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Abstract 
 

In 2010, Victoria Martin Marquez studied a nonexpansive mapping in Hadamard manifolds using Viscosity 

approximation method. Our goal in this paper is to study the strong convergence of the Viscosity approximation method 

in Hadamard manifolds. Our results improve and extend the recent research in the framework of Hadamard manifolds. 
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1. Introduction 

Recent developments in fixed point theory reflect that the iterative constructions of fixed points is vigorously proposed 

and analyzed for various classes of maps in different spaces. Viscosity approximation methods are very important 

because they are applied to convex optimization, linear programming, monotone inclusions and elliptic differential 

equations. 

In 2000, the viscosity approximation method for selecting a particular fixed point of a given non-expansive mapping 

was introduced by Moudafi [9]. He established strong convergence of both implicit and explicit schemes in a Hilbert 

space. Further, in 2004, Xu[14] extended Moudafi’s results[9] to the framework of uniformly smooth Banach spaces 

and proved the strong convergence of continuous scheme and iterative scheme. In Hilbert space, many authors studied 

the fixed point problems for the non-expansive mappings by the viscosity approximation methods and obtained a series 

of good results [1], [2], [7], [9], [12], [14]. 

In 2008, Qin et al. [17] introduced a modified Ishikawa iterative process for a pair of nonexpansive mappings and 

obtain a strong convergence theorem in the framework of uniformly smooth Banach spaces. They introduced the 

composite iteration process as follows: 

 

   1 1n n n n nx f x y      

 

  11n n n n ny x T z                                                                                                                                                       (1.1) 

 

2(1 )Tn n n n nz x x     

 

Where the sequence  n in (0, 1) and    ,n n  are sequences in [0, 1]. The sequence  nx defined by (1.1) converges 

to a common fixed point of T1 and T2, which solves the variational inequality  

 

   ( ), ( ) 0I f Q f J Q f p   ,  

 

where f is a contraction and p ∈ F (T1) ∩ F (T2). 
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If  n =1 in (1.1), this can be viewed as a modified Mann iteration process [6]: 

 

   1 1n n n n nx f x y    
 

 

  11n n n n ny x T x                                                                                                                                                        (1.2) 

 

 n =1 and  n =0 in (1.1), then it reduces to the algorithm considered by Xu [14]. 

 

In the recent years, some algorithms for solving variational inequalities and minimization problems have been extended 

from the Hilbert space framework to the more general setting of Riemannian manifolds [4], [5] and [10]. Motivated and 

inspired by the ongoing research in this direction, we establish the convergence of the viscosity method (1.1) for 

nonexpansive mappings in the setting of Hadamard manifolds, i.e., complete simply connected Riemannian manifolds 

of nonpositive sectional curvature.  

2. Preliminary notes 

First of all, we give some definitions and notations, which can be easily found in [3], [11]. 

Let p∊M, where M is connected m-dimensional Riemannian manifold. A Riemannian manifold is a Riemannian metric

., . , with the corresponding norm denoted by . . We denote the tangent space of M at p by TpM. We define the 

length of a piecewise smooth curve, c: [a, b] →M joining p to q (i.e. c (a) = p and c (b) = q), by using the metric as 

( ) ( )
b

a

L c c t dt   . Then the Riemannian distance d (p, q) is defined to be the minimal length over the set of all such 

curves joining p to q, which induces the original topology on M. Let c be a smooth curve and ∇ be the Levi- Civita 

connection associated to (M, ,  ). A smooth vector field X along c is said to be parallel if c  X = 0. If c’ is parallel, 

then c is a geodesic and here c   is a constant. A geodesic joining p to q in M is said to be minimal geodesic if its 

length equals d(p, q).A geodesic triangle ∆(p1, p2, p3) of a Riemannian manifold is a set consisting of three points p1, p2, 

p3 and three minimal geodesic i  joining pi to pi+1 , with i = 1, 2, 3(mod 3). 

A Riemannian manifold is complete if for any p ∊ M, all geodesics emanating from p are defined for all t   . By 

the Hopf - Rinow theorem we know that if M is complete then any pair of points in M can be joined by a minimizing 

geodesic. Thus (M, d) is a complete metric space, and bounded closed subsets are compact. 

Now, the exponential map expp: TpM→ M at p ∊M is such that exp (1, )p vv p  for each pv T M , where  . (., )v p   

is the geodesic starting at p with velocity v . Then exp ( , )p vtv t p , for each real number t. 

Definition 2.1 [11] A complete simply connected Riemannian manifold of non-positive sectional curvature is called a 

Hadamard Manifold.  

Now, we present some basic results. We assume that M is a m-dimensional Hadamard manifold. 

Proposition 2.1 [11] Let p ∈ M. Then expp: TpM→ M is a diffeomorphism, and for any two points p, q ∈ M there exists 

a unique normalized geodesic joining p to q, which is in fact a minimal geodesic. This result shows that M has the 

topology and differential structure similar to ℝm. Thus, Hadamard manifolds and Euclidean spaces have some similar 

geometrical properties.  

Proposition 2.2 [11](comparison theorem for triangles). Let ∆ (p1, p2, p3) be a geodesic triangle. For each i = 1, 2, 

3(mod3), by i  : [0, li] → M the geodesic joining pi to pi+1, and set  i il L  , 1 1( (0) ( ))i i i il    
    . Then 

 

1 2 3      ,  

 
2 2 2

1 1 1 12 cosi i i i i il l l l l       .                                                                                                                                           (2.1) 

 

In terms of the distance and the exponential map, the inequality (2.1) can be rewritten as 

 

1 1

2 2 1 1 2

1 1 2 2 1( , ) ( , ) 2 exp ,exp ( , )
i ii i i i p i p i i id p p d p p p p d p p
 

 

        ,                                                                                   (2.2) 

 

Since 
1 1

1 1

2 1 1 2 1exp ,exp ( , ) ( , )cos
i ip i p i i i i i ip p d p p d p p 
 

 

      . 

Proposition 2.3 [11] A subset K ⊆ M is to be convex if for any two points p and q in K, the geodesic joining p to q is 

contained in K, i.e., if   : [a, b] → M is a geodesic such that  p a  and  q b , then  ((1 - t) a + t b) ∈ K for all   

t ∈ [0, 1]. From now K will denote a nonempty, closed and convex set in M. 
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A real valued function f defined on M is said to be convex if for any geodesic   of M, the composition function 

: Rf R    is convex, that is, 

      1( )( ) ( ) ( )( )   1f t a t b t f a t f b        for any ,   0 1a b R and t   . 

 

Proposition 2.4 [11] Let d: M × M→ R  be a distance function. Then d is a convex function with respect to the product 

Riemannian metric, i.e., given any pair of geodesics
1 : [0, 1] → M and 

2  : [0, 1] → M the following inequality holds 

for all   t ∈ [0, 1]: 

1 2 1 2 1 2( ( ), ( )) (1 ) ( (0), (0)) ( (1), (1))d t t t d td         

In particular, for each p ∈ M, the function d (⋅, p): M → R is a convex function. 

Let PK denote the projection onto K defined by 

 

     0 0  : , ,   ,    { }KP p p K d p p d p q for all q K for all p M    . 

 

Proposition 2.5 [13] For any point p ∈ M, PK (p) is a singleton and the following inequality holds for all q ∈ K: 

 
1 1

( ) ( )exp , exp 0
K KP p P pp q   . 

 

Lemma 2.1: [15], [16] Let  na be a sequence of nonnegative real numbers satisfying the property 

 

1 (1 )n n n n na a b     , n  0, 

 

Where    
0

0,1n n





 and  

0n n
b




 such that 

i) lim 0n n   and 
0

n
n






   

ii) Either limsup 0n nb   or
0

n n
n

b




  . 

Then the sequence  
0n n

a



 converges to zero. 

3. Main results 

Let C be a closed convex subset of Hadamard manifold M, T1, T2: CC be a pair of nonexpansive self-mappings and 

  : C C a contraction. Assume that the fixed point set F (T1 T2) = F (T1) ∩ F (T2) is nonempty. We next prove the 

convergence of an explicit algorithm to a fixed point of T which solves the variational inequality  

 

 1 1exp ,exp 0x xx x   ,  1 2x Fix T T
                       

(3.1) 

 

Let    0 , 0,1nx M   . Consider the iteration process 

 

      
  

  

1

1

1

1

1

2

exp 1 exp

exp 1 exp

exp 1 exp

n n

n n

n n

n n nx x

n x n x n

n x n x n

x a y

y b T z

z c T x

 









 

 

 

                                                                                                                                     (3.2) 

 

which is equivalent to the following geodesic form of equation 

 

 

 

 

 

1

2

3

1 1

1

1

n n n

n n n

n n n

x a

y b

z c







  

 

 

  

where  : 0,1n
k

M   is the geodesic joining  nx to  2 nT x for 0n  and k = 1, 2, 3. 
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Theorem 3.1: Let C   M be a closed convex set and let T1, T2: C  C be a pair of nonexpansive mappings such that  

F(T1T2) = F (T1) ∩ F (T2) ≠. Let x0 ∈ M and   : C C a -contraction. Suppose that  na ∈ (0, 1) and   nb , nc

∈[0,1] satisfies: 

 

i) 
0

, 0n n
n

a a




    

ii) 0,c 0n nb    

iii) 1
0

n n
n

a a





   , 1
0

n n
n

b b





   and 1
0

n n
n

c c





    

 

Then the sequence  nx generated by the algorithm (3.2) converges strongly to x C , the unique fixed point of the 

contraction
1 2(T ) F(T )FP  . Moreover, the convergence point x is a solution of the variational inequality (3.1). 

Proof: First we prove that  nx  is bounded.  

We only prove the boundedness of  nx , since the boundedness of   nx is a direct consequence.  

For this, take    1 2x F T F T . Then by the convexity of the distance function and nonexpansivity of T1 and T2, we 

have 

 

    
3

, 1 ,n n nd z x d c x   

 

     2, 1 ,n n n nc d x x c d T x x    

 

     , 1 ,n n n nc d x x c d x x  
 

 

 ,nd x x                                                                                                                                                                          (3.3) 

 

Now (3.3) follows that 

 

    
2

, 1 ,n n nd y x d b x   

 

     1, 1 ,n n n nb d x x b d T z x    

 

     , 1 ,n n n nb d x x b d z x    

 

     , 1 ,n n n nb d x x b d x x    

 

 ,nd x x                                                                                                                                                                          (3.4) 

 

From (3.4), we have  

 

    
11, 1 ,n n nd x x d a x    

 

      , 1 ,n n n na d x x a d y x    

 

         , , 1 ,n n n na d x x d x x a d x x      

 

    
1

max , , ,
1

nd x x d x x


 
  

 
                                                                                                                                   (3.5) 

 

Now by mathematical induction, we have that 

    1 0

1
(x ,x) max , , ,

1
nd d x x d x x




 
  

 
                                                                                                                     (3.6) 
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which implies, that  nx is bounded, so           2 1, , ,n n n n nT x x y z and T z is also bounded. 

Next, we claim that, d (xn+1, xn)  0 as n . 

 

      
1 11 1 1, 1 , 1n n n n n nd x x d a a        

 

         
1 1 1 11 1 1 11 , 1 1 , 1n n n n n n n nd a a d a a              

 

           1 1 1 1 1, 1 , ,n n n n n n n n n na d x x a d y y a a d x y            

 

        1 1 1 1 1, 1 , ,n n n n n n n n n na d x x a d y y a a d x y                                                                                                (3.7) 

 

Similarly, we obtain 

 

      
2 21 1 1, 1 , 1n n n n n nd y y d b b       

 

       1 1 1 1 1 1, 1 , z ,n n n n n n n n n nb d x x b d z z b b d T x                                                                                                      (3.8) 

 

Further, we can obtain 

 

         1 1 2 2 1 1 2 1 1, , 1 ,T ,n n n n n n n n n n n nd z z c d x x c d T x x c c d T x x           

 

   1 1 2 1 1, ,n n n n n nd x x c c d T x x                                                                                                                                    (3.9) 

 

Substituting (3.9) into (3.8), we get 

 

            1 1 1 1 2 1 1 1 1 1 1, , 1 , , z ,n n n n n n n n n n n n n n n nd y y b d x x b d x x c c d T x x b b d T x                 

 

       1 1 2 1 1 1 1 1 1, 1 , z ,n n n n n n n n n n nd x x b c c d T x x b b d T x                                                                                       (3.10) 

 

Putting the value from (3.10) into (3.7), we get 

 

           

  

1 1 1 1 2 1 1 1 1 1 1

1 1 1

( , ) , 1 , 1 , z ,

,

n n n n n n n n n n n n n n n n n

n n n n

d x x a d x x a d x x b c c d T x x b b d T x

a a d x y





        

  

       

 
 

                

                1 1 2 1 1 1 1 1 1 1 1 11 1 , 1 1 , 1 , ,n n n n n n n n n n n n n n n n n na d x x a b c c d T x x a b b d T z x a a d x y                       

 

           1 1 2 1 1 1 1 1 1 1 1 11 1 , , , ,n n n n n n n n n n n n n n na d x x c c d T x x b b d T z x a a d x y                     

 

      1 1 1 11 1 ,n n n n n n n n na d x x L c c b b a a            
                                                                                      

(3.11) 

 

where     2 1 1 1 1 1 1 1max , , , , ( ( ),y )n n n n n nL d T x x d T z x d x      for all n.  

 

Now, by assumptions (i)-(iii), we have then 

lim 0n
n

a


 ,  
1

1 n
n

a




    and  1 1 1
1

n n n n n n
n

c c b b a a


  


        

 

Hence by lemma 2.1, we obtain  1lim , 0n n
n

d x x


  

Also        1 2 1 1 1 1 1 2(TT x ,x ) d , , ,n n n n n n n n n nd x x d x y d y T z d T z TT x       

 

        1 1 2d , , ,n n n n n n n n n n nx x a d x y b d x T z c d z T x       
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        1 1 2d , , ,n n n n n n n n n n nx x a d x y b d x T z c d x T x       

 

Now by assumptions (i) and (ii), 

 

1 2(TT x ,x ) 0n nd                                                                                                                                                              (3.12) 

 

holds. 

Put 1 2T T T . Since T1 and T2 are nonexpansive, we have T is also nonexpansive. 

Using the fact that if x C is the unique fixed point of 
1 2(T ) F(T )FP  , then by Proposition (2.5), we obtain 

 

 1 1exp ,expx x nx x  = 
     (T ) F(T ) (T ) F(T )1 2 1 2

1 1exp ,exp 0
F FP x P x

x x
 

    

 

Next we prove that  

 

 1 1limsup exp ,exp 0n x x nx x 

  ,                                                                                                                               (3.13) 

 

where x is the unique fixed point of the contraction
1 2(T ) F(T )FP  . 

Since we have proved that  nx and   nx  are bounded,   1 1exp ,expx x nx x  is bounded; hence its upper limit 

exists. Thus we can find a subsequence  kn of  n such that 

 

   1 1 1 1limsup exp ,exp lim exp ,exp
kn x x n x x n

k
x x x x    




                                                                                            (3.14) 

 

Without loss of generality, we may assume that 
knx x   for some x M , since  nx is bounded. Using the convexity 

of distance function, we have 

 

       1, ,
k k k kn n n n nd x T x a d x T x  . 

 

Since      ,
k kn nd x T x is bounded as  nx and   nx  are bounded. By assumption (i) it follows that  

 

  1lim , 0
k kn n

k
d x T x


  as 0

kna   

 

Now, using        1 1, , ,
k k k k k kn n n n n nd x T x d x x d x T x   ,  

We obtain  

 

  lim , 0
k kn n

n
d x T x


 . 

 

Therefore 

 

            , , , , 0
k k k kn n n nd x T x d x x d x T x d T x T x        

 

Which shows that  x Fix T . Then, since  1 1exp ,exp 0x xx x    for any  x Fix T , we obtain that 

 

   1 1 1 1lim exp ,exp exp ,exp 0
kx x n x x

k
x x x x     


                                                                                                       (3.15) 

 

Now combining (3.14) and (3.15), we obtain (3.13). 

 

Finally, for the strong convergence, we show that  lim , 0n
n

d x x
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For this, consider the geodesic triangle  , ,k l m and its comparison triangle   2, ,k l m R    . Fix 0n  and set

 nk x , nl y , m x . So we can write   1

1 exp 1 expn k n kx a l

    . The comparison point of 1nx   in 2R is 

 

 1 1n n nx a k a l
     . 

 

Then 

 

    , ,nd x x d k m k m      And    , ,nd y x d l m l m    . 

 

Let  and  denote the angles at m and m  , respectively. Therefore   by Lemma 3.5(1) [8, p.547] and then

cos cos   . Thus by Lemma 3.5(2) [8, p.547], we have 

 

 
22

1 1,n nd x x x m 
     

 

    
2

1n na k m a l m          

 

   
2 222 1 2 1 cosn n n na k m a l m a a k m l m                   

 

             
22 2 2, 1 , 2 1 , , cosn n n n n n n na d x x a d y x a a d x x d y x        

 

             
22 2 2, 1 , 2 1 , , cosn n n n n n n na d x x a d x x a a d x x d x x        

 

                    
22 2 2, 1 , 2 1 , , , cosn n n n n n n na d x x a d x x a a d x x d x x d x x           

 

            
22 2 2 1 1 2, 1 , 2 1 exp ,exp ,n n n n n n x x n na d x x a d x x a a x x d x x          

 

             22 2 2 1 1, 1 2 1 , 2 1 exp ,expn n n n n n n n x x na d x x a a a d x x a a x x          
 

   
 

            2 2 2 2 1 11 2 2 1 , , 2 1 exp ,expn n n n n n n n n x x na a a a d x x a d x x a a x x            

 

   21 ,n n n nd x x      

 

Where        2 2 1 11
, 2 1 exp ,expn n n n n x x n

n

a d x x a a x x  


     

 

And  22 2 1n n n n na a a a     . 

Now using given hypothesis (i) and (3.15), lim 0n n   and lim 0n n  .  

Also, by hypothesis (ii), we obtain
0

n
n






  . Thus applying Lemma 2.1, we get  lim , 0n nd x x  .  

This completes the proof. 

 

Corollary 3.2 Let C  M be a closed convex set and let T1: C  C be a nonexpansive mapping such that F (T1) ≠. Let 

x0 ∈ C is chosen arbitrarily and   : C C a -contraction. Suppose that  na ∈ (0, 1) and  nb ∈ [0, 1] satisfies: 

 

i) 
0

, 0n n
n

a a




    

ii) nb t , for some  0,1t  ;and 

iii) 1
0

n n
n

a a





    and 1
0

n n
n

b b





   .  
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Then the sequence  nx generated by the algorithm  

      
  

1

1

1

1

exp 1 exp

exp 1 exp

n n

n n

n n nx x

n x n x n

x a y

y b T x

 







 

 
 

Converges strongly to x C , the unique fixed point of the contraction 
1(T )FP  . Moreover, the convergence point x is a 

solution of the variational inequality  

 

 1 1exp ,exp 0x xx x   ,   1x Fix T  . 

 

Proof.  we can obtain the desired result by taking   1nc   in theorem 3.1.  

 

Corollary 3.3 Let M be a Hadamard manifold, C be a closed convex subset of M. Let T: C  C be a nonexpansive 

mapping with F (T) ≠. Let x0 ∈ M is chosen arbitrarily and   : C C a -contraction. Suppose that  na ∈ (0, 1) 

satisfies:  

i) lim 0n na   

ii) 0n na
    

iii) 1
0

n n
n

a a





   .  

Then the sequence  nx generated by the algorithm  

 

        1

1 exp 1 exp
n n

n n nx x
x a T x

 



    

 

Converges strongly to x C , the unique fixed point of the contraction (T)FP  . Moreover, the convergence point x is a 

solution of the variational inequality.  

 

 1 1exp ,exp 0x xx x   ,   x Fix T  .  

 

Proof . We can obtain the desired result by taking   0nb 
 
and  1nc   in theorem 3.1. 
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