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Abstract

Let G = (V,E) be a graph. For each edge ei of G, a new vertex
e
′

i is taken and the resulting set of vertices is denoted by E1(G). The
line splitting graph Ls(G) of a graph G is defined as the graph having
vertex set E(G)

⋃

E1(G) with two vertices adjacent if they correspond
to adjacent edges of G or one corresponds to an element e

′

i of E1(G)
and the other to an element ej of E(G) where ej is in N(ei). In this
paper we characterize graphs whose line splitting graphs are k − trees

and k − ctrees.
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1 Introduction

By a graph G = (V, E), we mean a finite, undirected graph without loops or
multiple edges. For graph theoretic terminology, we refer to [1].

A vertex v of a graph G is called a star-vertex if all its neighboring vertices
are independent.

A graph G is said to be n − degenerate if every subgraph of G has a ver-
tex of degree atmost n [3].



488 Veena Mathad and B.Basavanagoud

The open neighborhood N(u) of a vertex u in V (G) is the set of vertices
adjacent to u. For each vertex ui of G, a new vertex u

′

i is taken and the re-
sulting set of vertices is denoted by V1(G).

The splitting graph S(G) of a graph G is defined as the graph having vertex
set V (G)

⋃

V1(G) with two vertices adjacent if they correspond to adjacent
vertices of G or one corresponds to an element u

′

i of V1(G) and the other to
an element wj of V (G) where wj is in N(ui) [7]

The open neighborhood N(ei) of an edge ei in E(G) is the set of edges adjacent
to ei. For each edge ei of G, a new vertex e

′

i is taken and the resulting set of
vertices is denoted by E1(G).

The line splitting graph Ls(G) of a graph G is defined as the graph hav-
ing vertex set E(G)

⋃

E1(G) with two vertices adjacent if they correspond to
adjacent edges of G or one corresponds to an element e

′

i of E1(G) and the
other to an element ej of E(G) where ej is in N(ei) [2].

Remark 1.1. If G = L(H) for some graph H, then G = S(L(H)).

The simplest way to define a k−tree for k ≥ 1 is by recursion. A k−tree of
order k+1 is a complete graph of order k+1. A k−tree of order p+1, p ≥ k+1,
can be obtained by joining a new vertex to any k mutually adjacent vertices
of a k − tree of order p. Note that 1− trees are generally known as ’trees’ [4].

Remark 1.2. [6] Every 2 − tree is planar.

The class of k − ctrees (for k ≥ 1) is the set of all graphs that can be
obtained by the following recursive construction rule.

1. A totally disconnected graph of order k (i.e., Kk) is a k − ctree.

2. To a k − ctree Q
′

of order n − 1 (where n > k), insert a new nth vertex
and join it to any set of k independent vertices of Q

′

.

Note that 1 − ctrees are generally known as trees [5].

Theorem 1.3. [2] The line splitting graph Ls(G) of a graph G is planar if
and only if G is planar and (i) or (ii) holds :

1. G is either K1,4 or C2n, n ≥ 2.

2. △(G) ≤ 3 and G has no subgraph homeomorphic from the subdivision
graph of K1,3 and also every block of G is either a K2 or a triangle such
that each triangle has atmost one cut-vertex.
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Theorem 1.4. [4] Let G be a graph of order p and let k < p. Then the
following assertions are equivalent :

1. G is a k − tree.

2. G is k−connected, triangulated and Kk+2−free.

3. G is k−connected, triangulated of size kp −
(

k+1

2

)

Theorem 1.5. [1] If G is a (p, q) graph whose vertices have degree di, then
the line graph of G, L(G) has q vertices and QL edges, where qL = −q+ 1

2

∑

d2
i .

Theorem 1.6. [5] Let G be a graph of order p ≥ 2k. Then G is k − ctree

if and only if G is a k − degenerate, triangle-free graph of size k(p − k).

Theorem 1.7. [5] A graph G of order ≥ k + 1 is a k − ctree if and only if
G has a star-vertex v of degree k and G − v is a k − ctree.

Theorem 1.8. [5] Every k− ctree is a k− degenerate, triangle-free graph.

2 Main Results

2.1 k-trees and Line splitting graphs

Theorem 2.1. There are only two graphs whose line splitting graphs are
2 − trees. These graphs are K1,3 and C3.

Proof. Suppose the line splitting graph Ls(G) of a graph G is a 2−tree. Clearly
G is connected. By Remark 1.2, Ls(G) is planar and hence by Theorem 1.3, G

is planar and is either K1,4 or C2n, n ≥ 2 or △(G) ≤ 3 and G has no subgraph
homeomorphic from the subdivision graph of K1,3 and also every block of G

is either a K2 or a triangle such that each triangle has atmost one cut-vertex.
We consider the following cases depending on the magnitude of △(G).
Case 1. △(G) = 1. Then G = K2. Clearly, Ls(G) is disconnected, a
contradiction.
Case 2. △(G) = 2. Then G is either a path or a cycle. Let G be a graph of
order p and size q. We have the following subcases in this case.
Subcase 2.1. G is a path Pp, p ≥ 3. For p = 3, G = K1,2. But Ls(K1,2)
is not triangulated and hence by Theorem 1.4, Ls(G) is not a 2 − tree, a
contradiction. For p ≥ 4, Ls(G) contains a cycle of length n = 4 without
chords and therefore, Ls(G) is not triangulated, a contradiction.
Subcase 2.2. G is a cycle Cp, p ≥ 3. Then Ls(G) has 2p vertices and 3p
edges. Since a 2 − tree with 2p vertices contains 4p − 3 edges, it follows that
3p < 4p − 3 for all p > 3 and 3p = 4p − 3 for p = 3. Hence G = C3.
Case 3. △(G) = 3. We consider the following subcases.
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Subcase 3.1. G is not a tree. Then G has atleast one cycle. So G is a cycle
together with a path of length ≥ 1, adjoined at some vertex. Then Ls(G)
contains a cycle of length n = 4 without chords and therefore, Ls(G) is not
triangulated, a contradiction.
Subcase 3.2. G is a tree other than K1,3. Then Ls(G) contains a cut-vertex
and by Theorem 1.4, Ls(G) is not a 2− tree, a contradiction. Hence G = K1,3.
Case 4. △(G) > 3. Then K1,4 is a subgraph of G. One can see that Ls(K1,4)
contains a subgraph isomorphic to K4 and therefore Ls(G) is not a 2− tree, a
contradiction.

From all the above cases, it follows that G = K1,3 or C3.

Theorem 2.2. A line splitting graph Ls(G) of order 2(k + 1), k ≥ 3, is a
k − tree if and only if G = K1,k+1.

Proof. Let G be a (p, q) graph. It follows from Theorem 1.5, that the line graph
L(G) is (q,−q + 1

2

∑

d2
i ) graph, where di is degree of each vertex vi ∈ V (G).

Suppose that Ls(G) is a k − tree, k ≥ 3 of order 2(k + 1). Then clearly
pL = q = k + 1. Also, since Ls(G) = S(L(G)), Ls(G) contains 3(−q + 1

2

∑

d2
i )

edges. Since Ls(G) is a k − tree, we have,

|E(Ls(G))| = 2(k + 1)k −
k(k + 1)

2

=
3k(k + 1)

2
.

This implies that

3(−q +
1

2

∑

d2

i ) =
3k(k + 1)

2
.

So, qL =
k(k + 1)

2
.

Therefore, L(G) = Kk+1, k ≥ 3 and hence G is K1,k+1, k ≥ 3.
Conversely, suppose that K1,k+1, k ≥ 3. Then L(G) = Kk+1. Hence

Ls(G) = S(L(G)) is a k − tree of order 2(k + 1), k ≥ 3.

2.2 k-ctrees and Line splitting graphs

Theorem 2.3. There is only one graph whose the line splitting graph is
1 − ctree. That graph is P3.

Proof. Suppose the line splitting graph of a graph G is a 1−ctree. Then Ls(G)
is a tree. Assume that G has a vertex u of deg ≥ 3. Then any three edges
incident with u form K1,3. Consequently, Ls(G) contains a triangle K3. This
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is impossible since Ls(G) is a tree. Hence △(G) ≤ 2. Then every component
of G is either a cycle Cn, n ≥ 3 or a path Pn, n ≥ 2. If G is a cycle Cn, then
Ls(G) contains a subgraph Cn, which is impossible since Ls(G) is a tree. So, G

must be a path. Now, if the length of the path is 1, then Ls(G) is 2K1, which
is not 1 − ctree. Also, if the length of the path is ≥ 3 then Ls(G) contains a
cycle C4, which is impossible. Hence G = P3.

Theorem 2.4. There are only two graphs whose the line splitting graphs
are 2 − ctrees. These graphs are K2 and C4.

Proof. Suppose that the line splitting graph of a graph G(p, q) is a 2 − ctree.
Suppose p ≥ 5. We consider the following cases.
Case 1. △(G) ≥ 3. Then Ls(G) is not triangle-free. By Theorem 1.6, Ls(G)
is not a 2 − ctree, a contradiction.
Case 2.△(G) ≤ 2. Then G is either a cycle Cp, p ≥ 5 or a path of length
atleast 4. We consider the following subcases :
Subcase 2.1. G = Cp, p ≥ 5, then Ls(G) contains 2p vertices and 3p edges.
But by Theorem 1.6, a 2 − ctree on 2p vertices has 4p − 4 edges. Since p ≥ 5
we have 3p < 4p − 4, a contradiction.
Subcase 2.2. G = Pp, p ≥ 5,then Ls(G) contains 2p − 2 vertices and 3p − 6
edges. But by Theorem 1.6, a 2 − ctree on 2p − 2 vertices has 4p − 8 edges.
Since p ≥ 5 we have 3p − 4 < 4p − 8, a contradiction.

In all the cases we arrive at a contradiction. Thus p ≤ 4. In this case,
Ls(G) is isomorphic to one of the graphs, K2 and G1, where G1 is a graph
shown in Figure 1. Consequently G is K2 and C4, respectively.
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ts

G1

Figure 1.

Theorem 2.5. Ls(G) is a k − ctree, k ≥ 3 if and only if k = 2l, l ≥ 2 and
G = lK2.

Proof. Suppose that Ls(G) is a k − ctree, k ≥ 3 of order p for some graph G.
It follows from Theorem 1.8 that Ls(G) is triangle-free graph. Assume that
p ≥ k + 1. Then by Theorem 1.7, Ls(G) contains a star-vertex u of degree k

and Ls(G) − u is a k − ctree. We consider the following cases:
Case 1. u corresponds to a newly introduced vertex e

′

for an edge e of G.
Then e is adjacent to k edges in G. Since k ≥ 3, Ls(G) contains a triangle, a
contradiction.
Case 2. u corresponds to an edge e of G. By construction of Ls(G), e is
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adjacent to k
2

edges in G. Since number of edges is an integer, k must be even.
Also since k ≥ 3, we have k = 2l, l ≥ 2. So, e is adjacent to atleast two edges
in G. We consider the following subcases :
Subcase 2.1. e is adjacent to more than two edges in G, then Ls(G) contains
a triangle, a contradiction.
Subcase 2.2. e is adjacent to exactly two edges at its same end vertices in
G, then also Ls(G) contains a triangle, a contradiction.
Subcase 2.3. e is adjacent to exactly two edges at its different end vertices
in G, then Ls(G) − e contains either a pendant vertex or an isolated vertex.
Since k ≥ 3, it follows that Ls(G) − e is not a k − ctree,a contradiction.

In all the cases we arrive at a contradiction. So p = k. Hence Ls(G) is a
k−ctree of order k. It follows that Ls(G) = Kk. Now, if k = 2l+1, l ≥ 1, then
Ls(G) has odd number of vertices, which is impossible. Hence, k = 2l, l ≥ 2
and G = lK2.

Conversely, suppose G = lK2, l ≥ 2. Then L(G) = lK1 and hence Ls(G) is
2lK1. i.e. kK1, which is a k − ctree of order k = 2l, l ≥ 2. i.e. k ≥ 3.

Corollary 2.6. There are no graphs whose line splitting graphs are k −
ctrees where k = 2l + 1, l ≥ 1.
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