k-trees, k-ctrees and Line Splitting Graphs

Veena Mathad* and B.Basavanagoud**
*DOS in Mathematics, University of Mysore, Manasagangotri, Mysore-570 006, Karnataka State, India.
Email:veena_mathad@rediffmail.com
**Department of Mathematics, Karnatak University, Dharwad-580 003, Karnataka State, India.
Email:b.basavanagoud@gmail.com

Abstract

Let $G=(V, E)$ be a graph. For each edge e_{i} of G, a new vertex e_{i}^{\prime} is taken and the resulting set of vertices is denoted by $E_{1}(G)$. The line splitting graph $L_{s}(G)$ of a graph G is defined as the graph having vertex set $E(G) \bigcup E_{1}(G)$ with two vertices adjacent if they correspond to adjacent edges of G or one corresponds to an element e_{i}^{\prime} of $E_{1}(G)$ and the other to an element e_{j} of $E(G)$ where e_{j} is in $N\left(e_{i}\right)$. In this paper we characterize graphs whose line splitting graphs are k-trees and k - ctrees.

Keywords: k-trees, k-ctrees, line splitting graph, splitting graph.

1 Introduction

By a graph $G=(V, E)$, we mean a finite, undirected graph without loops or multiple edges. For graph theoretic terminology, we refer to [1].

A vertex v of a graph G is called a star-vertex if all its neighboring vertices are independent.

A graph G is said to be n-degenerate if every subgraph of G has a vertex of degree atmost $n[3]$.

The open neighborhood $N(u)$ of a vertex u in $V(G)$ is the set of vertices adjacent to u. For each vertex u_{i} of G, a new vertex u_{i}^{\prime} is taken and the resulting set of vertices is denoted by $V_{1}(G)$.

The splitting graph $S(G)$ of a graph G is defined as the graph having vertex set $V(G) \bigcup V_{1}(G)$ with two vertices adjacent if they correspond to adjacent vertices of G or one corresponds to an element u_{i}^{\prime} of $V_{1}(G)$ and the other to an element w_{j} of $V(G)$ where w_{j} is in $N\left(u_{i}\right)[7]$

The open neighborhood $N\left(e_{i}\right)$ of an edge e_{i} in $E(G)$ is the set of edges adjacent to e_{i}. For each edge e_{i} of G, a new vertex e_{i}^{\prime} is taken and the resulting set of vertices is denoted by $E_{1}(G)$.

The line splitting graph $L_{s}(G)$ of a graph G is defined as the graph having vertex set $E(G) \bigcup E_{1}(G)$ with two vertices adjacent if they correspond to adjacent edges of G or one corresponds to an element e_{i}^{\prime} of $E_{1}(G)$ and the other to an element e_{j} of $E(G)$ where e_{j} is in $N\left(e_{i}\right)$ [2].

Remark 1.1. If $G=L(H)$ for some graph H, then $G=S(L(H))$.
The simplest way to define a $k-$ tree for $k \geq 1$ is by recursion. A $k-$ tree of order $k+1$ is a complete graph of order $k+1$. A $k-$ tree of order $p+1, p \geq k+1$, can be obtained by joining a new vertex to any k mutually adjacent vertices of a k-tree of order p. Note that 1 -trees are generally known as 'trees' [4].

Remark 1.2. [6] Every 2 -tree is planar.
The class of k-ctrees (for $k \geq 1$) is the set of all graphs that can be obtained by the following recursive construction rule.

1. A totally disconnected graph of order k (i.e., $\overline{K_{k}}$) is a $k-$ ctree.
2. To a $k-$ ctree Q^{\prime} of order $n-1$ (where $n>k$), insert a new $n^{\text {th }}$ vertex and join it to any set of k independent vertices of Q^{\prime}.

Note that 1 -ctrees are generally known as trees [5].
Theorem 1.3. [2] The line splitting graph $L_{s}(G)$ of a graph G is planar if and only if G is planar and (i) or (ii) holds:

1. G is either $K_{1,4}$ or $C_{2 n}, n \geq 2$.
2. $\triangle(G) \leq 3$ and G has no subgraph homeomorphic from the subdivision graph of $K_{1,3}$ and also every block of G is either a K_{2} or a triangle such that each triangle has atmost one cut-vertex.

Theorem 1.4. [4] Let G be a graph of order p and let $k<p$. Then the following assertions are equivalent:

1. G is a k-tree.
2. G is k-connected, triangulated and $K_{k+2}-f r e e$.
3. G is k-connected, triangulated of size $k p-\binom{k+1}{2}$

Theorem 1.5. [1] If G is a (p, q) graph whose vertices have degree d_{i}, then the line graph of $G, L(G)$ has q vertices and Q_{L} edges, where $q_{L}=-q+\frac{1}{2} \sum d_{i}^{2}$.

Theorem 1.6. [5] Let G be a graph of order $p \geq 2 k$. Then G is $k-c t r e e$ if and only if G is a k-degenerate, triangle-free graph of size $k(p-k)$.
 G has a star-vertex v of degree k and $G-v$ is a $k-$ ctree.

Theorem 1.8. [5] Every k-ctree is a k-degenerate, triangle-free graph.

2 Main Results

2.1 k-trees and Line splitting graphs

Theorem 2.1. There are only two graphs whose line splitting graphs are 2 -trees. These graphs are $K_{1,3}$ and C_{3}.

Proof. Suppose the line splitting graph $L_{s}(G)$ of a graph G is a $2-t r e e$. Clearly G is connected. By Remark 1.2, $L_{s}(G)$ is planar and hence by Theorem 1.3, G is planar and is either $K_{1,4}$ or $C_{2 n}, n \geq 2$ or $\triangle(G) \leq 3$ and G has no subgraph homeomorphic from the subdivision graph of $K_{1,3}$ and also every block of G is either a K_{2} or a triangle such that each triangle has atmost one cut-vertex. We consider the following cases depending on the magnitude of $\triangle(G)$.
Case 1. $\triangle(G)=1$. Then $G=K_{2}$. Clearly, $L_{s}(G)$ is disconnected, a contradiction.
Case 2. $\triangle(G)=2$. Then G is either a path or a cycle. Let G be a graph of order p and size q. We have the following subcases in this case.
Subcase 2.1. G is a path $P_{p}, p \geq 3$. For $p=3, G=K_{1,2}$. But $L_{s}\left(K_{1,2}\right)$ is not triangulated and hence by Theorem 1.4, $L_{s}(G)$ is not a $2-$ tree, a contradiction. For $p \geq 4, L_{s}(G)$ contains a cycle of length $n=4$ without chords and therefore, $L_{s}(G)$ is not triangulated, a contradiction.
Subcase 2.2. G is a cycle $C_{p}, p \geq 3$. Then $L_{s}(G)$ has $2 p$ vertices and $3 p$ edges. Since a 2 - tree with $2 p$ vertices contains $4 p-3$ edges, it follows that $3 p<4 p-3$ for all $p>3$ and $3 p=4 p-3$ for $p=3$. Hence $G=C_{3}$.
Case 3. $\triangle(G)=3$. We consider the following subcases.

Subcase 3.1. G is not a tree. Then G has atleast one cycle. So G is a cycle together with a path of length ≥ 1, adjoined at some vertex. Then $L_{s}(G)$ contains a cycle of length $n=4$ without chords and therefore, $L_{s}(G)$ is not triangulated, a contradiction.
Subcase 3.2. G is a tree other than $K_{1,3}$. Then $L_{s}(G)$ contains a cut-vertex and by Theorem 1.4, $L_{s}(G)$ is not a $2-$ tree, a contradiction. Hence $G=K_{1,3}$. Case 4. $\triangle(G)>3$. Then $K_{1,4}$ is a subgraph of G. One can see that $L_{s}\left(K_{1,4}\right)$ contains a subgraph isomorphic to K_{4} and therefore $L_{s}(G)$ is not a 2 -tree, a contradiction.

From all the above cases, it follows that $G=K_{1,3}$ or C_{3}.

Theorem 2.2. A line splitting graph $L_{s}(G)$ of order $2(k+1), k \geq 3$, is a k-tree if and only if $G=K_{1, k+1}$.

Proof. Let G be a (p, q) graph. It follows from Theorem 1.5, that the line graph $L(G)$ is $\left(q,-q+\frac{1}{2} \sum d_{i}^{2}\right)$ graph, where d_{i} is degree of each vertex $v_{i} \in V(G)$. Suppose that $L_{s}(G)$ is a $k-$ tree, $k \geq 3$ of order $2(k+1)$. Then clearly $p_{L}=q=k+1$. Also, since $L_{s}(G)=S(L(G)), L_{s}(G)$ contains $3\left(-q+\frac{1}{2} \sum d_{i}^{2}\right)$ edges. Since $L_{s}(G)$ is a k-tree, we have,

$$
\begin{aligned}
\left|E\left(L_{s}(G)\right)\right| & =2(k+1) k-\frac{k(k+1)}{2} \\
& =\frac{3 k(k+1)}{2} .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
3\left(-q+\frac{1}{2} \sum d_{i}^{2}\right) & =\frac{3 k(k+1)}{2} . \\
\text { So, } \quad q_{L} & =\frac{k(k+1)}{2} .
\end{aligned}
$$

Therefore, $L(G)=K_{k+1}, k \geq 3$ and hence G is $K_{1, k+1}, k \geq 3$.
Conversely, suppose that $K_{1, k+1}, k \geq 3$. Then $L(G)=K_{k+1}$. Hence $L_{s}(G)=S(L(G))$ is a $k-$ tree of order $2(k+1), k \geq 3$.

2.2 k-ctrees and Line splitting graphs

Theorem 2.3. There is only one graph whose the line splitting graph is $1-$ ctree. That graph is P_{3}.

Proof. Suppose the line splitting graph of a graph G is a $1-$ ctree. Then $L_{s}(G)$ is a tree. Assume that G has a vertex u of $d e g \geq 3$. Then any three edges incident with u form $K_{1,3}$. Consequently, $L_{s}(G)$ contains a triangle K_{3}. This
is impossible since $L_{s}(G)$ is a tree. Hence $\triangle(G) \leq 2$. Then every component of G is either a cycle $C_{n}, n \geq 3$ or a path $P_{n}, n \geq 2$. If G is a cycle C_{n}, then $L_{s}(G)$ contains a subgraph C_{n}, which is impossible since $L_{s}(G)$ is a tree. So, G must be a path. Now, if the length of the path is 1 , then $L_{s}(G)$ is $2 K_{1}$, which is not 1 - ctree. Also, if the length of the path is ≥ 3 then $L_{s}(G)$ contains a cycle C_{4}, which is impossible. Hence $G=P_{3}$.

Theorem 2.4. There are only two graphs whose the line splitting graphs are 2 -ctrees. These graphs are K_{2} and C_{4}.

Proof. Suppose that the line splitting graph of a graph $G(p, q)$ is a $2-c t r e e$. Suppose $p \geq 5$. We consider the following cases.
Case 1. $\triangle(G) \geq 3$. Then $L_{s}(G)$ is not triangle-free. By Theorem 1.6, $L_{s}(G)$ is not a $2-c t r e e$, a contradiction.
Case $2 . \triangle(G) \leq 2$. Then G is either a cycle $C_{p}, p \geq 5$ or a path of length atleast 4 . We consider the following subcases :
Subcase 2.1. $G=C_{p}, p \geq 5$, then $L_{s}(G)$ contains $2 p$ vertices and $3 p$ edges. But by Theorem 1.6, a $2-$ ctree on $2 p$ vertices has $4 p-4$ edges. Since $p \geq 5$ we have $3 p<4 p-4$, a contradiction.
Subcase 2.2. $G=P_{p}, p \geq 5$, then $L_{s}(G)$ contains $2 p-2$ vertices and $3 p-6$ edges. But by Theorem 1.6, a $2-$ ctree on $2 p-2$ vertices has $4 p-8$ edges. Since $p \geq 5$ we have $3 p-4<4 p-8$, a contradiction.

In all the cases we arrive at a contradiction. Thus $p \leq 4$. In this case, $L_{s}(G)$ is isomorphic to one of the graphs, $\overline{K_{2}}$ and G_{1}, where G_{1} is a graph shown in Figure 1. Consequently G is K_{2} and C_{4}, respectively.

Figure 1.
Theorem 2.5. $L_{s}(G)$ is a k-ctree, $k \geq 3$ if and only if $k=2 l, l \geq 2$ and $G=l K_{2}$.

Proof. Suppose that $L_{s}(G)$ is a $k-$ ctree, $k \geq 3$ of order p for some graph G. It follows from Theorem 1.8 that $L_{s}(G)$ is triangle-free graph. Assume that $p \geq k+1$. Then by Theorem 1.7, $L_{s}(G)$ contains a star-vertex u of degree k and $L_{s}(G)-u$ is a k-ctree. We consider the following cases:
Case 1. u corresponds to a newly introduced vertex e^{\prime} for an edge e of G. Then e is adjacent to k edges in G. Since $k \geq 3, L_{s}(G)$ contains a triangle, a contradiction.
Case 2. u corresponds to an edge e of G. By construction of $L_{s}(G), e$ is
adjacent to $\frac{k}{2}$ edges in G. Since number of edges is an integer, k must be even. Also since $k \geq 3$, we have $k=2 l, l \geq 2$. So, e is adjacent to atleast two edges in G. We consider the following subcases :
Subcase 2.1. e is adjacent to more than two edges in G, then $L_{s}(G)$ contains a triangle, a contradiction.
Subcase 2.2. e is adjacent to exactly two edges at its same end vertices in G, then also $L_{s}(G)$ contains a triangle, a contradiction.
Subcase 2.3. e is adjacent to exactly two edges at its different end vertices in G, then $L_{s}(G)-e$ contains either a pendant vertex or an isolated vertex. Since $k \geq 3$, it follows that $L_{s}(G)-e$ is not a $k-c t r e e$, a contradiction.

In all the cases we arrive at a contradiction. So $p=k$. Hence $L_{s}(G)$ is a $k-$ ctree of order k. It follows that $L_{s}(G)=\bar{K}_{k}$. Now, if $k=2 l+1, l \geq 1$, then $L_{s}(G)$ has odd number of vertices, which is impossible. Hence, $k=2 l, l \geq 2$ and $G=l K_{2}$.

Conversely, suppose $G=l K_{2}, l \geq 2$. Then $L(G)=l K_{1}$ and hence $L_{s}(G)$ is $2 l K_{1}$. i.e. $k K_{1}$, which is a $k-c t r e e$ of order $k=2 l, l \geq 2$. i.e. $k \geq 3$.

Corollary 2.6. There are no graphs whose line splitting graphs are $k-$ ctrees where $k=2 l+1, l \geq 1$.

References

[1] F. Harary, Graph Theory, Addison Wesley, 1969.
[2] V.R.Kulli and M.S.Biradar, The line splitting graph of a graph, Acta Ciencia Indica, 28 (M.No.3) (2002), pp.317-322.
[3] D.R.Lick and A.T.White, k - degenerate graphs, Canad.J.Math., 22 (1970), pp.1082-1096.
[4] H.P.Patil, On the Structure of k-trees, J.Comb., Inform and System Sci., 11(No.2-4) (1986), pp.57-64.
[5] H.P.Patil and R.Pandiyaraj, On the structure of k-ctrees and their applications to graph valued functions, Proceedings of the National Conference on Graph Theory and Its Applications, Tumkur University, Tumkur, (Dec 5th 2011), pp.1-8.
[6] H.P.Patil(Warsaw), k - trees and some graph valued functions, Discussiones Mathematicae, 7 (1985), pp.87-92.
[7] E.Sampathkumar and H.B.Walikar, On splitting graph of a graph,

