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Abstract

In this paper, we study the asymptotic behavior of solutions of the following first order forced delay difference
equation

∆x(n) + p(n)f(x(n− τ)) + r(n) = 0, n ≥ 0. (∗)

Some sufficient conditions for every solution of (*) to tend to zero are established.
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1. Introduction

Recently there has been many investigations into the study of delay difference equations. In particular, an extensive
literature now exists on the global stability for delay difference equations and various applications have been found,
as we refer to [1, 3, 4, 5] and the references cited therein. However, concerning the asymptotic behavior of solutions
for nonlinear delay difference equations are very few.

In this paper, we study the asymptotic behavior of solutions of the forced delay difference equation

∆x(n) + p(n)f(x(n− τ)) + r(n) = 0, n ≥ 0, (1)

where ∆ is the forward difference operator defined by ∆x(n) = x(n + 1) − x(n), {p(n)} is a sequence of positive
real numbers, {r(n)} is a sequence of real numbers, τ is a positive integer and f : R→ R is an increasing function
such that

(H1) uf(u) > 0 for u 6= 0;

(H2) limu→0
f(u)
u = b ∈ (0,∞); and

(H3) |f(u)| ≤ |u|, u ∈ R.
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In [6], it was proved that if p(n) > 0 for all n and

∞∑
n=1

p(n) = +∞,
n∑

s=n−τ
p(s) < 1

for sufficiently large n, then every solution of the equation

∆x(n) + p(n)x(n− τ) = 0 (2)

tends to zero as n tends to infinity.

In [1], it was shown that if |f(u)| ≤ f(|u|) for all u ∈ R and

∞∑
n=1

|p(n)| <∞,
∞∑
n=1

|r(n)| <∞,

then every solutions of the equation.

∆x(n) + p(n)f(x(n− τ)) = r(n) (3)

tends to zero as n tends to infinity. Parhi [7] studied the equation

∆y(n) + q(n)G(y(n− k)) = b(n), n ≥ 0, (4)

where G ∈ C(R,R) is nondecreasing and uG(u) > 0 for all u 6= 0, {q(n)} and {b(n)} are sequences of real numbers.
It was proved that if q(n) ≥ 0, b(n) ≥ 0 with

∑∞
n=0 b(n) < ∞ or q(n) ≥ 0, b(n) ≤ 0 with

∑∞
n=0 b(n) > −∞, then

every solution of equation (4) oscillates or tends to zero as n tends to infinity if and only if
∑∞
n=0 q(n) = +∞.

In [2], Graef and Qian studied the following difference equation

∆x(n) + px(n− k) = r(n), n ≥ 0, (5)

where p is a real number, k is a positive integer, {r(n)} is a real sequence. They proved that if

0 < p <
kk

(k + 1)k+1
,

then every solution of (5) tends to zero as n tends to infinity if and only if

lim
n→∞

r(n) = 0.

Although the equation (1) was studied by Yuji Lie et al. in [8], the results and their proofs are different.

By a solution of (1), we mean a nontrivial real sequence {x(n)} which is defined for n ≥ −τ and satisfies (1) for
n ≥ 0. The initial condition of (1) is x(i) = ai; i = −k,−k + 1, ..., 0 with ai ∈ (−∞,+∞) for i = −k,−k + 1, ..., 0.
A solution {x(n)} of (1) is said to be oscillatory if for every positive integer N0 > 0 there exits n > N0 such that
x(n)x(n+ 1) ≤ 0, otherwise {x(n)} is said to be nonoscillatory.

Throughout this paper, we define

N(a) = {a, a+ 1, a+ 2, ...}

and

N(a, b) = {a, a+ 1, a+ 2, ...b}

where a and b are integers with a ≤ b.
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2. Main result

In this section, we give the sufficient conditions so that every solution of equation (1) tends to zero as n tends to
infinity.

Theorem 2.1 Suppose that

∞∑
s=0

p(s) = +∞, (6)

µ = lim sup
n→∞

n∑
s=n−τ

p(s) <

√
7

2
, (7)

and

lim
n→∞

r(n)

p(n)
= 0. (8)

Then every solution of Eq. (1) tends to zero as n→ +∞.

3. Some lemmas

Clearly, conditions (H2) and (8) imply that there exists α > 0 such that f(u)
u > b

2 for |u| < α, and for any ε ∈ (0, α),
there is N0 > 0 such that∣∣∣∣r(n)

p(n)

∣∣∣∣ < bε

2
, n > N0. (9)

In order to prove Theorem 2.1, we need the following lemmas.

Lemma 3.1 Suppose that (8) hold. If {x(n)} is an oscillatory solution of Eq. (1) and A > 0, δ > 1 such that
{x(n)} satisfies that

∆x(n) ≤ Ap(n) + r(n), n ≥ N0, (10)

∆x(n) ≤ −p(n)x(n− τ) + r(n) if x(n− τ) ≤ 0, and n ≥ N0 + τ, (11)

n∑
s=n−τ

p(s) ≤ δ for all n ≥ N0 + τ. (12)

If n∗ > N0 + 2τ such that x (n∗) > 0 and ∆x(n∗) ≥ 0, then we have

x(n∗) ≤

((
δ +

1

2

)2

− 3

4

)
A+ ε

(
bδ +

bδ2

2
+ 1

)
. (13)

Proof. By (H2), (8), we know (9) holds. Since ∆x(n∗) ≥ 0 , we claim that x(n∗ − τ) ≤ ε. In fact if x(n∗ − τ) > ε,
then by (1), noting that f is increasing, we get

0 ≤ ∆x(n∗) = p(n∗)

(
−f(x(n∗ − τ)) +

r(n∗)

p(n∗)

)

< εp(n∗)

(
−f(ε)

ε
+
b

2

)
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< εp(n∗)

(
− b

2
+
b

2

)
= 0.

This is impossible. Now we consider two cases.

Case 1. Let 0 ≤ x(n∗− τ) ≤ ε. For n ∈ N(n∗− τ − 1, n∗− 1), we have n− τ ≤ n∗− τ − 1. Summing (10) from
n− τ to n∗ − τ − 1, we get

−x(n− τ) ≤ −x(n∗ − τ) +A

n∗−τ−1∑
s=n−τ

p(s) +

n∗−τ−1∑
s=n−τ

r(s)

≤ A
n∗−τ−1∑
s=n−τ

p(s) +
bε

2

n∗−τ−1∑
s=n−τ

p(s)

≤ A
n∗−τ−1∑
s=n−τ

p(s) +
bεδ

2
.

If x(n− τ) ≤ 0, then by (11) we get

∆x(n) ≤ Ap(n)

n∗−τ−1∑
s=n−τ

p(s) + p(n)
bεδ

2
+ r(n), n ∈ N(n∗ − τ − 1, n∗ − 1) (14)

If x(n− τ) > 0, then (1) implies ∆x(n) ≤ r(n), and hence (14) is also valid.

Subcase 1.1 Let
∑n∗−2
s=n∗−τ p(s) ≤ 1. Summing (14) from n∗ − τ to n∗ − 1, and applying (9), (12) we get

x(n∗) ≤ x(n∗ − τ) +A

n∗−1∑
n=n∗−τ

p(n)

n∗−τ−1∑
s=n−τ

p(s) +
bεδ

2

n∗−1∑
s=n∗−τ

p(s) +

n∗−1∑
n=n∗−τ

r(n)

≤ ε+A

n∗−1∑
n=n∗−τ

p(n)

(
n∑

s=n−τ
p(s)−

n∑
s=n∗−τ

p(s)

)
+
bεδ2

2
+
bεδ

2

≤ ε

(
1 +

bδ

2
+
bδ2

2

)
+A

n∗−1∑
n=n∗−τ

p(n)

(
δ −

n∑
s=n∗−τ

p(s)

)

= ε

(
1 +

bδ

2
+
bδ2

2

)
+Aδ

n∗−1∑
n=n∗−τ

p(n)−A
n∗−1∑

n=n∗−τ
p(n)

n∑
s=n∗−τ

p(s)

≤ ε

(
1 +

bδ

2
+
bδ2

2

)
+Aδ

n∗−1∑
n=n∗−τ

p(n)− A

2

(
n∗−1∑
s=n∗−τ

p(s)

)2

≤ ε

(
1 +

bδ

2
+
bδ2

2

)
+Aδ2 +Aδ

n−2∑
n=n∗−τ

p(n)− A

2

(
n∗−2∑
s=n∗−τ

p(s)

)2

.
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Since δx− 1
2x

2 is increasing for 0 ≤ x ≤ 1 < δ, then

x(n∗) ≤ ε
(
bδ2

2
+
bδ

2
+ 1

)
+A

(
δ2 + δ − 1

2

)

≤ ε

(
1 + bδ +

bδ2

2

)
+A

((
δ +

1

2

)2

− 3

4

)
.

Subcase 1.2. Let
∑n∗−2
s=n∗−τ p(s) > 1. Choosing η ∈ N(n∗ − τ, n∗ − 2) such that

∑n∗−2
s=η p(s) ≥ 1, we get in

applying (10), (14), (9), (12), that

x(n∗) = x(n∗ − τ) +

η∑
s=n∗−τ

∆x(s) +

n∗−1∑
s=η+1

∆x(s)

≤ x(n∗ − τ) +

η∑
s=n∗−τ

(Ap(s) + r(s)) +

n∗−1∑
n=η+1

(
Ap(n)

n∗−τ−1∑
s=n−τ

p(s) + p(n)
bεδ

2
+ r(n)

)

= x(n∗ − τ) +A

η∑
n=n∗−τ

p(n) +

η∑
n=n∗−τ

r(n) +A

n∗−1∑
n=η+1

p(n)

n∗−τ−1∑
s=n−τ

p(s)

+
bεδ

2

n∗−1∑
n=η+1

p(n) +

n∗−1∑
n=η+1

r(n)

≤ ε
(

1 + bδ +
bδ2

2

)
+A

η∑
n=n∗−τ

p(n) +A

n∗−1∑
n=η

p(n)

n∗−τ−1∑
s=n−τ

p(s)

= ε

(
1 + bδ +

bδ2

2

)
+A

η∑
n=n∗−τ

p(n) +A

n∗−1∑
n=η

p(n)

[
n∑

s=n−τ
p(s)−

n∑
s=n∗−τ

p(s)

]

≤ ε
(

1 + bδ +
bδ2

2

)
+A

η∑
n=n∗−τ

p(n) +A

n∗−1∑
n=η

p(n)

[
δ −

n∑
s=n∗−τ

p(s)

]

= ε

(
1 + bδ +

bδ2

2

)
+A

η∑
n=n∗−τ

p(n) +Aδ

n∗−1∑
n=η

p(n)−A
n∗−1∑
n=η

p(n)

n∑
s=n∗−τ

p(s)

≤ ε
(

1 + bδ +
bδ2

2

)
+A

η∑
n=n∗−τ

p(n) +Aδ

n∗−1∑
n=η

p(n)− A

2

(
n∗−1∑

n=n∗−τ
p(n)

)2

≤ ε
(

1 + bδ +
bδ2

2

)
+A

(
δ2 + δ − 1

2

)

= ε

(
1 + bδ +

bδ2

2

)
+A

((
δ +

1

2

)2

− 3

4

)
.
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Case 2. Let x(n∗ − τ) < 0. There exists ξ ∈ N(n∗ − τ + 1, n∗) such that x(ξ) ≥ 0. Then for n ∈ N(ξ, n∗), we
have n− τ ≤ ξ. By use of (9), we get from (10)

−x(n− τ) ≤ A
ξ−1∑

s=n−τ
p(s) +

bξδ

2
. (15)

If x(n− τ) ≤ 0, we get based on (11),

∆x(n) ≤ Ap(n)

ξ−1∑
s=n−τ

p(s) +
bδ

2
εp(n) + r(n), n ∈ N(ξ, n∗). (16)

If x(n − τ) > 0, then by (1), we have ∆x(n) ≤ r(n), and (16) is also valid. By the method of that in the proof of
Subcase 1.1 and 1.2, we get

x(n∗) ≤ ε
(

1 + bδ +
bδ2

2

)
+

((
δ +

1

2

)2

− 3

4

)
A. (17)

This completes the proof.

Lemma 3.2 Suppose that (8) hold. If {x(n)} is an oscillatory solution of Eq. (1), B < 0, such that

∆x(n) ≥ Bp(n) + r(n), n ≥ N1,

∆x(n) ≥ −p(n)x(n− τ) + r(n), if x(n− τ) ≥ 0, and n ≥ N1 + τ,

(12) holds, x(n∗) < 0 and ∆x(n∗) ≤ 0, then we have that

x(n∗) ≥

((
δ +

1

2

)2

− 3

4

)
B − ε

(
1 + bδ +

bδ2

2

)
.

Proof. We omit the proof since it is similar to that of Lemma 3.1.

Lemma 3.3 Suppose that {x(n)} is an eventually nonnegative solution of Eq. (1), and (6), (8) hold. Then
x(n)→ 0 as n→∞.

Proof. Let lim supn→+∞ x(n) = L. If L = 0, then the proof is complete. If L > 0, we have two cases to consider.
Case 1. If {∆x(n)} is eventually negative, then there is N2 > N1 +τ such that {x(n)} is decreasing for n ≥ N2.

The assumption lim supn→+∞ x(n) = L implies x(n− τ) ≥ L for all n ≥ N2. By (1), we have

∆x(n) ≤ −p(n)f(L) + r(n), n ≥ N2. (18)

Summing (18) from N2 to n− 1, we get

x(n)− x(N2) ≤ −f(L)

n−1∑
s=N2

p(s) +

n−1∑
s=N2

r(s).

Since L > 0, we get f(L) > 0. Choosing ε ∈ (0, f(L)), (8) implies there is N3 > N2 such that |r(n)| ≤ εp(n) for
n ≥ N3. Hence

x(n)− x(N2) ≤ (−f(L) + ε)

n−1∑
s=N3

p(s)− f(L)

N3−1∑
s=N2

p(s) +

N3−1∑
s=N2

r(s). (19)

Let n→ +∞, by (19), we get
L− x(N2) ≤ −∞, a contradiction. Therefore L = 0.
Case 2. Suppose {∆x(n)} is eventually negative. Choosing N2 > N1 such that x(n − τ) ≥ 0 for n ≥ N2, we

get

∆x(n) ≤ r(n), n ≥ N2 (20)
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Since {∆x(n)} is not eventually negative, there exists m∗ > N2 + τ such that

∆x(m∗) ≥ 0.

From now on, we prove that x(m∗ − τ) ≤ ε. Otherwise, we have x(m∗ − τ) > ε, using |r(n)| ≤ bε
2 p(n) and (1), we

have

0 ≤ ∆x(m∗) = −p(m∗)f(x(m∗ − τ)) + r(m∗)

< p(m∗)

(
−f(x(m∗ − τ)) +

bε

2

)
= εp(m∗)

(
−f(ε)

ε
+
b

2

)
< εp(m∗)

(
− b

2
+
b

2

)
= 0,

a contradiction. Summing (20) from m∗ − τ to m∗ − 1, by (9), (12) we get

x(m∗) ≤ x(m∗ − τ) +

m∗−1∑
n=m∗−τ

r(n) ≤ bτε

2
+ ε.

This shows that {x(n)} is bounded above and then L < +∞. Choosing the sequence {nk} of positive integers such
that N3 + τ < n1 < n2 < ..., limk→∞ nk = +∞, ∆x(nk) ≥ 0, and limk→∞ x(nk) = L, we get x(nk − τ) ≤ ε. By a
similar method in Case 2, f(x(n− τ)) > 0 implies ∆x(n) ≤ r(n). Summing this inequality from nk − τ to nk − 1,
we get

x(nk) ≤ x(nk − τ) +

nk−1∑
n=nk−τ

r(n) ≤ ε
(

1 +
bτ

2

)
.

Let n→ +∞, ε→ 0, we have L = 0. This completes the proof.

Lemma 3.4 Suppose that {x(n)} is an eventually nonpositive solution of Eq. (1) and (6), (8) hold. Then x(n)→ 0
as n→ +∞.

The proof is similar to that of Lemma 3.3 and then omitted.

4. Proof of the theorem

Proof of Theorem 2.1. By (7), (8), we choose α > 0, such that f(u)
u > b

2 for |u| < α. For any ε ∈ (0, α) with

1 <
√
µ2 + ε− 1

2 < µ+ 1, we choose N1 > 0, such that (9) holds and

n∑
s=n−τ

p(s) ≤
√
µ2 + ε− 1

2
= a.

By Lemma 3.3 and 3.4, we need to prove that every oscillatory solution {x(n)} of Eq. (1) tends to zero. First we
prove that {x(n)} is bounded, to the contrary, there is n∗ > N1 + τ such that |x(n)| < |x(n∗)| for n < n∗. Without
loss of generality, we suppose x(n∗) > 1. Then we get

∆x(n) ≤ p(n)x(n∗) + r(n) for n ≤ n∗. (21)

Then by Lemma 3.1 and (21), we get

x(n∗) ≤

((
a+

1

2

)2

− 3

4

)
x(n∗) + ε

(
ab+

bδ2

2
+ 1

)

≤

((
a+

1

2

)2

− 3

4

)
x(n∗) + εM, (22)
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where M = b(1 + µ) + b(1+µ)2

2 + 1, (since a = δ =
√
µ2 + ε− 1

2 < µ+ 1). By µ <
√
7
2 , without loss of generality, we

suppose that ε <
7
4−µ

2

1+M , thus (22) implies that 1 < µ2+ε− 3
4 +εM = µ2− 3

4 +εM+ε. This is impossible. Then {x(n)}
is bounded. Now we suppose that lim supn→+∞ x(n) = L, lim infn→+∞ x(n) = l, then −∞ < l < 0 ≤ L < +∞.
Then there is N2 > N1 such that, l1 = l − ε < x(n− τ) < L+ ε = L1 for n > N2. Thus by (1) we get

∆x(n) ≤ −p(n)f(l1) + r(n), n ≥ N2 (23)

and

∆x(n) ≥ −p(n)f(L1) + r(n), n ≥ N2. (24)

We choose the sequences {nk} and {mk} of positive integers such that

N2 + τ < n1 < n2 < . . . , nk → +∞, ∆x(nk) ≥ 0, x(nk)→ L as k →∞

and

N2 + τ < m1 < m2 < . . . , mk → +∞, ∆x(mk) ≤ 0, x(mk)→ l as k → +∞.

If x(n− τ) ≤ 0, by |f(u)| ≤ |u| and (1) we get

∆x(n) ≤ −p(n)x(n− τ) + r(n). (25)

By Lemma 3.1, we get

x(nk) ≤ ε

[
b

(√
µ2 + ε− 1

2

)
+
b

2

(√
µ2 + ε− 1

2

)2

+ 1

]
−
(
µ2 + ε− 3

4

)
f(l1), n = 1, 2, 3, ....

Let k → +∞ and ε→ 0, we get L ≤ −
(
µ2 − 3

4

)
f(l). Similarly, we get

x(mk) ≥ −
(
µ2 + ε− 3

4

)
f(L1)− ε

[
b

(√
µ2 + ε− 1

2

)
+
b

2

(√
µ2 + ε− 1

2

)2

+ 1

]
,

then l ≥ −
(
µ2 − 3

4

)
f(L). Since µ2 < 7

4 , if L 6= 0, then L > 0. Hence

L < −f(l) ≤ −l ≤
(
µ2 − 3

4

)
f(L) < f(L) ≤ L,

which is impossible. We have l = L = 0. The proof is complete.
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