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Abstract

In this article, a high order implicit compact difference method for the fractional reaction-subdiffusion equation is
presented. The difference scheme is unconditionally stable and the truncation error is of first order in time and forth
order in space. A numerical example is included to demonstrate the validity of theoretical results and efficiency of
the scheme.
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1. Introduction

Fractional partial differential equations (FPDEs) have found very applications in various fields of science, for
example, physics, chemistry, biology and economics. A fractional reaction-subdiffusion equation (FR-subDE) can
be derived from a continuous time random walk model when the transport is dispersive [15] or a continuous time
random walk model with temporal memory and sources [5].
In this paper, we consider the following FR-subDE [2]

∂u(x, t)
∂t

=0 D1−γ
t

[
κγ

∂2u(x, t)
∂x2

− κu(x, t)
]

+ f(x, t), 0 < t ≤ T, 0 < x < L, (1)

subject to the boundary and initial conditions

u(0, t) = ϕ(t), 0 < t ≤ T, (2)

u(L, t) = ψ(t), 0 < t ≤ T, (3)

u(x, 0) = φ(x), 0 ≤ x ≤ L, (4)

where κ > 0 and κγ > 0 denote constant coefficients and 0 < γ < 1. Also ϕ(t), ψ(t) and φ(x) are known functions.
0D

1−γ
t v (0 < γ < 1) denotes the Riemann-Liouville fractional derivative of order 1−γ of the function v(x, t) defined

by [16],

0D
1−γ
t v =

1
Γ(γ)

∂

∂t

∫ t

0

v(x, s)
(t− s)1−γ

ds. (5)
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Several approximate and numerical solutions for FPDEs are known. Liu et al. [8,9] applied the Method of Lines for
solving space FPDEs. In [16] an explicit finite difference method for fractional subdiffusion equation is introduced
and a new Van neumann stability analysis is given. Also an implicit numerical scheme for this problem is proposed
in [6]. In [10,12,14], some numerical methods for fractional advection-dispersion equation are presented. Chen et al.
[2], presented an implicit and an explicit finite differences methods for the problem (1)-(4). However, the truncation
errors of their schemes are of first order in time and second order in space.
Compact finite difference (CFD) schemes give us a forth order accuracy to approximate the second order derivatives
and they keep the desirable tridiagonal nature of the finite difference equations. Liao et al. [7] implemented a CFD
scheme for reaction-diffusion problems. A CFD scheme for the generalized one dimensional Sine-Gordon equation
with error analysis was introduced in [4]. A fully implicit CFD method for the fractional diffusion equation with a
Fourier analysis was presented in [3].
In this article, an implicit CFD scheme for the problem (1)-(4) is presented and a Fourier analysis is given. We
approximate the second-order derivative with respect to space by the CFD, then we use the Grunwald-Letnikov
discretization for the approximation of the time fractional derivative. The truncation error of the scheme is of first
order in time and fourth order in space.
The paper is organized as follows: In Section 2, the solution of (1)-(4) by implicit CFD is considered. Section 3
is devoted to the matrix form for the difference scheme and the solvability for the linear system of equations. In
Section 4, by a Fourier analysis we prove that the scheme is unconditionally stable for all γ in the range 0 < γ < 1.
Finally, some numerical results are provided in Section 5. The accuracy and efficiency of the scheme is demonstrated
through numerical experiments.
In this paper, we use the ”empty sum” convention

∑q
l=p vl = 0 for q < p.

2. implicit CFD method for FR-subDE

Let τ = T/N be the time step, tk = kτ , k = 0, . . . , N , h = L/M be the grid step in space and xj = jh, j = 0, . . . , M.
The familiar central difference quotient

1
h2

δ2
xuj =

1
h2

(uj−1 − 2uj + uj+1) =
(

∂2u

∂x2

)

j

+
1
12

(
∂4u

∂x4

)

j

h2 +O(h4), (6)

gives only a second-order approximation to ∂2u
∂x2 . By following formula [1]

(
∂2u

∂x2

)

j

=
[
2h sinh−1 δx

2

]2

uj =
1
h2

[
δx − 12

22.3!
δ3
x +

12.32

24.5!
δ5
x −

12.32.52

26.7!
δ7
x + . . .

]2

uj

=
1
h2

(
δ2
x −

1
12

δ4
x +

1
90

δ6
x −

1
560

δ8
x + . . .

)
uj ,

in which δxuj = uj+1/2 − uj−1/2, and by Eq. (6), we get

δ2
x

h2
(
1 + 1

12δ2
x

)uk
j =

1
h2

(
δ2
x −

1
12

δ4
x +

1
144

δ6
x −

1
1728

δ8
x + . . .

)
uk

j =
∂2u

∂x2
|kj −

1
240h2

δ6
xuk

j +O(h6)

=
∂2u

∂x2
|kj −

1
240

∂6u

∂x6
|kj h4 +O(h6). (7)

Using the above equation a fourth-order approximation for ∂2u
∂x2 is obtained. For the Riemann-Liouville fractional

derivatives, we have [13],

0D
1−γ
t f(t) =

1
τ1−γ

[t/τ ]∑

k=0

ω
(1−γ)
k f(t− kτ) +O(τp), (8)

where ω
(1−γ)
k are the coefficients of the generating function, that is, ω(z, α) =

∑∞
k=0 ω

(α)
k zk. For ω(z, α) = (1− z)α,

these coefficients are ω
(α)
0 = 1 and ω

(α)
k = (−1)k

(
α
k

)
and can be evaluated by following recursive formula [11,16],

ω
(α)
0 = 1, ω

(α)
k =

(
1− α + 1

k

)
ω

(α)
k−1, k ≥ 1. (9)
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Also, in this case p = 1 in (8). For the convenience of notations, we define λl ≡ ω
(1−γ)
k , l = 0, . . . , k. Then, for

the generating function ω(z, α) = (1− z)α, by Eq. (8) we get

0D
1−γ
t u(xj , tk) = τγ−1

k∑

l=0

λlu(xj , tk−l) +O(τ). (10)

By (7) and (10), and backward difference formula

∂u

∂t
|kj =

uk
j − uk−1

j

τ
+O(τ), (11)

the implicit CFD method for problem (1)-(4) is given as follows

uk
j − uk−1

j

τ
= κγ

τγ−1

h2

k∑

l=0

λl
δ2
x

1 + 1
12δ2

x

uk−l
j − κτγ−1

k∑

l=0

λlu
k−l
j + fk

j , j = 1, 2, . . . ,M − 1, k = 1, 2, . . . , N (12)

where

u0
j = ϕ(xj), j = 1, 2, . . . , M − 1, (13)

and

uk
0 = φ(tk), uk

M = ψ(tk), k = 1, 2, . . . , N. (14)

By multiplying both sides of (12) by the operator τ(1 + 1
12δ2

x), after rearranging the terms and noting that λ0 = 1,
we get

[
1 + µ2 +

(
1 + µ2

12
− µ1

)
δ2
x

]
uk

j = (1 +
1
12

δ2
x)uk−1

j + µ1

k∑

l=1

λlδ
2
xuk−l

j − µ2

k∑

l=1

λl(1 +
1
12

δ2
x)uk−l

j

+τ(1 +
1
12

δ2
x)fk

j , 1 ≤ j ≤ M − 1, 1 ≤ k ≤ N, (15)

where µ1 = κγ
τγ

h2 and µ2 = κτγ .

So, for k = 1, we obtain
(

1 + µ2

12
− µ1

)
u1

j−1 +
[
5
6
(1 + µ2) + 2µ1

]
u1

j +
(

1 + µ2

12
− µ1

)
u1

j+1

=
[

1
12

+ λ1

(
µ1 − µ2

12

)]
u0

j−1 +
[
5
6
− λ1

(
2µ1 +

5µ2

6

)]
u0

j +
[

1
12

+ λ1

(
µ1 − µ2

12

)]
u0

j+1

+
τ

12
(
f1

j−1 + 10f1
j + f1

j+1

)
, (16)

and for 2 ≤ k ≤ N ,
(

1 + µ2

12
− µ1

)
uk

j−1 +
[
5
6
(1 + µ2) + 2µ1

]
uk

j +
(

1 + µ2

12
− µ1

)
uk

j+1

=
[

1
12

+ λ1

(
µ1 − µ2

12

)]
uk−1

j−1 +
[
5
6
− λ1

(
2µ1 +

5µ2

6

)]
uk−1

j +
[

1
12

+ λ1

(
µ1 − µ2

12

)]
uk−1

j+1

+
k∑

l=2

λl

[(
µ1 − µ2

12

)
uk−l

j−1 −
(

2µ1 +
5µ2

6

)
uk−l

j +
(
µ1 − µ2

12

)
uk−l

j+1

]
+

τ

12
(
fk

j−1 + 10fk
j + fk

j+1

)
. (17)
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By using the ”empty sum” convention, we can write (16) and (17) simply as

(
1 + µ2

12
− µ1

)
uk

j−1 +
[
5
6
(1 + µ2) + 2µ1

]
uk

j +
(

1 + µ2

12
− µ1

)
uk

j+1

=
[

1
12

+ λ1

(
µ1 − µ2

12

)]
uk−1

j−1 +
[
5
6
− λ1

(
2µ1 +

5µ2

6

)]
uk−1

j +
[

1
12

+ λ1

(
µ1 − µ2

12

)]
uk−1

j+1

+
k−2∑

l=0

λk−l

[(
µ1 − µ2

12

)
ul

j−1 −
(

2µ1 +
5µ2

6

)
ul

j +
(
µ1 − µ2

12

)
ul

j+1

]

+
τ

12
(
fk

j−1 + 10fk
j + fk

j+1

)
, 1 ≤ j ≤ M − 1, 1 ≤ k ≤ N. (18)

3. Matrix form of the numerical scheme

By multiplying both sides of (18) by a common factor 12, the matrix form of the scheme is given by

{
AU1 = B̃0U

0 + F 1

AUk =
∑k−1

l=0 Bk
l U l + F k, k = 2, 3, . . . , N

, (19)

where the tridiagonal matrices A, B̃0 and Bk
l (0 ≤ l ≤ k − 1) are given by

A =




10(1 + µ2) + 24µ1 1 + µ2 − 12µ1

1 + µ2 − 12µ1 10(1 + µ2) + 24µ1 1 + µ2 − 12µ1

. . . . . . . . .
1 + µ2 − 12µ1 10(1 + µ2) + 24µ1 1 + µ2 − 12µ1

1 + µ2 − 12µ1 10(1 + µ2) + 24µ1




,

B̃0 =




10− λ1(24µ1 + 10µ2) 1− λ1(µ2 − 12µ1)
1− λ1(µ2 − 12µ1) 10− λ1(24µ1 + 10µ2) 1− λ1(µ2 − 12µ1)

. . . . . . . . .
1− λ1(µ2 − 12µ1) 10− λ1(24µ1 + 10µ2) 1− λ1(µ2 − 12µ1)

1− λ1(µ2 − 12µ1) 10− λ1(24µ1 + 10µ2)




,

Bk
l = λk−l




−24µ1 − 10µ2 12µ1 − µ2

12µ1 − µ2 −24µ1 − 10µ2 12µ1 − µ2

. . . . . . . . .
12µ1 − µ2 −24µ1 − 10µ2 12µ1 − µ2

12µ1 − µ2 −24µ1 − 10µ2




, l = 0, 1, . . . , k − 2,

and Bk
k−1 = B̃0, k ≥ 2.

Furthermore, the column vectors F 1 and F k in (19) are as follows

F 1 =




[1− λ1(µ2 − 12µ1)]u0
0 − (1 + µ2 − 12µ1)u1

0 + τ
(
f1
0 + 10f1

1 + f1
2

)
τ

(
f1
1 + 10f1

2 + f1
3

)
...

τ
(
f1

M−3 + 10f1
M−2 + f1

M−1

)
[1− λ1(µ2 − 12µ1)] u0

M − (1 + µ2 − 12µ1)u1
M + τ

(
f1

M−2 + 10f1
M−1 + f1

M

)




,
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and

F k =




∑k−2
l=0 λk−l(12µ1 − µ2)ul

0 + [1− λ1(µ2 − 12µ1)]uk−1
0 − (1 + µ2 − 12µ1)uk

0 + τ
(
fk
0 + 10fk

1 + fk
2

)
τ

(
fk
1 + 10fk

2 + fk
3

)
...

τ
(
fk

M−3 + 10fk
M−2 + fk

M−1

)
∑k−2

l=0 λk−l(12µ1 − µ2)ul
M + [1− λ1(µ2 − 12µ1)] uk−1

M − (1 + µ2 − 12µ1)uk
M + τ

(
fk

M−2 + 10fk
M−1 + fk

M

)




,

for k ≥ 2.

Theorem 3.1 The difference system (15) is solvable.

Proof. Because for any µ1 = κγ
τγ

h2 > 0 and µ2 = κτγ > 0, the coefficient matrix A in (19) is strictly diagonally
dominant. Consequently the matrix A is invertible and the system (15) has a unique solution.

4. Theoretical analysis of the CFD scheme

4.1. Stability

We investigate the stability of the CFD scheme by the Fourier method. Let ρk
j be the roundoff error in the mesh

point (jh, kτ). Noticing (15), the following roundoff error equations are obtained

[
1 + µ2 +

(
1 + µ2

12
− µ1

)
δ2
x

]
ρk

j = (1 +
1
12

δ2
x)ρk−1

j + µ1

k∑

l=1

λlδ
2
xρk−l

j − µ2

k∑

l=1

λl(1 +
1
12

δ2
x)ρk−l

j ,

1 ≤ j ≤ M − 1, 1 ≤ k ≤ N, (20)
ρk
0 = ρk

M = 0, 1 ≤ k ≤ N. (21)

We let

ρk =
(
ρk
1 , ρk

2 , . . . , ρk
M−1

)T
, (22)

and introduce the following norm

‖ρk‖l2 =




M−1∑

j=1

h|ρk
j |2




1/2

. (23)

Now, suppose that the solutions of equations (20) and (21) have the following form

ρk
j = Gkeiσjh, j = 1, 2, . . . , M − 1, k = 1, 2, . . . , N, (24)

where σ = 2πn/L (n ∈ Z). Substituting the above expression into (20), we get
[
1 + µ2 +

(
−1 + µ2

3
+ 4µ1

)
sin2(

σh

2
)
]

Gk =
[
1− λ1µ2 +

(
−1− λ1µ2

3
− 4λ1µ1

)
sin2(

σh

2
)
]

Gk−1

−
[
µ2 +

(
−µ2

3
+ 4µ1

)
sin2(

σh

2
)
] k−2∑

l=0

λk−lGl, 1 ≤ k ≤ N. (25)

Consequently,




G1 =
1−λ1µ2+(− 1−λ1µ2

3 −4λ1µ1) sin2( σh
2 )

1+µ2+(− 1+µ2
3 +4µ1) sin2( σh

2 )
G0,

Gk =
1−λ1µ2+(− 1−λ1µ2

3 −4λ1µ1) sin2( σh
2 )

1+µ2+(− 1+µ2
3 +4µ1) sin2( σh

2 )
Gk−1 − µ2+(−µ2

3 +4µ1) sin2( σh
2 )

1+µ2+(− 1+µ2
3 +4µ1) sin2( σh

2 )

∑k−2
l=0 λk−lGl, 2 ≤ k ≤ N.

(26)
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Lemma 4.1 The coefficients λl (l=0,1,. . . ) satisfy [17]

(1)λ0 = 1, λ1 = γ − 1, λl < 0, l = 1, 2, . . . .
(2)

∑∞
l=0 λl = 0, and for all n ≥ 1, −∑n

l=1 λl < 1.

Thus we can proof following lemma

Lemma 4.2 Suppose that Gk (1 ≤ k ≤ N) are defined by (26), then for 0 < γ < 1, we have

|Gk| ≤ |G0|, k = 1, 2, . . . , N.

Proof. We prove the lemma by mathematical induction. For k = 1, from the first equation in (26) we have

|G1| ≤
1− λ1µ2 +

(
− 1−λ1µ2

3 − 4λ1µ1

)
sin2(σh

2 )

1 + µ2 +
(− 1+µ2

3 + 4µ1

)
sin2(σh

2 )
|G0|.

From the lemma 1, we have−1 < λ1 < 0 and consequently |G1| ≤ |G0|. Now suppose that |Gk| ≤ |G0|; 1 ≤ k ≤ n−1.
By this hypothesis and the second equation in (26), we get

|Gn| ≤

1− λ1µ2 +

(
− 1−λ1µ2

3 − 4λ1µ1

)
sin2(σh

2 )

1 + µ2 +
(− 1+µ2

3 + 4µ1

)
sin2(σh

2 )
+

µ2 +
(−µ2

3 + 4µ1

)
sin2(σh

2 )

1 + µ2 +
(− 1+µ2

3 + 4µ1

)
sin2(σh

2 )

n−2∑

l=0

|λn−l|

 |G0|. (27)

By the lemma 1, we can write

n−2∑

l=0

|λn−l| =
n−1∑

l=0

|λn−l| − |λ1| < 1 + λ1. (28)

Now, from (27) and (28) we obtain |Gn| ≤ |G0|. Hence the proof is completed.

Theorem 4.3 The implicit CFD scheme defined by (15) is unconditionally stable for 0 < γ < 1.

Proof. From (23) and (24), and by applying Lemma 2, we have

‖ρk‖2l2 = h

M−1∑

j=1

|Gkeiσjh|2 = h

M−1∑

j=1

|Gk|2 ≤ h

M−1∑

j=1

|G0|2 = h

M−1∑

j=1

|G0e
iσjh|2 = ‖ρ0‖2l2 , k = 1, 2, . . . , N.

Hence the unconditionally stability of the scheme is proved.

By Eqs. (7), (10) and (11), the local truncation error of the scheme (15) is obtained as follows

Rk
j =

u(xj , tk)− u(xj , tk−1)
τ

− κγ
τγ−1

h2

k∑

l=0

λl
δ2
x

1 + 1
12δ2

x

u(xj , tk−l) + κτγ−1
k∑

l=0

λlu(xj , tk−l)− f(xj , tk)

=
∂

∂t
u(xj , tk)− κγτγ−1

k∑

l=0

λl

(
∂2

∂x2
u(xj , tk−l)− h4

240
∂6

∂x6
u(xj , tk−l) + . . .

)

+κτγ−1
k∑

l=0

λlu(xj , tk−l)− f(xj , tk) +O(τ)

=
∂

∂t
u(xj , tk)− 0D

1−γ
t

[
κγ

∂2u(xj , tk)
∂x2

− κu(xj , tk)
]
− f(xj , tk)

+κγ

(
h4

240

)
0D

1−γ
t

∂6

∂x6
u(xj , tk) +O(τ) +O(h6)

= O(τ + h4).

Also, the consistency of the scheme is concluded through above relations.
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5. Numerical experiments

We applied the method presented in this paper and solved 1 example given in [2].

Example 1. Consider [2],

∂u(x, t)
∂t

=0 D1−γ
t

[
∂2u(x, t)

∂x2
− u(x, t)

]
+ (1 + γ)extγ , 0 < t ≤ 1, 0 < x < 1, (29)

u(x, 0) = 0, 0 ≤ x ≤ 1, (30)
u(0, t) = t1+γ , u(1, t) = et1+γ , 0 < t ≤ T. (31)

The exact solution of the problem is u(x, t) = ext1+γ .

Figure 1: CFD solutions with h = 1/16 and τ = 1/8 together with the exact solution at T=1 (γ = 0.8 ).

We solved the problem (29)-(31) by the method presented in this paper. In Table 1, the maximum error for
numerical solutions and the experimental convergence order for γ=0.25 and different values of τ and h, are shown.
The followings are used for the maximum error and the experimental convergence order (C −Order).

‖e‖l∞ = max
1≤j≤M−1

{∣∣u(xj , 1)− uN
j

∣∣} ,

and

C −Order = log2 (‖e(16τ, 2h)‖l∞/‖e(τ, h)‖l∞) , (32)

in which ‖e(τ, h)‖l∞ means the error ‖e‖l∞ computed with mesh sizes τ and h. The comparison between the exact
solution and the numerical solutions of CFD method for h = 1/16; τ = 1/8 and γ = 0.8 at T = 1 is shown in Fig.
1.

6. Conclusion

In this paper, an implicit CFD scheme for FR-subDE is presented. By the method, the computation of FR-subDE
is reduced to some linear systems with a tridiagonal coefficient matrix. So, the systems are easy to solve. The
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Table 1: Maximum error and experimental convergence order for our CFD scheme (γ=0.25).

Mesh sizes ‖e‖l∞ C −Order
h=τ=1/4 1.47615× 10−2 -

h=1/8, τ=1/64 1.24074× 10−3 3.57
h=1/16, τ=1/1024 8.78350× 10−5 3.82

method is unconditionally stable for 0< γ <1 and it has accuracy of four in the spatial grid size and one in the
time step. Numerical results are in the agreement with the our theoretical findings.
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