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Abstract

In this paper, given a progressively type II censored sample from a
Rayleigh distribution, the Bayesian estimators of parameter and Reli-
ability function are obtained under asymmetric loss functions such as
LINEX loss function, Precautionary loss function, entropy loss func-
tion for the parameter and reliability function. Comparisons of these
estimators are made through simulation study.

Keywords: Bayesian estimation , Progressively censoring , Asymmetric
loss function , Reliability function .

1 Introduction

The Rayleigh distribution provides a population model which is useful in sev-
eral areas of statistics (for example Fernandez, 2000). In the literature, many
researcher studied properties of the Rayleigh distribution, particularly in life
testing and reliability. Life testing experiments often deal with censored sam-
ple in order to estimate the parameters involved in the life distribution in
Bayesian literature. It is well known that, the performance of a Bayes esti-
mator depends on the form of the prior distribution and the loss function. In
view of this, given a progressively type II censored sample from a Rayleigh



453

distribution, we obtain the Bayesian estimators under different asymmetric
loss functions. The cumulative distribution function (cdf), and the reliability
function of the Rayleigh distribution with parameter θ > 0 are

F (x|θ) = 1− exp

{
−θ

2
x2

}
, x > 0 (1)

R(x|θ) = exp

{
−θ

2
x2

}
, x > 0 (2)

respectively.
Inferences for θ in the Rayleigh distribution have been discussed by several
authors. Bayesian estimation and prediction problems for the θ based on dou-
bly censored sample have been considered by Fernandez (2000) and Raqab and
Madi (2002). Recently, Shuo et al. (2006) have derived the Bayesian estimator
and prediction intervals based on progressively type II censored samples. A
recent account on progressive censoring schemes can be obtained in the mono-
graph by Balakrishnan and Aggarwala (2000) or in the excellent review article
by Balakrishnan (2007).
Suppose that n units are placed on a life test and the experimenter decides be-
forehand quantity m, the number of units, to be failed. Now at the time of the
first failure, R1 of the remaining n− 1 surviving units are randomly removed
from the experiment. Continuing on, at the time of the second failure, R2 of the
remaining n−R1−2 units are randomly drawn from the experiment. Finally, at
the time of the mth failure, all the remaining Rm = n−m−R1−R2−...−Rm−1

surviving units are removed from the experiment.
Suppose that n independent items are put on a test and that the lifetime dis-
tribution of each item is given by the probability density function of (1). The
ordered m-failures are observed under the type-II progressively censoring plan

(R,..., Rm) where each Ri ≥ 0 and
m∑

j=1
Rj + m = n. If the ordered m-failures

are denoted by x(1) < x(2) < ... < x(m), then the likelihood function based
on the observed sample x(1) < x(2) < ... < x(m) (for convenience notation are
denoted by x1 < x2 < ... < xm) is

L(θ) = c
m∏

i=1

f(xi|θ)[1− F (xi|θ)]Ri (3)

where c = n(n− 1−R1)...(n−R1− ...−Rm−1−m+1). According to (1) and
(3), the latter function can be obtained as follows,

L(θ) = c θm exp

{
−θ

2

m∑

i=1

(Ri + 1)x2
i

}
m∏

i=1

xi. (4)
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It follows from (4) that logarithm of the latter function becomes propor-
tional to

l(θ) = logL(θ) ∝ m logθ − θ

2

m∑

i=1

(Ri + 1)x2
i .

The maximum likelihood estimator (MLE) of θ, denoted by θ̂, can then be
derived by solving the equation

∂l(θ)

∂θ
=

m

θ
− 1

2

m∑

i=1

(Ri + 1)x2
i = 0.

Therefore MLE for θ can be obtained as the following form

θ̂ =
2m∑m

i=1(Ri + 1)x2
i

. (5)

It is clear that the MLE of reliability function, R(t|θ̂), can be obtained by

R̂(t|θ̂) = exp(− θ̂
2
t2).

2 Bayesian estimation

We now derive the Bayes estimator for the parameter θ based on the progressive
Type-II censored data (for more detail see Shuo et al., 2006). Here we consider
family of prior densities as the following form

π (θ) = ae−aθ.

By combining (4) and the latter prior density function, we can obtain posterior
density of θ as the following form,

π(θ|X) =

[
a + 1

2

∑m
i=1(Ri + 1)x2

i

](m+1)

Γ(m + 1)
exp{−θ(a +

1

2

m∑

i=1

(Ri + 1)x2
i )} θm (6)

where θ > 0. Substituting θ = (−2 log s)/t2 into (6), we can obtain the
posterior density function of s = R(t|θ) as

π(s|X) =

[
a + 1

2

∑m
i=1(Ri + 1)x2

i

](m+1)

Γ(m + 1)
s

2
t2

(a+ 1
2

∑m

i=1
(Ri+1)x2

i )−1(− log s)m (
2

t2
)(m+1)

(7)
where 0 < s < 1.
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2.1 Bayesian estimators under squared-error loss func-
tion

Under squared-error loss function, the Bayesian estimator of θ is the mean of
the posterior density given by

θ̂B = E(θ|X) =
m + 1

a + 1
2

∑m
i=1(Ri + 1)x2

i

(8)

The Bayes estimator of R(t|θ) is given by

R̂t(B) = E(R(T = t|θ)|X) =

(
a + 1

2

∑m
i=1(Ri + 1)x2

i

a + 1
2

∑m
i=1(Ri + 1)x2

i + t2/2

)m+1

(9)

and the posterior risk (minimum posterior expected loss) of θ̂B is equal to the
posterior variance.

2.2 Bayes estimators under Precautionary loss function

Precautionary loss function which is asymmetric, was introduced by Norstrom
(1996),

L(θ̂, θ) =
(θ̂ − θ)2

θ̂
.

The Bayes estimator under the latter loss function is denoted by θ̂p and may
be obtained by solving the following equation

θ̂p

2
= E(θ2|X).

Under Precautionary loss function, the Bayes estimator θ̂p of θ can be obtained
as

θ̂p =

√
(m + 1) (m + 2)

a + 1
2

∑m
i=1(Ri + 1)x2

i

(10)

And of R(t|θ) can be obtained as

R̂t(P ) =
√

E((R(t|θ))2|X) =

√√√√
(

a + 1
2

∑m
i=1(Ri + 1)x2

i

a + 1
2

∑m
i=1(Ri + 1)x2

i + t2

)m+1

(11)

2.3 Bayes estimators under entropy loss function

In many practical situations, it appears to be more realistic to express the loss

in terms of the ratio θ̂
θ
. In this case, Calabria and Pulcini (1994) point out

that a useful asymmetric loss function is the entropy loss function,

L(δ) ∝ [δP − P loge(δ)− 1].
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where

δ =
θ̂

θ
.

whose minimum occurs at θ̂ = θ.the latter has been used in Dey et al., (1987)
and Dey and Liu (1992), in the original form having P = 1,

L(δ) = b[δ − logE(δ)− 1], b > 0.

Therefore, the Bayes estimator under the entropy loss function with P = 1, is
denoted by θ̂E, is given by the following equation,

θ̂E =
[
E(

1

θ
|X)

]−1

.

It can be followed from the latter that,

θ̂E =
m

1
2

∑m
i=1(Ri + 1)x2

i + a
(12)

R̂t(E) =

[
E

(
1

R(t|θ)

)
|X

]−1

=

(
a + 1

2

∑m
i=1(Ri + 1)x2

i

a + 1
2

∑m
i=1(Ri + 1)x2

i − t2/2

)−(m+1)

(13)

2.4 Bayes estimators under LINEX loss function

The LINEX loss function for θ can be expressed as the following proportional

L(∆) ∝ exp(C ∆)− C ∆− 1; C 6= 0

where ∆ = (θ̂−θ) and θ̂ is an estimate of θ. The Bayes estimator of θ, denoted
by θ̂L under the LINEX loss function is given by

θ̂L = − 1

C
ln Eθ[exp(−Cθ)] (14)

It then follows from (6) and (14) we that,

θ̂L = −(m + 1)

C
ln

(
1− C

1
2

∑m
i=1(Ri + 1)x2

i + a + C

)
(15)

R̂t(L) = − 1

C
lnE [exp {−CR(t|θ)}]

In such a case for estimate under LINEX loss function we can expand e−Cs

also in taylor series, and approximate this estimator

R̂t(L) ≈ − 1

C
ln


1− C

(
a(x)

a(x) + t2/2

)m+1

+
C2

2

(
a(x)

a(x) + t2

)m+1

− C3

6

(
a(x)

a(x) + 3t2/2

)m+1



(16)
where

a(x) = a +
1

2

m∑

i=1

(Ri + 1)x2
i
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3 Simulation study

Applying the algorithm of Balakrishnan and Aggarwala (2000), we used the
following steps to generate a progressive Type II censored sample from the
Rayleigh distribution.
(a) Simulate m independent exponential random variables Z1, Z2, ..., Zm.
This can be done using inverse transformation Zi = −ln(1− Ui) where Ui are
independent uniform(0, 1) random variables.
(b)Set

Xi =
Z1

n
+

Z2

n−R1 − 1
+

Z3

n−R1 −R2 − 2
+· · ·+ Zi

n−R1 −R2 − · · · −Ri−1 − i + 1

for i = 1, 2, ..., m. This is the required progressively type-II censored sample
from the standard exponential distribution.
(c) Finally, we set Yi = F−1(1− exp(−Xi)),for i = 1, 2, ..., m, where F−1(.) is
the inverse cumulative distribution function of the Rayleigh distribution.Then
Y1, Y2, · · · , Ym is the required progressively type-II censored sample from the
distribution F (.).
(d)We compute the MLE of θ by (5).
(e)We compute the the Bayes estimates θ̂B ,θ̂p ,θ̂E ,θ̂L respectively, using (8),
(10), (12), (15) and obtain different estimators for R(t) by using (9), (11),
(13), (16).
(f) We repeat the above steps 1000 times. We then obtain the means and the
RMSEs (root mean squared error) for different censoring sizes m and censoring
schemes where

RMSE =

√√√√1000−1
1000∑

i=1

(φ− φ̂i)2

and φ̂ is the estimator of φ.
In all above cases the prior parameters chosen as a = 1 and a = 0.5, which
yield the generated value of θ = 2 as the true value. The true values of R(t) in
t = 0.5 is obtained R(0.5) = 0.7788008. The results are summarized in Tables
1-3.Table-1 shows that when a = 0.5 (prior parameter) the Bayesian estimates
under the Entropy loss function are doing better (have the smallest biased and
RMSE) as compared with the estimates under the Precautionary loss function,
LINEX loss function, Squared error loss function or MLE. In Table-2 we see
Bayesian estimates under the Squared error loss function are doing better as
compared with the estimates under Precautionary loss function, LINEX loss
function, Entropy loss function or MLE, while the Bayesian approach under
the LINEX loss function with c = 0.5 has smallest RMSE. It is immediate to
note that RMSE decreases as the sample size increases. On the other hand,
for progressive censored sample, the Bayesian estimation methods under the
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LINEX loss function with c = 0.5, Entropy and Squared error loss functions are
underestimation, but MLE and Bayesian estimators under the Precautionary
loss function and the LINEX loss function with c = −0.5 are overestimated.

4 Conclusion

TIn this paper, based on the progressively type II censored sample from a
Rayleigh distribution, we consider the classical and Bayesian inference proce-
dures to estimate the unknown parameter as well as the reliability function for
Rayleigh distribution. Our interest in this stems from the fact that we antici-
pated the different estimators to be differently obtained under the symmetric
(squared error, Shuo et al., 2006) and the asymmetric loss functions . In terms
of our anticipation, we found that the Bayesian estimators based on progres-
sively type II censoring are superior to the MLEs (simulation results). Differ-
ences between the different estimators arise when for censoring samples RMSEs
decrease as sample size increases. For instance, according to Table-3, that the
Bayesian estimators for Reliability function R(t), under the Precautionary loss
function have the smallest biased and smallest RMSE as compared with the
estimates under the Entropy loss function, LINEX loss function, Squared error
loss function or MLE. Then we suggest to use Bayesian approach under the
Precautionary loss function in estimating the reliability function R(t). Finally,
although this study does not consider the problem of predicting for the future
records, but the results of the simulation with considered sample size can be
extended to this.
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Table 1: Averaged values of RMSEs for estimates of the parameter θ,a=0.5

n m (R1, ..., Rm) MLE θ̂B θ̂p θ̂E θ̂L

c = −0.5 c = 0.5
20 10 (5, 5, 0, ..., 0) 2.235 2.188 2.286 1.989 2.318 2.078

0.8076 0.6855 0.7454 0.5991 0.8122 0.5963
(4, 2, 2, 2, 0, .., 0) 2.206 2.161 2.258 1.965 2.288 2.053

0.8171 0.6886 0.7451 0.6094 0.8143 0.6016
(0, ..., 0, 2, 2, 2, 4) 2.213 2.170 2.266 1.972 2.297 2.062

0.7887 0.6704 0.7279 0.5901 0.7927 0.5850
30 15 (5, 5, 5, 0, ..., 0) 2.162 2.142 2.208 2.008 2.222 2.070

0.5972 0.5430 0.5790 0.4913 0.6087 0.4928
(3, 3, 3, 3, 3, 0, ..., 0) 2.140 2.120 2.185 1.987 2.199 2.048

0.6428 0.5844 0.6180 0.5363 0.6498 0.5346
(0, ..., 0, 3, 3, 3, 3, 3) 2.153 2.132 2.197 1.998 2.212 2.059

0.6435 0.5833 0.6181 0.5326 0.6508 0.5316
40 20 (5, 5, 5, 5, 0, ..., 0) 2.106 2.095 2.144 1.995 2.152 2.042

0.5176 0.4844 0.5071 0.4523 0.5251 0.4523
(2, ..., 2, 0, ..., 0) 2.109 2.098 2.148 1.999 2.155 2.046

0.4914 0.4606 0.4837 0.4284 0.5005 0.4293
(0, ..., 0, 2, ..., 2) 2.097 2.086 2.135 1.987 2.143 2.033

0.5179 0.4849 0.5068 0.4546 0.5247 0.4538
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Table 2: Averaged values of RMSEs for estimates of the parameter θ,a=1

n m (R1, ..., Rm) MLE θ̂B θ̂p θ̂E θ̂L

c = −0.5 c = 0.5
20 10 (5, 5, 0, ..., 0) 2.181 1.941 2.027 1.764 2.039 1.855

0.7365 0.5032 0.5227 0.5117 0.5560 0.4777
(4, 2, 2, 2, 0, .., 0) 2.212 1.956 2.043 1.778 2.057 1.868

0.8473 0.5471 0.5713 0.5429 0.6129 0.5114
(0, ..., 0, 2, 2, 2, 4) 2.218 1.965 2.052 1.786 2.066 1.877

0.7900 0.5224 0.5469 0.5197 0.5839 0.4897
30 15 (5, 5, 5, 0, ..., 0) 2.116 1.961 2.021 1.838 2.028 1.900

0.6144 0.4780 0.4916 0.4749 0.5124 0.4570
(3, 3, 3, 3, 3, 0, ..., 0) 2.126 1.970 2.030 1.847 2.037 1.908

0.6030 0.4673 0.4816 0.4631 0.5020 0.4460
(0, ..., 0, 3, 3, 3, 3, 3) 2.136 1.977 2.038 1.853 2.045 1.915

0.6414 0.4869 0.5028 0.4788 0.5260 0.4619
40 20 (5, 5, 5, 5, 0, ..., 0) 2.119 2.0009 2.048 1.9056 2.052 1.952

0.5526 0.4489 0.4620 0.4378 0.4776 0.4287
(2, ..., 2, 0, ..., 0) 2.100 1.986 2.033 1.891 2.037 1.938

0.5076 0.4199 0.4308 0.4141 0.4440 0.4039
(0, ..., 0, 2, ..., 2) 2.104 1.989 2.036 1.894 2.040 1.941

0.5168 0.4279 0.4394 0.4208 0.4526 0.4113
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Table 3: Averaged values of RMSEs for estimates of the R(t) ,a=0.5

n m (R1, ..., Rm) MLE R̂t(B) R̂t(P ) R̂t(E) R̂t(L)

c = −0.1 c = 0.1
20 10 (5, 5, 0, ..., 0) 0.7619 0.7676 0.7701 0.7624 0.7125 0.8299

0.0682 0.0578 0.0561 0.0616 0.0825 0.0895
(4, 2, 2, 2, 0, .., 0) 0.7580 0.7647 0.7673 0.7592 0.7099 0.8329

0.07710 0.0643 0.0623 0.0686 0.0878 0.0861
(0, ..., 0, 2, 2, 2, 4) 0.7524 0.7600 0.7627 0.7543 0.7058 0.8336

0.0825 0.0682 0.0660 0.0731 0.0926 0.0885
30 15 (5, 5, 5, 0, ..., 0) 0.7670 0.7703 0.7720 0.7668 0.7149 0.8364

0.0560 0.0504 0.0494 0.0526 0.0770 0.0809
(3, 3, 3, 3, 3, 0, ..., 0) 0.7656 0.7690 0.7707 0.7654 0.7138 0.8324

0.0576 0.0516 0.0505 0.0539 0.0784 0.0798
(0, ..., 0, 3, 3, 3, 3, 3) 0.7678 0.7711 0.7728 0.7676 0.7156 0.8357

0.0586 0.0524 0.0514 0.0547 0.0776 0.0821
40 20 (5, 5, 5, 5, 0, ..., 0) 0.7667 0.7691 0.7704 0.7665 0.7139 0.8349

0.0496 0.0457 0.0450 0.0474 0.0755 0.0771
(2, ..., 2, 0, ..., 0) 0.7714 0.7734 0.7747 0.7709 0.7177 0.8379

0.0439 0.0407 0.0401 0.0420 0.0703 0.0769
(0, ..., 0, 2, ..., 2) 0.7691 0.7713 0.7726 0.7687 0.7177 0.8374

0.0474 0.0438 0.0432 0.0453 0.0731 0.0769


