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Abstract

In this work two new iterative processes called the “Jungck-Kirk generalized multi-step” and “Jungck-Kirk multi-
step” are introduced and some convergence and stability results are proved for these iterative process. The results
include results of almost stability and summable almost stability. Since these new iterative processes are more
general than other ones extant in literature, some results of this work partially generalize results already proved in
the existing literature.
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1. Introduction and Preliminaries

There are many iterative processes related to fixed point theory, several of them have been obtained as generaliza-
tions of others ones. An iterative process is generally denoted by

x0 ∈ X; xn+1 = f(T, xn), for all n ∈ N,

where X is an ambient space, x0 is an arbitrary initial point, T : X −→ X is a mapping and f is some function.
For example, if f(T, xn) = Txn, then we obtain the well-known Picard iteration; x0 ∈ X, xn+1 = Txn.

Recently, Gursoy, Karakaya and Rhoades [4] introduced a generalization of Kirk-Noor [3] iterative process and
multistep iteration [22]. This iterative process is called Kirk-multistep iteration and is defined as
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x0 ∈ X;

yk−1n =

sk∑
ik=0

βk−1
n,ik

T ikxn, k ≥ 2, for all n ∈ N;

ypn = βp
n,0xn +

sp+1∑
ip+1=1

βp
n,ip+1

T ip+1yp+1
n , p = 1, k − 2;

xn+1 = αn,0xn +

s1∑
i1=1

αn,i1T
i1y1n,

(1)

where
∑s1

i1=0 αn,i1 = 1,
∑sp+1

ip+1=0 β
p
n,ip+1

= 1 for p = 1, k − 1; αn,i1 , β
p
n,ip+1

∈ [0, 1] satisfying αn,i1 ≥ 0, αn,0 6= 0,

βp
n,ip+1

≥ 0, βp
n,0 6= 0 for p = 1, k − 1 and s1, sp+1 for p = 1, k − 1 are fixed integers with s1 ≥ s2 ≥ · · · ≥ sk.

Other type of iterative processes are those known as Jungck type. They involve maps S, T : Y −→ X, where S
is an injective map, X is a metric space and usually Y is an any set.

Here, we can consider Y as any set, x0 ∈ Y , X endowed with a norm || · || and T (Y ) ⊂ S(Y ).

Olaleru and Akewe [13] introduced an iterative process called Jungck-multistep iterative process. It is defined
as,


Szk−1n = (1− βk−1

n )Sxn + βk−1
n Txn k ≥ 2;

Szin = (1− βi
n)Sxn + βi

nTz
i+1
n i = 1, 2, ..., k − 2;

Sxn+1 = (1− αn)Sxn + αnT
iz1n, n = 1, 2, ...,

(2)

where {αn}
∞

n=0
, {βi

n}
∞

n=0
, i = 1, 2, ..., k−1, are real sequences in [0, 1), such that

∞∑
n=0

αn =∞ and k is a fixed integer.

Chugh and Kumar [3] defined the following iterative process called Jungck-Kirk-Noor :



Swn = γn,0Sxn +

t∑
l=1

γn,lT
lxn,

t∑
l=0

γn,l = 1;

Szn = βn,0Sxn +

s∑
j=1

βn,jT
jwn,

s∑
j=0

βn,j = 1;

Sxn+1 = αn,0Sxn +

k∑
i=1

αn,iT
izn,

k∑
i=0

αn,i = 1, n = 0, 1, 2, ...,

(3)

where k ≥ s ≥ t, αn,i ≥ 0, αn,0 6= 0, βn,j ≥ 0, βn,0 6= 0, γn,l ≥ 0, γn,0 6= 0 αn,i, βn,j , γn,l ∈ [0, 1] where k, s and t
are fixed integers.

Both the Jungck-multistep and the Jungck-Kirk-Noor iterative processes are generalizations of the Jungck-Noor
Iterative process given in [14]. In the particular case when Y = X and S is the identity map on X, then we
obtain the multistep iteration scheme [22] and the Kirk-Noor [3] iterative process from (2) and (3) respectively.
Furthermore, in this case, we can see (2) as a generalization of the Mann iterative process [11] and the Ishikawa
iterative process [9], (3) is a generalization of the Mann iterative process [11], the Ishikawa iterative process [9], the
Noor iterative process [10], the Kirk iterative process [10] and the Kirk-Ishikawa iterative process [17].

One of the issues in fixed point theory is the stability of iterative processes. A definition of stability was
established by Harder and Hicks [6].

Ostrowski [21] seems to be the first to discuss the stability of iterative process. In 1964, he proved the stability
of the process xn+1 = Txn where T is a contraction.

In the same sense of Harder and Hicks’s definition, Singh, Bhatnagar and Mishra [23] gave a definition of
stability for Jungck-type iterative processes. Over time, other definitions of stability have appeared such as the
almost stability (see Osilike [20]) and the summable almost stability (see Berinde [1]).

Below we put the definition of stability given by Singh, Bhatnagar and Mishra [23] and also we state the defini-
tions of almost stability and summable almost stability, but in the context of the Jungck-type iterative processes.
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Definition 1.1 Let (X, d) be a metric space and Y an arbitrary set. Let S, T : Y −→ X be two maps such that,
S is an injective map and T (Y ) ⊂ S(Y ). Let z be a coincidence point of T and S, i.e. Tz = Sz = p, for some
p ∈ X. Let x0 ∈ Y and Sxn+1 = f(T, xn) be an iterative process such that the sequence {Sxn}

∞

n=0
converges to p.

Let {Syn}
∞

n=0
be an arbitrary sequence in S(Y ) and εn = d(Syn+1, f(T, yn)).

• If lim
n→∞

εn = 0 implies that lim
n→∞

Syn = p, then the iterative process Sxn+1 = f(T, xn) is called (S,T)- stable

or stable with respect to S and T .

• If

∞∑
n=0

εn < ∞ implies that lim
n→∞

Syn = p, then the iterative process Sxn+1 = f(T, xn) will be called almost

(S,T)-stable or almost stable with respect to S and T .

• If

∞∑
n=0

εn < ∞ implies that

∞∑
n=0

d(Syn, p) < ∞, then the iterative process Sxn+1 = f(T, xn) will be called

summable almost (S,T)-stable or summable almost stable with respect to S and T .

Any summable almost stable iterative process is also almost stable but the reverse is not always true (see Berinde
[1]). Any T -stable iterative process is also almost stable, but the reverse is generally not true as was shown by
Osilike [20, Example 1].

In the literature there are several fixed point theorems on stability where the following contractive condition
introduced in [7] is employed (see for example [16], [15], [17], [5] and [4]).

d(Tx, Ty) ≤ δd(x, y) + ϕ(d(x, Tx)), where δ ∈ [0, 1), for all x, y ∈ X, (4)

where ϕ : R −→ R is a monotone increasing mapping with ϕ(0) = 0 and (X, d) is a metric space.
Rhoades [2] considered maps T : X −→ X having a fixed point p and satisfying the condition

d(p, Tx) ≤ δd(p, x), for some 0 ≤ δ < 1 and for each x ∈ X. (5)

If we put ϕ(t) = 0 in inequality (4), we can get the definition of contraction used in the Banach fixed point
theorem. If we take ϕ(t) = Lt, L ≥ 0, the inequality (4) reduces to the contractive definition due to Osilike [19]. It
is easy to verify that any Zamfirescu contraction (see [24]) satisfies (4) with a particular mapping ϕ.

However, the mappings satisfying (4) need not have fixed points (see example in [19]), so, in stability results it
has been necessary to assume the existence of the fixed point.

To our opinion it is better to work with the contractive condition defined by (5) than with (4) because if we
suppose that T has a fixed point, then (4) implies (5) and using (5), we avoid doing unnecessary calculations.
Furthermore, others contractive conditions such as (II) from [8] and the condition used in Corollary 2.2 from [18]
involve (5), too.

In this work, we introduce the new iterative processes Kirk and Jungck-multi step type such that these ones
generalize to the ones defined by (2) y (3). Also we prove that the new iterative processes are stable, almost stable
and summable almost stable with respect to functions that satisfy a contractive condition like inequality (5) but
in the context of the Jungck-type iterative processes. Furthermore our theorems include results that show that the
new iterative methods can be used to approximate fixed points.

The proof of main result is based on the following lemma.

Lemma 1.2 (Berinde [1, Lemma 1]). Let {un}
∞

n=0
and {εn}

∞

n=0
be sequences of nonnegative numbers and δ ∈ [0, 1),

such that,

un+1 ≤ δun + εn, n = 0, 1, ... (6)

L1) If lim
n→∞

εn = 0, then lim
n→∞

un = 0.

L2) If

∞∑
n=0

εn <∞, then

∞∑
n=0

un <∞.
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2. Main results

Motivated by the iterative processes defined in the last section we define the following two iterative processes.

Definition 2.1 Let (X, || · ||) be a normed space and Y a set such that X ⊆ Y . Let m ∈ N \ {1, 2} be a fixed
number and k1, k2, ..., km ∈ N. We suppose S, Tj,ij : Y −→ X, for j = 1, 2, ...,m and ij = 1, ..., kj, are maps

such that S is an injective map and for any finite collection {λij}
kj

ij=0
⊂ [0, 1] and for each x, y ∈ Y we have thatλ0Sx+

kj∑
ij=1

λijTj,ijy

 ∈ S(Y ), for j = 1, 2, ..,m. We suppose α
(j)
n,ij
∈ [0, 1] for each j ∈ {1, ...,m}, ij ∈ {0, ..., kj}

and n ∈ N and

kj∑
ij=0

α
(j)
n,ij

= 1 for each j ∈ {1, ...,m} and n ∈ N.

Let x0 ∈ X be an arbitrary point and define the iteration that generates the sequence {Sxn}
∞

n=0
, by

Sz(m)
n = α

(m)
n,0 Sxn +

km∑
im=1

α
(m)
n,im

Tm,imxn;

Sz(j)n = α
(j)
n,0Sxn +

kj∑
ij=1

α
(j)
n,ij

Tj,ijz
j+1
n , for j = 2, ...,m− 1;

xn+1 = α
(1)
n,0Sxn +

k1∑
i1=1

α
(1)
n,i1

T1,i1z
(2)
n .

This iterative process will be called the “Jungck-Kirk generalized multi-step iteration” or the “Jungck-Kirk gen-
eralized multi-step iterative process”.

Let T be a map. If in the above definition, Tj,ij = T ij (here T ij , denotes the composition of T with itself ij
times ), for j = 1, 2, ...,m and ij = 1, ..., kj , then we obtain the following special case:

Definition 2.2 Let (X, || · ||) be a normed space and Y a set such that X ⊆ Y . Let m ∈ N \ {1, 2} be a fixed
number and k1, k2, ..., km ∈ N. We suppose S, T : Y −→ X are two maps such that, S is an injective map and

for any finite collection {λij}
kj

ij=0
⊂ [0, 1] and for each x, y ∈ Y we have that

λ0Sx+

kj∑
ij=1

λijT
ijy

 ∈ S(Y ), for

j = 1, 2, ..,m. We suppose α
(j)
n,ij
∈ [0, 1] for each j ∈ {1, ...,m}, ij ∈ {0, ..., kj} and n ∈ N, and

kj∑
ij=0

α
(j)
n,ij

= 1, for

each j ∈ {1, ...,m} and n ∈ N. Let x0 ∈ X be an arbitrary point and define the iteration that generates the sequence
{Sxn}

∞

n=0
, by

Sz(m)
n = α

(m)
n,0 Sxn +

km∑
im=1

α
(m)
n,im

T imxn;

Sz(j)n = α
(j)
n,0Sxn +

kj∑
ij=1

α
(j)
n,ij

T ijzj+1
n , for j = 2, ...,m− 1;

xn+1 = α
(1)
n,0Sxn +

k1∑
i1=1

α
(1)
n,i1

T i1z(2)n .

This iterative process will be called “the Jungck-Kirk multi-step iteration” or the “Jungck-Kirk multi-step iterative
process”.

Remarks: Let us consider the Jungck-Kirk multi-step iterative process:
2.1 If k1 = k2 = · · · = km = 1, then we obtain the Jungck-multistep iterative process (Olaleru and Akewe [13]).
2.2 If m = 3, we obtain the Jungck-Kirk-Noor iterative process (Chugh and Kumar [3]).
2.3 If m = 3, k1 = k2 = k3 = 1, then we obtain the Jungck-Noor iterative process(Olatinwo [14]).



94 International Journal of Applied Mathematical Research

2.4 If Y = X, S = I, (I the identity function on X) we obtain the Kirk multistep iteration (Gursoy, Karakaya
and Rhoades [4]).

2.5 If Y = X, S = I, m = 3 and α
(3)
n,0 = 1, for each n ∈ Z+, gives us the Kirk-Ishikawa iterative process

(Olatinwo [17]).

2.6 If Y = X, S = I, m = 3, α
(2)
n,0 = 1, α

(3)
n,0 = 1 and α

(1)
n,i1

= α
(1)
i1

, i1 = 0, 1, ..., k1, for each n ∈ Z+, then we
obtain the Kirk iterative process (Kirk [10]).

The remarks 2.1 - 2.6 tell us how from the Jungck-Kirk multi-steps iteration, we get some iterative processes.
Of course, from this iteration we can also obtain the Mann [11], Ishikawa[9], Noor [12] and multistep [13] iterative
processes.

Now we give our main results.

Theorem 2.3 Let (X, || · ||) be a normed space and Y a set such that X ⊆ Y . Let m ∈ N \ {1, 2} be a fixed
number and k1, k2, ..., km ∈ N. We suppose S, Tj,ij : Y −→ X, for j = 1, 2, ...,m and ij = 1, ..., kj are maps

such that S is an injective map and for any finite collection {λij}
kj

ij=0
⊂ [0, 1] and for each x, y ∈ Y we have thatλ0Sx+

kj∑
ij=1

λijTj,ijy

 ∈ S(Y ), for j = 1, 2, ..,m. We suppose also that there exists q ∈ Y , with Sq = p, such

that

a) ||T1,i1x− p|| ≤ δ||Sx− p||, for some δ ∈ [0, 1), for each x ∈ Y and i1 = 1, ..., k1;

b) ||Tj,ijx− p|| ≤ ||Sx− p||, for each x ∈ Y , ij = 1, ..., kj and j = 1, 2, ...,m.

Let {Sxn}
∞

n=0
be the sequence generated by the Jungck-Kirk generalized multi-step iteration, with additional condition

that there exists α < 1, such that 0 < α
(1)
n,0 + δ ≤ α, for all n ∈ N.

Let {Syn}
∞

n=0
be an arbitrary sequence in S(Y ) and

Sw(m)
n = α

(m)
n,0 Syn +

km∑
im=1

α
(m)
n,im

Tm,imyn;

Sw(j)
n = α

(j)
n,0Syn +

kj∑
ij=1

α
(j)
n,ij

Tj,ijw
j+1
n , for j = 2, ...,m− 1;

εn =

∣∣∣∣∣
∣∣∣∣∣Syn+1 − α(1)

n,0Syn −
k1∑

i1=1

α
(1)
n,i1

T1,i1w
(2)
n

∣∣∣∣∣
∣∣∣∣∣ .

Then

i) q is a coincidence point of Tj,ijq = Sq = p for each ij ∈ {1, ..., kj} and j ∈ {1, 2, ...,m};

ii) the sequence {Sxn}
∞

n=0
converges to the point p;

iii) lim
n→∞

εn = 0 if and only if lim
n→∞

Syn = p;

iv) if

∞∑
n=0

εn <∞ then lim
n→∞

Syn = p;

v) if

∞∑
n=0

εn <∞ then

∞∑
n=0

d(Syn, p) <∞.

Proof. By hypothesis b), we can see directly that q is a point of coincidence of all maps that are being
considered. We omit the proof of part (ii), since it is similar to the test (iii).

To prove (iii) we must show two implications.
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(Necessity). We suppose that lim
n→∞

εn = 0.

||Syn+1 − p|| ≤

∣∣∣∣∣
∣∣∣∣∣Syn+1 − α(1)

n,0Syn −
k1∑

i1=1

α
(1)
n,i1

T1,i1w
(2)
n

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣α(1)

n,0Syn +

k1∑
i1=1

α
(1)
n,i1

T1,i1w
(2)
n − p

∣∣∣∣∣
∣∣∣∣∣

= εn +

∣∣∣∣∣
∣∣∣∣∣α(1)

n,0Syn +

k1∑
i1=1

α
(1)
n,i1

T1,i1w
(2)
n − α

(1)
n,0p−

k1∑
i1=1

α
(1)
n,i1

p

∣∣∣∣∣
∣∣∣∣∣

≤ εn + α
(1)
n,0||Syn − p||+

k1∑
i1=1

α
(1)
n,i1
||T1,i1w(2)

n − p||

by hypothesis a) we have,

||Syn+1 − p|| ≤ εn + α
(1)
n,0||Syn − p||+

(
k1∑

i1=1

α
(1)
n,i1

)
δ||Sw(2)

n − p||. (7)

Let us now consider ||Sw(j)
n − p||, for j = 2, ...,m− 1,

||Sw(j)
n − p|| =

∣∣∣∣∣∣
∣∣∣∣∣∣α(j)

n,0Syn +

kj∑
ij=1

α
(j)
n,ij

Tj,ijw
(j+1)
n −

kj∑
ij=0

α
(j)
n,ij

p

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ α(j)
n,0||Syn − p||+

kj∑
ij=1

α
(j)
n,ij
||Tj,ijw(j+1)

n − p||

by hypothesis b) we have,

||Sw(j)
n − p|| ≤ α

(j)
n,0||Syn − p||+

 kj∑
ij=1

α
(j)
n,ij

 ||Sw(j+1)
n − p||. (8)

Similarly with ||Sw(m)
n − p||, we get

||Sw(m)
n − p|| ≤ α(m)

n,0 ||Syn − p||+

(
km∑

im=1

α
(m)
n,im

)
||Syn − p|| = ||Syn − p||. (9)

By (8) and (9), ||Sw(m−l)
n − p|| ≤ ||Syn − p||, for l = 0, 1, ...,m− 2, so

||Sw(2)
n − p|| ≤ ||Syn − p||, (10)

and by (7)

||Syn+1 − p|| ≤ εn + α
(1)
n,0||Syn − p||+

(
k1∑

i1=1

α
(1)
n,i1

)
δ||Syn − p||

≤ εn +
(
α
(1)
n,0 + δ

)
||Syn − p||

≤ εn + α||Syn − p||.

Since
(
α
(1)
n,0 + δ

)
≤ α

||Syn+1 − p|| ≤ εn + α||Syn − p||. (11)
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By Lemma 1.2, lim
n→∞

Syn = p.

(Sufficiency). Now, we suppose that lim
n→∞

||Syn − p|| = 0.

εn =

∣∣∣∣∣
∣∣∣∣∣Syn+1 − α(1)

n,0Syn −
k1∑

i1=1

α
(1)
n,i1

T1,i1w
(2)
n

∣∣∣∣∣
∣∣∣∣∣

≤ ||Syn+1 − p||+

∣∣∣∣∣
∣∣∣∣∣

k1∑
i1=0

α
(1)
n,i1

p− α(1)
n,0Syn −

k1∑
i1=1

α
(1)
n,i1

T1,i1w
(2)
n

∣∣∣∣∣
∣∣∣∣∣

≤ ||Syn+1 − p||+ α
(1)
n,0||Syn − p||+

k1∑
i1=1

α
(1)
n,i1
||T1,i1w(2)

n − p||

≤ ||Syn+1 − p||+ α
(1)
n,0||Syn − p||+

(
k1∑

i1=1

α
(1)
n,i1

)
δ||Sw(2)

n − p||

From this and inequality (10), we get that

εn ≤ ||Syn+1 − p||+ α
(1)
n,0||Syn − p||+

(
k1∑

i1=1

α
(1)
n,i1

)
δ||Syn − p||

≤ ||Syn+1 − p||+ ||Syn − p||.

then,
lim

n→∞
εn ≤ lim

n→∞
(||Syn+1 − p||+ ||Syn − p||) = 0.

The statement (v) is true also by inequality (11) and Lemma 1.2 and (iv) is a consequence of (iii) and (v).
�

Corollary 2.4 Let (X, || · ||) be a normed space and Y a set such that X ⊆ Y . Let S, T : Y −→ X be maps

such that S is an injective map and for any finite collection {λi}
kj

i=0
⊂ [0, 1] and for each x, y ∈ Y we haveλ0Sx+

kj∑
i=1

λiT
iy

 ∈ S(Y ), for each j ∈ {1, ...,m}. Also, we suppose there exists q ∈ Y , with Sq = p such that

c) ||Tx− p|| ≤ δ||Sx− p||, for some δ ∈ [0, 1) and for each x ∈ Y ;

d) ||S(T (x))− p|| ≤ ||T (S(x))− p||, for each x ∈ Y ;

e) ||S2x− p|| ≤ ||Sx− p||, for each x ∈ Y .

Let {Sxn}
∞

n=0
be a sequence generated by the Jungck-Kirk multi-step iteration, with additional condition that there

exists α < 1, such that 0 < α
(1)
n,0 + δ ≤ α, for all n ∈ N.

Let {Syn}
∞

n=0
be an arbitrary sequence in S(Y ) and

Sw(m)
n = α

(m)
n,0 Syn +

km∑
im=1

α
(m)
n,im

T imyn;

Sw(j)
n = α

(j)
n,0Syn +

kj∑
ij=1

α
(j)
n,ij

T ijwj+1
n , for j=2,...,m-1;

εn =

∣∣∣∣∣
∣∣∣∣∣Syn+1 − α(1)

n,0Syn −
k1∑

i1=1

α
(1)
n,i1

T i1w(2)
n

∣∣∣∣∣
∣∣∣∣∣ .

Then

i) q is a coincidence point of S and T ; even, q = p, i.e. p is a fixed point of T and S. Furthermore this fixed
point is unique.

ii) the sequence {Sxn}
∞

n=0
converges to the point p;
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iii) lim
n→∞

εn = 0 if and only if lim
n→∞

Syn = p;

iv) if

∞∑
n=0

εn <∞ then lim
n→∞

Syn = p;

v) if

∞∑
n=0

εn <∞ then

∞∑
n=0

d(Syn, p) <∞.

Proof. First, to prove (i) note that (e) implies that Sp = p. Since S is an injective map, then q = p. Now, by
(c) we have Tp = p and from (c) we obtain that if there exists another fixed point p′, then p′ = p.

The proofs of (ii), (iii), (iv) and (v) follow from Theorem 2.3. If we put Tj,ij = T ij , for ij = 1, ..., kj and
j = 1, ...,m, in Theorem 2.3, we only need to observe that the assumptions a) and b) are satisfied. For this purpose
let us fix j ∈ {1, ...,m} and we consider ij ≥ 2,

||T ijx− p|| = ||TT ij−1x− p||.

By hypothesis c), ||T ijx− p|| ≤ δ||ST ij−1x− p||.
By hypothesis d), ||T ijx− p|| ≤ δ||T ij−1Sx− p||.

Repeating these steps ij times, we get.

||T ijx− p|| ≤ δij ||Sijx− p||
≤ δ||S2Sij−2x− p||.

By hypothesis e), ||T ijx− p|| ≤ δ||Sij−1x− p||.
Repeating these steps ij times, we get

||T ijx− p|| ≤ δ||Sx− p||.

So, a) and b) are satisfied.

�

In the particular case Y = X and S the identity mapping in X in Corollary 2.4, we partially obtain the theorem 6
and 7 from [4]. But in this case we use the condition defined by the inequality (5) instead of the condition defined
by (4).

Theorem 2.3 and Corollary 2.4 partially generalize theorems 3.1 and 3.2 of Chugh and Kumar [3]. This can be seen
if we choose m = 3 in Corollary 2.4.

Unlike [4] and [3] in this work we include results of almost stability and summable almost stability in our theorems.
But we say that our results partially generalize to others because we put the additional assumption 0 < α1

n,0+δ ≤ α,
for some α < 1.

We conclude with the following question: Does the Theorem 2.3 and the Corollary 2.4 remain true if we remove
the restriction 0 < α1

n,0 + δ ≤ α < 1?

3. Conclusion

In this work, we have introduced a general iterative method from which we can get others from the existing literature.
Furthermore, we have given two results that partially generalize to the theorem 6 and 7 from [4] and the theorems
3.1 and 3.2 from [3].
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