangle(G) = 1$. Then $G = K_2$. Clearly, $L_s(G)$ is disconnected, a contradiction.

Case 2. $\triangle(G) = 2$. Then G is either a path or a cycle. Let G be a graph of order p and size q. We have the following subcases in this case.

Subcase 2.1. G is a path $P_p, p \ge 3$. For p = 3, $G = K_{1,2}$. But $L_s(K_{1,2})$ is not triangulated and hence by Theorem 1.4, $L_s(G)$ is not a 2 - tree, a contradiction. For $p \ge 4$, $L_s(G)$ contains a cycle of length n = 4 without chords and therefore, $L_s(G)$ is not triangulated, a contradiction.

Subcase 2.2. *G* is a cycle C_p , $p \ge 3$. Then $L_s(G)$ has 2p vertices and 3p edges. Since a 2 - tree with 2p vertices contains 4p - 3 edges, it follows that 3p < 4p - 3 for all p > 3 and 3p = 4p - 3 for p = 3. Hence $G = C_3$.

Case 3. $\triangle(G) = 3$. We consider the following subcases.

Subcase 3.1. G is not a tree. Then G has atleast one cycle. So G is a cycle together with a path of length ≥ 1 , adjoined at some vertex. Then $L_s(G)$ contains a cycle of length n = 4 without chords and therefore, $L_s(G)$ is not triangulated, a contradiction.

Subcase 3.2. *G* is a tree other than $K_{1,3}$. Then $L_s(G)$ contains a cut-vertex and by Theorem 1.4, $L_s(G)$ is not a 2-tree, a contradiction. Hence $G = K_{1,3}$. **Case 4.** $\Delta(G) > 3$. Then $K_{1,4}$ is a subgraph of *G*. One can see that $L_s(K_{1,4})$ contains a subgraph isomorphic to K_4 and therefore $L_s(G)$ is not a 2-tree, a contradiction.

From all the above cases, it follows that $G = K_{1,3}$ or C_3 .

Theorem 2.2. A line splitting graph $L_s(G)$ of order $2(k+1), k \ge 3$, is a k-tree if and only if $G = K_{1,k+1}$.

Proof. Let G be a (p,q) graph. It follows from Theorem 1.5, that the line graph L(G) is $(q, -q + \frac{1}{2} \sum d_i^2)$ graph, where d_i is degree of each vertex $v_i \in V(G)$. Suppose that $L_s(G)$ is a k - tree, $k \geq 3$ of order 2(k + 1). Then clearly $p_L = q = k + 1$. Also, since $L_s(G) = S(L(G))$, $L_s(G)$ contains $3(-q + \frac{1}{2} \sum d_i^2)$ edges. Since $L_s(G)$ is a k - tree, we have,

$$|E(L_s(G))| = 2(k+1)k - \frac{k(k+1)}{2}$$
$$= \frac{3k(k+1)}{2}.$$

This implies that

$$3(-q + \frac{1}{2}\sum d_i^2) = \frac{3k(k+1)}{2}$$

So, $q_L = \frac{k(k+1)}{2}$.

Therefore, $L(G) = K_{k+1}$, $k \ge 3$ and hence G is $K_{1,k+1}$, $k \ge 3$.

Conversely, suppose that $K_{1,k+1}$, $k \ge 3$. Then $L(G) = K_{k+1}$. Hence $L_s(G) = S(L(G))$ is a k - tree of order $2(k+1), k \ge 3$.

2.2 k-ctrees and Line splitting graphs

Theorem 2.3. There is only one graph whose the line splitting graph is 1 - ctree. That graph is P_3 .

Proof. Suppose the line splitting graph of a graph G is a 1-ctree. Then $L_s(G)$ is a tree. Assume that G has a vertex u of $deg \geq 3$. Then any three edges incident with u form $K_{1,3}$. Consequently, $L_s(G)$ contains a triangle K_3 . This

is impossible since $L_s(G)$ is a tree. Hence $\triangle(G) \leq 2$. Then every component of G is either a cycle $C_n, n \geq 3$ or a path $P_n, n \geq 2$. If G is a cycle C_n , then $L_s(G)$ contains a subgraph C_n , which is impossible since $L_s(G)$ is a tree. So, Gmust be a path. Now, if the length of the path is 1, then $L_s(G)$ is $2K_1$, which is not 1 - ctree. Also, if the length of the path is ≥ 3 then $L_s(G)$ contains a cycle C_4 , which is impossible. Hence $G = P_3$.

Theorem 2.4. There are only two graphs whose the line splitting graphs are 2 - ctrees. These graphs are K_2 and C_4 .

Proof. Suppose that the line splitting graph of a graph G(p,q) is a 2-ctree. Suppose $p \ge 5$. We consider the following cases.

Case 1. $\triangle(G) \ge 3$. Then $L_s(G)$ is not triangle-free. By Theorem 1.6, $L_s(G)$ is not a 2 - ctree, a contradiction.

Case 2. $\triangle(G) \leq 2$. Then G is either a cycle $C_p, p \geq 5$ or a path of length at least 4. We consider the following subcases :

Subcase 2.1. $G = C_p, p \ge 5$, then $L_s(G)$ contains 2p vertices and 3p edges. But by Theorem 1.6, a 2 - ctree on 2p vertices has 4p - 4 edges. Since $p \ge 5$ we have 3p < 4p - 4, a contradiction.

Subcase 2.2. $G = P_p, p \ge 5$, then $L_s(G)$ contains 2p - 2 vertices and 3p - 6 edges. But by Theorem 1.6, a 2 - ctree on 2p - 2 vertices has 4p - 8 edges. Since $p \ge 5$ we have 3p - 4 < 4p - 8, a contradiction.

In all the cases we arrive at a contradiction. Thus $p \leq 4$. In this case, $L_s(G)$ is isomorphic to one of the graphs, $\overline{K_2}$ and G_1 , where G_1 is a graph shown in Figure 1. Consequently G is K_2 and C_4 , respectively.

Figure 1.

Theorem 2.5. $L_s(G)$ is a k-ctree, $k \ge 3$ if and only if $k = 2l, l \ge 2$ and $G = lK_2$.

Proof. Suppose that $L_s(G)$ is a k - ctree, $k \ge 3$ of order p for some graph G. It follows from Theorem 1.8 that $L_s(G)$ is triangle-free graph. Assume that $p \ge k + 1$. Then by Theorem 1.7, $L_s(G)$ contains a star-vertex u of degree k and $L_s(G) - u$ is a k - ctree. We consider the following cases:

Case 1. u corresponds to a newly introduced vertex e' for an edge e of G. Then e is adjacent to k edges in G. Since $k \ge 3$, $L_s(G)$ contains a triangle, a contradiction.

Case 2. u corresponds to an edge e of G. By construction of $L_s(G)$, e is

adjacent to $\frac{k}{2}$ edges in G. Since number of edges is an integer, k must be even. Also since $k \geq 3$, we have $k = 2l, l \geq 2$. So, e is adjacent to atleast two edges in G. We consider the following subcases :

Subcase 2.1. e is adjacent to more than two edges in G, then $L_s(G)$ contains a triangle, a contradiction.

Subcase 2.2. e is adjacent to exactly two edges at its same end vertices in G, then also $L_s(G)$ contains a triangle, a contradiction.

Subcase 2.3. e is adjacent to exactly two edges at its different end vertices in G, then $L_s(G) - e$ contains either a pendant vertex or an isolated vertex. Since $k \ge 3$, it follows that $L_s(G) - e$ is not a k - ctree, a contradiction.

In all the cases we arrive at a contradiction. So p = k. Hence $L_s(G)$ is a k-ctree of order k. It follows that $L_s(G) = \overline{K}_k$. Now, if $k = 2l+1, l \ge 1$, then $L_s(G)$ has odd number of vertices, which is impossible. Hence, $k = 2l, l \ge 2$ and $G = lK_2$.

Conversely, suppose $G = lK_2, l \ge 2$. Then $L(G) = lK_1$ and hence $L_s(G)$ is $2lK_1$. i.e. kK_1 , which is a k - ctree of order $k = 2l, l \ge 2$. i.e. $k \ge 3$.

Corollary 2.6. There are no graphs whose line splitting graphs are k - ctrees where $k = 2l + 1, l \ge 1$.

References

- [1] F. Harary, *Graph Theory*, Addison Wesley, 1969.
- [2] V.R.Kulli and M.S.Biradar, The line splitting graph of a graph, Acta Ciencia Indica, 28 (M.No.3) (2002), pp.317-322.
- [3] D.R.Lick and A.T.White, k degenerate graphs, Canad.J.Math., **22** (1970), pp.1082-1096.
- [4] H.P.Patil, On the Structure of k trees, J.Comb., Inform and System Sci., **11**(No.2-4) (1986), pp.57-64.
- [5] H.P.Patil and R.Pandiyaraj, On the structure of k-ctrees and their applications to graph valued functions, Proceedings of the National Conference on Graph Theory and Its Applications, Tumkur University, Tumkur, (Dec 5th 2011), pp.1-8.
- [6] H.P.Patil(Warsaw), k trees and some graph valued functions, Discussiones Mathematicae, 7 (1985), pp.87-92.
- [7] E.Sampathkumar and H.B.Walikar, On splitting graph of a graph, J.Karnatak University Sci. 25 and 26(combined) (1980-81), pp.13-16.