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Abstract 
 

In this paper we introduce the definition of quasi-fuzzy distance space then we discuss several properties of this space after we give an 

example to illustrate this notion. Then we show that the existence of a quasi-fuzzy distance space which is not fuzzy bicompletable. Here 

we prove that every fuzzy bicompletable quasi-fuzzy distance space admits a unique [up to fuzzy isodistance] fuzzy a bicompletion. 
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1. Introduction 

Theory of fuzzy sets was introduced by Zadeh in 1965 [21]. Many 

authors have introduced the concept of fuzzy metric in Different 

ways [1], [2], [3], [7], [8], [9], [10], [13], [16], [17]. Kramosil and 

Michalek in 1975 [6] introduced the definition of fuzzy metric 

space which is called later KM-fuzzy metric space .George and 

Veeramani in 1994 [3] Introduced the definition of continuous ∗ t-

norm to modify the concept of KM-fuzzy metric space which was 

introduced by Kramosil and Michalek which is called later GV-

fuzzy metric space . In section one of this paper we recall the defi-

nition of fuzzy distance space on fuzzy set [9] which is a modifi-

cation of  the definition GV-fuzzy metric space after that we in-

troduce  basic definitions ,basic concepts and properties of fuzzy 

distance space.  

In section two of this paper we extend the notion fuzzy distance 

space on a fuzzy set to a quasi-fuzzy distance space on fuzzy set. 

On the other hand, it was presented in [4] an example of a fuzzy 

distance space that is not fuzzy completable, also it has been ob-

tained an internal characterization of fuzzy completable fuzzy 

distance spaces, taking these results into account and the fact that 

the concept of fuzzy bicompletion provides a theory of completion 

to quasi-metric spaces in the classical sense (for instance see [5]). 

It seems natural and interesting to discuss the problem of charac-

terizing quasi-fuzzy distance spaces that are fuzzy bicompletable. 

The main purpose of this paper is to solve this problem. Following  

the modern terminology ( for instance see Section 11 of [5] ) by a  

quasi-metric on a set X we mean a function d:X X→[0,∞) such  

that for all x, y, z ∈ X: 

 

i) d(x,y)=d(y,x)=0 if and only if x=y 

 

ii) d(x,y) ≤ d(x,z) +d(z,y) 

 

Each quasi-metric d on X generates a To-topology τd which has a 

base the family of open balls { Bε (x) : x ∈  X, ε >0 } where 

Bε(x)={ y ∈ X : d(x,y) < ε }. 

2. Fuzzy distance space on fuzzy set 

Definition 2.1: [21] Let X be a nonempty set of elements, a fuzzy 

set �̃� in X is characterized by a membership function, 𝜇𝐴(x): X→ 

[0, 1]. 

 

Then we can write Ã = {(x, μÃ(x)): xX, 0 ≤ μÃ(x) ≤ 1}. 

We now recall an example of a continuous fuzzy set. 

Example 2.2: [18] Let X = ℝ and let Ã be a fuzzy set in ℝ with 

membership function by: μÃ(x) =
1

 1+10x2. 

 

Definition 2.3: [4] Let �̃� and �̃� be two fuzzy sets in X. then  

1) Ã  B̃ if and only if μÃ(x) ≤ μB̃(x) for all xX 

2) Ã = B̃ if and only if μÃ(x) = μB̃(x) for all xX 

3) C̃ = ÃB̃ if and only if μC̃(x) = μÃ(x) ˅ μB̃(x) for all xX 

4) D̃ = Ã B̃ if and only if μD̃(x) = μÃ(x) ˄ μB̃(x) for all xX 

5) μÃc(x) = 1- μÃ(x) for all xX 

 

Definition 2.4: [18] If �̃� and �̃� are fuzzy sets in a nonempty sets X 

and Y respectively then the Cartesian product �̃� × �̃� of �̃� and �̃� is 

defined by: 

 

μÃ × B̃(x, y) = μÃ(x) ˄ μB̃(y) for all (x, y) X× Y 

 

Definition 2.5: [20] A fuzzy point p in X is a fuzzy set with mem-

ber p(x) = 𝛼 if x = y and p(x) = 0 otherwise. For all y in X where 

0 α 1. We denote this fuzzy point by 𝑥𝛼. Two fuzzy points 𝑥𝛼 

and 𝑦𝛽 are said to be distinct if and only if x≠ y. 

 

Definition 2.6: [21] Let 𝑥𝛼 be a fuzzy point and �̃� be a fuzzy set in 

X. then 𝑥𝛼 is said to be in �̃� or belongs to �̃� which is denoted by 

𝑥𝛼 �̃� if and only if  𝜇Ã(x) α. 

 

Definition 2.7: [11] Let f be a function from a nonempty set X into 

a nonempty set Y. If �̃� is a fuzzy set in Y then 𝑓−1(�̃�) is a fuzzy set 
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in X defined by:  𝜇𝑓−1(�̃�) (x) = (𝜇�̃�ₒ 𝑓)(x) for all x in X. Also if �̃� is 

a fuzzy set in X then f (Ã) is a fuzzy set in Y defined by: 

 μf(Ã) (y) = ˅ { μÃ(x): xf −1(y) }, if f −1(y)≠ Ø and  𝜇𝑓(Ã) (y) = 0, 

otherwise.  

 

Proposition 2.8: [12] Let f: X→ Y be a function. Then for a fuzzy 

point xα in X, f (xα) is a fuzzy point in Y and f (xα) = (f (x))α . 

 

Definition 2.9: [3] A binary operation∗: [0, 1] × [0, 1] → [0, 1] 

is a continuous t-norm if ∗ satisfies the following conditions: 

 

1) ∗ is associative and commutative. 

2) ∗ is continuous. 

3) a∗1 = a for all a  [0,1]. 

4) a∗b ≤ c∗d whenever a ≤ c and b ≤ d where a,b, c,d [0,1]. 

 

Remark 2.10: [3] For any a > b we can find c such that a∗c ≥ b 

and for any d we can find an e such that e∗e ≥ d where a, b,c ,d ,e 

(0,1). We introduce the following definition. 

 

Definition 2.11: [14] A triple (�̃�,�̃�,∗) is said to be fuzzy distance 

space if �̃� is a fuzzy set of the nonempty set X, ∗ is a continuous t- 

norm and �̃� is a fuzzy set on �̃�2 satisfying the following conditions: 

 

(FD1) D̃(xα,yβ) > 0 for all xα, yβ  Ã 

(FD2) D̃(xα,yβ) = 1 if and only if xα= yβ 

(FD3) D̃(xα,yβ) = D̃(yβ, xα) for all xα, yβ  Ã 

(FD4) D̃(xα,zσ) ≥ D̃(xα,yβ) ∗ D̃(yβ, zσ) for all xα, yβ and zσ  Ã  

(FD5) D̃(xα,yβ) is a continuous fuzzy set 

 

Example 2.12: [14] Let X= ℕ, and let Ã be a fuzzy set in X. Sup-

pose that a∗b = a.b for all a, b [0, 1]. Define D̃(xα,yβ) = 
x

y
 If x ≤ y 

and D̃(xα,yβ) = 
y

x
 If y ≤ x, for all x, y ℕ.Then (Ã,D̃,∗) is a fuzzy 

distance space. 

Example 2.13: [14] Let X=ℝ and let Ã be a fuzzy set in X. Sup-

pose that a∗b = a.b for all a, b  [0, 1]. Define D̃(xα,yβ) = 
1

e
|xα−yβ| 

for all xα, yβ  Ã. Then (Ã,D̃,∗) is a fuzzy distance space. 

 

Definition 2.14: [14] Let (�̃�,�̃�,) be a fuzzy distance space then �̃� 

is continuous fuzzy set if whenever ( 𝑥𝑛 , 𝛼𝑛 ) →  𝑥𝛼  and 

(𝑦𝑛 ,𝛽𝑛)→ 𝑦𝛽 in �̃� then �̃�((𝑥𝑛, 𝛼𝑛),( 𝑦𝑛, 𝛽𝑛)) → �̃�(𝑥𝛼 , 𝑦𝛽) that is 

𝑙𝑖𝑚𝑛→∞�̃�((𝑥𝑛, 𝛼𝑛),( 𝑦𝑛, 𝛽𝑛)) = �̃�(𝑥𝛼, 𝑦𝛽 ). 

 

Lemma 2.15: [14] Suppose that (X,d) is an ordinary metric space 

and assume that �̃� is a fuzzy set in X. Define d(𝑥𝛼, 𝑦𝛽) = d(𝑥, 𝑦) 

for all 𝑥𝛼, 𝑦𝛽 �̃�. Then (Ã, d) is a metric space. 

 

Example 2.16: [14] Let X= ℝ and let Ã= [2,∞] be a fuzzy set in X. 

Consider the mapping D̃ : Ã Ã→ [0, 1] defined by : D̃(aα,bβ) = 1 

if a = b and D̃(aα,bβ) = (
1

a
) . α + (

1

b
). β  

if a ≠ b, where α∗ β = α. β for all α, β [0, 1] 

(FM4) We show that D̃(aα,cσ) ≥ D̃(aα,bβ) ∗ D̃(bβ, cσ) is not satis-

fied for all aα , bβ , cσ Ã. Let a  =10, b = 3 and c= 100 where 

α=
1

a
 , β =

1

b
 , σ = 

1

c
 Since a ≠ b ≠ c 

Then  D̃ ( aα ,  bβ )= (
1

a
). α + (

1

b
) . β =

1

a2 +
1

b2 =
1

100
 + 

1

9
 

=0.01+0.111= 0.121 

And �̃� ( 𝑏𝛽 , 𝑐𝜎 )= (
1

𝑏
) . 𝛽  + (

1

𝑐
) . 𝜎 =

1

𝑏2 +
1

𝑐2 =  
1

9
 + 

1

10000
 

=0.111+0.0001= 0.1112 

�̃�(𝑎𝛼 ,𝑐𝜎)= ( 
1

𝑎
). 𝛼 + (

1

𝑐
) . 𝜎 =

1

𝑎2 +
1

𝑐2 =
1

100
 + 

1

10000
 =0.01+0.0001= 

0.0101  

Therefore �̃�(𝑎𝛼, 𝑏𝛽) ∗ �̃�(𝑏𝛽,𝑐𝜎) > �̃�(𝑎𝛼,𝑐𝜎)=(0.121) + 

(0.1112) =0.0134552 0.0101 

Thus (�̃�,�̃�,∗) is not a fuzzy distance space ∎ 

Proposition 2.17: [14] Suppose that (X,d) is an ordinary metric 

space and assume that a∗b = a.b for all a, b[0,1]. Then by lemma 

2.15, (�̃�, d) is a metric space. Define �̃�𝑑(𝑥𝛼, 𝑦𝛽) = 
𝑡

𝑡+𝑑(𝑥𝛼,𝑦𝛽)
 , then 

(�̃�,�̃�𝑑,∗) is a fuzzy distance space and it is called the fuzzy dis-

tance on the fuzzy set Ã induced by d. 

 

Definition 2.18: [14] Let (�̃�,�̃�,∗) be a fuzzy distance space on the 

fuzzy set �̃�, we define �̃�(𝑥𝛼,r) = {𝑦𝛽�̃�: �̃�(𝑥𝛼, 𝑦𝛽) > (1- r) } then 

�̃�(𝑥𝛼 ,r) is called an fuzzy open fuzzy ball with center the fuzzy 

point 𝑥𝛼�̃� and radius 0 < r < 1. 

 

Proposition 2.19: [14] Suppose that �̃�(𝑥𝛼,𝑟1) and �̃�(𝑥𝛼,𝑟2) be two 

fuzzy open fuzzy balls with the same center 𝑥𝛼Ã and with radi-

uses 𝑟1,𝑟2 (0, 1). Then we either have �̃�(𝑥𝛼 ,𝑟1) �̃�(𝑥𝛼 ,𝑟2) or 

�̃�(𝑥𝛼,𝑟2)�̃�(𝑥𝛼,𝑟1). 

 

Definition 2.20: [14] A sequence {(𝑥𝑚, 𝛼𝑚)} of fuzzy points in a 

fuzzy distance space (�̃�,�̃�,∗) is called fuzzy converges to a fuzzy 

point 𝑥𝛼Ã if whenever 0 휀 1, we can find a positive integer K 

with, �̃�((𝑥𝑚, 𝛼𝑚), 𝑥𝛼)  (1-휀) whenever m  K. 

 

Definition 2.21: [14] A sequence {(𝑥𝑛, 𝛼𝑛)} of fuzzy points in a 

fuzzy distance space (�̃�,�̃�,∗) is called fuzzy converges to a fuzzy 

point 𝑥𝛼Ã if 𝑙𝑖𝑚𝑛→∞�̃�((𝑥𝑛, 𝛼𝑛), 𝑥𝛼) = 1. 

 

Theorem 2.22: [14] Definition 2.21 and definition 2.20 are 

equivalent. 

 

Proposition 2.23: [14] Suppose that (X, d) is a metric space and 

assume that (�̃�,�̃�𝑑 ,∗) is the fuzzy distance space induced by d. 

Let{(𝑥𝑛 , 𝛼𝑛)} be a sequence of fuzzy points in �̃�. Then{(𝑥𝑛, 𝛼𝑛)} 

converges to 𝑥𝛼�̃� in (Ã, d) if and only if {(𝑥𝑛, 𝛼𝑛)} fuzzy con-

verges to 𝑥𝛼 in (�̃�,�̃�𝑑,∗). 

 

Definition 2.24: [14] A fuzzy subset �̃� of a fuzzy distance space 

(�̃�, �̃�,∗) is called  fuzzy open if for each 𝑥𝛼 ∈ �̃� there is �̃�(𝑥𝛼,q) ⊂ 

�̃� with 0  q  1. A fuzzy set �̃� ⊆ �̃� is said to be fuzzy closed if its 

complement is fuzzy open that is �̃�𝑐 = �̃� \ �̃� is fuzzy open. 

 

Theorem 2.25: [14] If �̃�(𝑥𝛼, q) is fuzzy open fuzzy ball in a fuzzy 

distance space (Ã, �̃�,∗) on a fuzzy set Ã then �̃�(𝑥𝛼,q) is a fuzzy 

open fuzzy set with 0  q  1. 

 

Definition 2.26: [14] Suppose that (�̃�, �̃�,∗) is a fuzzy distance 

space on a fuzzy set �̃� and let �̃��̃� then the fuzzy closure of �̃� is 

denoted by �̃�̅ or FCL(�̃�) and is defined to be the smallest fuzzy 

closed fuzzy set contains �̃�. 

 

Definition 2.27: [14] A fuzzy subset �̃� of a fuzzy distance space 

(�̃�, �̃�,∗) on a fuzzy set �̃� is said to be fuzzy dense in Ã if �̃�̅ = �̃�. 

 

Lemma 2.28: [14] Let �̃� be a fuzzy subset of �̃� and let (�̃�, �̃�,∗) be 

a fuzzy distance space on the fuzzy set �̃� then 𝑎𝛼�̃�̅ if and only if 

there is a sequence {(𝑎𝑛,𝛼𝑛)} in �̃� such that (𝑎𝑛,𝛼𝑛)→ 𝑎𝛼, where 

α,𝛼𝑛[0,1]. 

 

Theorem 2.29: [14] Suppose that �̃� is a fuzzy subset of a fuzzy 

distance space �̃� (, �̃�,∗) then �̃� is fuzzy dense in Ã if and only if 

for every 𝑥𝛼�̃� there is 𝑎𝛽�̃�  such that �̃�(𝑥𝛼 , 𝑎𝛽 ) > (1- 휀) for 

some 0 < 휀 < 1. 

 

Definition 2.30: [14] A sequence {(𝑥𝑛, 𝛼𝑛)} of fuzzy points in a 

fuzzy distance space (�̃�, �̃�,∗) is said to be fuzzy Cauchy if whenev-

er 0 1 we can find K with �̃�((𝑥𝑛 , 𝛼𝑛) , (𝑥𝑚, 𝛼𝑚) ) > (1- 휀) for all n, 

m ≥K. 
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Theorem 2.31: [14] Let (�̃�, �̃�,∗) be a fuzzy distance space on the 

fuzzy set �̃� if {(𝑥𝑛 , 𝛼𝑛)} is a sequence of fuzzy points in Ã that is 

fuzzy converges to 𝑥𝛼 Ã then {(𝑥𝑛 , 𝛼𝑛)} is fuzzy Cauchy. 

 

Proposition 2.32: [14] Suppose that (X,d) is a metric space and let 

 

�̃�𝑑(𝑥𝛼 , 𝑦𝛽)= 
𝑡

𝑡+𝑑(𝑥𝛼,𝑦𝛽)
 where t= min {α, β}. 

 

Then {(𝑥𝑛, 𝛼𝑛 )} is a Cauchy sequence in (�̃�, d) if and only if 

{(𝑥𝑛 , 𝛼𝑛)} is a fuzzy Cauchy sequence in (�̃�, �̃�𝑑,∗). 

 

Definition 2.33: [14] Suppose that (�̃�,�̃�,∗) be a fuzzy distance 

space. A fuzzy subset �̃� of �̃� is called fuzzy bounded if we can find 

0 < q < 1 with, �̃�(𝑥𝛼 , 𝑦𝛽)  > (1−q), whenever𝑥𝛼, 𝑦𝛽�̃�. 

 

Proposition 1.34: [14] Let (X,d) be a metric space and let 

 

�̃�𝑑(𝑥𝛼 , 𝑦𝛽)=
𝑡

𝑡+𝑑(𝑥𝛼,𝑦𝛽)
  

 

Where t=α ˄ β then a fuzzy subset �̃� of Ã is fuzzy bounded if and 

only if it is bounded. 

 

Definition 2.35: [14] Let (�̃�,�̃�,∗) be a fuzzy distance space, then 

we define a fuzzy closed fuzzy ball with center 𝑥𝛼�̃� and radius r, 

0 < r < 1 by �̃�[𝑥𝛼, r] = {𝑦𝛽X: �̃�(𝑥𝛼 , 𝑦𝛽) ≥ (1- r)}. 

 

Lemma 2.36: [14] If �̃�[𝑥𝛼, q] is fuzzy closed fuzzy ball in a fuzzy 

distance space (�̃�, �̃�,∗) on a fuzzy set Ã then �̃�[𝑥𝛼, q] is a fuzzy 

closed fuzzy set with 0  q  1. 

 

Theorem 1.37: [14] Suppose that (�̃�,�̃� ,∗) is a fuzzy distance 

space . Put �̃�= {�̃� �̃�: 𝑥𝛼�̃� if and only if there is 0 < q < 1 

with �̃�(𝑥𝛼, q)�̃�}.Then �̃� is a fuzzy topology on Ã. 

 

Proposition 2.38: [14] Suppose that (X,d) is an ordinary metric 

space. Let �̃�𝑑(𝑥𝛼 , 𝑦𝛽)= 
𝑡

𝑡+𝑑(𝑥𝛼,𝑦𝛽)
 be the fuzzy distance induced by 

d. Then the topology 𝑑 induced by d and the fuzzy topology �̃�𝑑
 

induced by �̃�𝑑 are the same. That is 𝑑 = �̃�𝑑
.  

 

Theorem 2.39: [14] Every fuzzy distance space on a fuzzy set is a 

fuzzy Hausdorff space. 

 

Definition 1.40: [14] Suppose that (�̃�, �̃�Ã,∗) and (�̃�, �̃��̃� ,∗) are 

fuzzy distance spaces and �̃�  Ã. 

 

The mapping h: �̃� →�̃� is said to be fuzzy continuous at 𝑎𝛽�̃�, if 

whenever 0 < 휀 < 1, we can find 0 < 𝛿 < 1, with �̃��̃�(h(𝑥𝛼),h(𝑎𝛽)) 

>  (1- 휀 ) whenever 𝑥𝛼�̃�  and �̃�Ã (𝑥𝛼 ,  𝑎𝛽 ) >  (1- 𝛿 ). When f is 

fuzzy continuous at every fuzzy point of �̃�, then it is called to be 

fuzzy continuous on �̃�. 

 

Theorem 2.41: [14] Let (Ã, �̃�Ã,∗) and (�̃�, �̃��̃�,∗) be fuzzy distance 

spaces and �̃�  Ã. The mapping h: �̃� →�̃� is fuzzy continuous at 

𝑎𝛽�̃�  if and only if whenever a sequence of fuzzy points {(𝑥𝑛, 𝛼𝑛)} 

in �̃�  fuzzy converge to 𝑎𝛽 , then sequence of fuzzy points {(h 

(𝑥𝑛, 𝛼𝑛))} fuzzy converges to h(𝑎𝛽). 

 

Proposition 242: [11] Let �̃� be a fuzzy set in X and let �̃� be a 

fuzzy set in Y. let f: �̃� →�̃� be a function and let �̃�  Ã and �̃�  

�̃� .Then f (�̃�)  �̃� if and only if �̃� 𝑓−1(�̃�). 

 

Theorem 2.43: [14] A mapping f: �̃� →�̃� is fuzzy continuous on �̃� 

if and only if the inverse image of �̃� is fuzzy open in �̃� for all fuzzy 

open fuzzy subset �̃� of �̃�. Where �̃� and �̃� are fuzzy distance spaces. 

 

Theorem 2.44: [14] A mapping f: Ã →�̃� is fuzzy continuous on Ã 

if and only if the inverse image of �̃� is fuzzy closed in Ã for all 

fuzzy closed fuzzy subset �̃� of �̃�. 

3. Fuzzy quasi- fuzzy distance space 

Definition 3.1: The triple (�̃�,�̃�,∗) is called a quasi-fuzzy distance 

space where �̃� is a nonempty fuzzy set, ∗ is a continuous t-norm 

and �̃� is a fuzzy set on �̃� × �̃� satisfying the following conditions: 

 

1) For all 𝑥𝛼, 𝑦𝛽�̃�, �̃�(𝑥𝛼, 𝑦𝛽) > 0 

2) �̃�(𝑥𝛼, 𝑦𝛽) = �̃�(𝑦𝛽, 𝑥𝛼) = 1 if and only if 𝑥𝛼 = 𝑦𝛽  

3) �̃�(𝑥𝛼, 𝑦𝛽) ∗ �̃�(𝑦𝛽,𝑧𝜎) ≤ �̃�(𝑥𝛼, 𝑧𝜎) for all 𝑥𝛼, 𝑦𝛽, 𝑧𝜎�̃� 

4) �̃� is a continuous fuzzy set. 

 

Proposition 3.2: If (�̃�,�̃�,∗) is a fuzzy quasi fuzzy distance space 

then define �̃�−1: �̃� × �̃�→ [0,1] by: �̃�−1(𝑥𝛼 , 𝑦𝛽) = �̃�(𝑦𝛽 , 𝑥𝛼) for 

all 𝑥𝛼, 𝑦𝛽�̃�. then (�̃�, �̃�−1,∗) is a quasi fuzzy distance space. 

Proof: 

1) �̃�−1(𝑥𝛼, 𝑦𝛽) > 0 since �̃�(𝑦𝛽,𝑥𝛼) > 0 for all 𝑥𝛼, 𝑦𝛽�̃� 

2) (2)�̃�−1(𝑥𝛼, 𝑦𝛽) = 1 if and only if �̃�(𝑦𝛽,𝑥𝛼) = 1 = �̃�(𝑥𝛼, 𝑦𝛽) 

 𝑦𝛽 = 𝑥𝛼 

3) �̃�−1 (𝑥𝛼 , 𝑦𝛽 ) ∗ 𝐷−1 (𝑦𝛽 ,𝑧𝜎 ) = �̃� ( 𝑦𝛽 ,𝑥𝛼 ) ∗  �̃� (𝑧𝜎 ,𝑦𝛽 ) ≤ 

�̃�(𝑧𝜎 ,𝑦𝛽) ∗ �̃�(𝑦𝛽,𝑥𝛼) ≤ �̃�(𝑧𝜎 ,𝑥𝛼) = �̃�−1(𝑥𝛼,𝑧𝜎) 

4) �̃�−1 is continuous since �̃� is continuous. 

Therefore (�̃�, �̃�−1,∗) is a quasi fuzzy distance space ∎ 

Proposition 3.3: Let (�̃�,�̃�,∗) be a quasi-fuzzy distance space. De-

fine �̃�  :�̃� × �̃�→ [0, 1] by �̃�(𝑥𝛼 , 𝑦𝛽) = �̃�(𝑥𝛼 , 𝑦𝛽)∧ �̃�−1(𝑥𝛼 , 𝑦𝛽 ). 

Then (�̃�, �̃�,∗) is a fuzzy metric space. We shall refer to (�̃�, �̃�,∗) as 

the fuzzy distance induced by (�̃�,�̃�,∗). 

Proof: It is sufficient to show that �̃�(𝑥𝛼, 𝑦𝛽) = �̃�(𝑦𝛽, 𝑥𝛼) for each 

𝑥𝛼, 𝑦𝛽�̃�.If �̃�(𝑥𝛼, 𝑦𝛽) = �̃�(𝑥𝛼, 𝑦𝛽) then �̃�(𝑦𝛽, 𝑥𝛼) must equal to 

�̃�−1(𝑦𝛽, 𝑥𝛼) but�̃�−1(𝑦𝛽, 𝑥𝛼) = �̃�(𝑥𝛼, 𝑦𝛽) that is �̃�(𝑦𝛽, 𝑥𝛼) = �̃�(𝑥𝛼, 

𝑦𝛽). Hence �̃�(𝑥𝛼, 𝑦𝛽) = �̃�(𝑦𝛽, 𝑥𝛼) 

Similarly if �̃�(𝑥𝛼, 𝑦𝛽) = �̃�−1(𝑥𝛼, 𝑦𝛽) then  �̃�(𝑥𝛼, 𝑦𝛽) = �̃�(𝑦𝛽, 𝑥𝛼) 

Therefore (�̃�, �̃�,∗) is a fuzzy distance space ∎ 

Proposition 2.4: Suppose that (�̃�,�̃�,∗) is a quasi fuzzy distance 

space. Then 𝜏�̃� = {�̃�  �̃� : 𝑎𝛼�̃� r, 0< r < 1, such that �̃�(𝑎𝛼,r) 

 �̃�} is a topology on �̃�. 

Proof:The proof is similar to the proof of Theorem 2.37, hence is 

omitted. 

Example 3.5: Let (�̃�, d) be an ordinary quasi metric space and let 

�̃�𝑑  be the function defined on �̃� × �̃�  to [0, 1] by: �̃�𝑑 (𝑥𝛼 ,𝑦𝛽 ) 

=
𝑡

𝑡+𝑑(𝑥𝛼,𝑦𝛽)
, where t= α˄β. Then for each continuous t-norm∗ , 

(�̃�,�̃�𝑑,∗)is a quasi-fuzzy distance space, which is called the fuzzy 

quasi metric space induced by the quasi metric d. Furthermore, it 

is easy to check that 

 

(�̃�𝑑)−1= �̃�𝑑−1  and �̃�𝑑= �̃�𝑑𝑠  where 𝑑−1(𝑥𝛼,𝑦𝛽) = 

 

d(𝑦𝛽, 𝑥𝛼), 𝑑𝑠(𝑥𝛼,𝑦𝛽) = max {d(𝑥𝛼,𝑦𝛽),𝑑−1(𝑥𝛼,𝑦𝛽)}  

 

�̃�𝑑(𝑥𝛼,𝑦𝛽) = �̃�𝑑(𝑥𝛼,𝑦𝛽)∧ �̃�𝑑
−1(𝑥𝛼,𝑦𝛽) [12] ∎ 

 

Definition 3.6: A quasi fuzzy distance space (�̃�,�̃� ,∗) is called 

fuzzy bicomplete if (�̃�, �̃� ,∗) is a fuzzy complete fuzzy distance 

space. 

 

Definition 3.7: Let (�̃�,�̃�,∗) be a quasi- fuzzy distance space. A 

fuzzy bicompletion of (�̃�,�̃�,∗) is a fuzzy bicomplete quasi fuzzy 

distance space (�̃�,�̃�,⋆) such that (�̃�,�̃�,∗) is fuzzy isodistance to a 

fuzzy dense fuzzy subset of �̃�. 
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Lemma 3.8: Let (�̃�,�̃�,∗) be a quasi fuzzy distance space. Denote 

by �̃� the collection of all fuzzy Cauchy sequence of fuzzy points in 

(�̃�,�̃�,∗). 

 

Define a relation ~ on �̃� by {(𝑥𝑛 , 𝛼𝑛)}~ {(𝑥�́�, 𝛼�́�)} if and only if 

𝑙𝑖𝑚 �̃�((𝑥𝑛, 𝛼𝑛),(𝑥�́� , 𝛼�́�)) = 1, where by 𝑙𝑖𝑚 �̃�((𝑥𝑛, 𝛼𝑛),(𝑥�́� , 𝛼�́�)) 

we denote the lower fuzzy limit of the sequence of fuzzy points 

(�̃�((𝑥𝑛 , 𝛼𝑛),(𝑥�́�, 𝛼�́�)))  

i.e 𝑙𝑖𝑚 �̃�((𝑥𝑛, 𝛼𝑛 ),(𝑥�́� , 𝛼�́�)) = 𝑠𝑢𝑝𝑘𝑖𝑛𝑓𝑛 ≥ 𝑘  �̃� ((𝑥𝑛, 𝛼𝑛 ),(𝑥�́� , 𝛼�́�)). 

Then ~ is an equivalence relation on �̃�. 

Proof: 

1) ~ is reflexive because �̃�((𝑥𝑛, 𝛼𝑛), (𝑥𝑛 , 𝛼𝑛)) = 1 for all nN 

so (𝑥𝑛 , 𝛼𝑛)~ (𝑥𝑛, 𝛼𝑛) 

2) If ( xn, αn ) ~  ( yn, βn ), it immediately follows that 
( yn, βn ) ~  ( xn, αn ) because G̃ (( xn, αn ), ( yn, βn )) = 
G̃((yn, βn), (xn, αn)) for all nN , So that lim G̃((yn, βn), 

(xn, αn)) = lim G̃((xn, αn), (yn, βn)) = 1  

3) 3- ~ is transitive, suppose that (xn, αn)~(yn, βn) and 
(yn, βn)~(zn, σn). We shall prove lim G̃ ((xn, αn),(zn, σn)) 

= 1. Since (xn, αn)~(yn, βn) then lim G̃((xn, αn),(yn, βn)) 

= 1. 
Also (𝑦𝑛 , 𝛽𝑛)~(𝑧𝑛 , 𝜎𝑛) so 𝑙𝑖𝑚 �̃�((𝑦𝑛, 𝛽𝑛),(𝑧𝑛, 𝜎𝑛)) = 1  

for all nN. 

Now �̃� ((𝑥𝑛, 𝛼𝑛 ), (𝑧𝑛 , 𝜎𝑛 ))≥  �̃� ((𝑥𝑛, 𝛼𝑛 ), (𝑦𝑛, 𝛽𝑛 ))∗  �̃� ((𝑦𝑛, 𝛽𝑛 ), 

(𝑧𝑛 , 𝜎𝑛)) 𝑙𝑖𝑚 �̃�((𝑥𝑛, 𝛼𝑛),(𝑧𝑛 , 𝜎𝑛)) ≥ 𝑙𝑖𝑚 �̃�((𝑥𝑛, 𝛼𝑛),(𝑦𝑛 , 𝛽𝑛)) 

∗ 𝑙𝑖𝑚 �̃�((𝑦𝑛 , 𝛽𝑛), (𝑧𝑛, 𝜎𝑛)) Hence 𝑙𝑖𝑚 �̃�((𝑥𝑛, 𝛼𝑛), (𝑧𝑛 , 𝜎𝑛)) = 1∎ 

 

Lemma 3.9: Define �̃��̃�((𝑥𝑛, 𝛼𝑛), (𝑦𝑛 , 𝛽𝑛)) = 𝑙𝑖𝑚 �̃�((𝑥𝑛 , 𝛼𝑛), 

(𝑦𝑛 , 𝛽𝑛)) for all ((𝑥𝑛 , 𝛼𝑛), ((𝑦𝑛 , 𝛽𝑛))�̃� where �̃��̃�: 

�̃� × �̃�→ [0, 1]. Then �̃��̃� satisfies 1, 3 and 4 of Definition 3.1. 

 

Proof: 

1) �̃��̃�((𝑥𝑛, 𝛼𝑛), (𝑦𝑛, 𝛽𝑛)) >0 because �̃�((𝑥𝑛 , 𝛼𝑛),(𝑦𝑛 , 𝛽𝑛)) > 0 

so, 𝑙𝑖𝑚 �̃� ((𝑥𝑛, 𝛼𝑛), (𝑦𝑛, 𝛽𝑛))>0. 

2) Let (xn, αn), (yn, βn), (zn, σn)S̃ and put α = D̃s̃((xn, αn), 
( yn, βn )), β  = D̃s̃ (( yn, βn ), (zn, σn) ) and γ  = 
D̃s̃((xn, αn),(zn, σn)). We shall show that α ∗ β ≤ γ 

If 𝛼 = 0 or 𝛽 = 0 the conclusion is clear. Hence we suppose 
that 𝛼 > 0 and 𝛽 > 0. 

Choose an arbitrary 휀(0, min
{𝛼,𝛽} 

2
). Then 

(𝛼 – 휀) < �̃��̃�((𝑥𝑛, 𝛼𝑛),(𝑦𝑛, 𝛽𝑛)) and ( 𝛽 – 휀) < �̃��̃�((𝑦𝑛, 𝛽𝑛),(𝑧𝑛 , 𝜎𝑛)) 

Furthermore, there exists 𝑁𝜀 such that for all k 𝑁𝜀 

�̃��̃� (( 𝑥𝑛, 𝛼𝑛 ), ( 𝑦𝑛, 𝛽𝑛 )) – 휀 < �̃� (( 𝑥𝑘 , 𝛼𝑘 ), ( 𝑦𝑘 , 𝛽𝑘 )). And 

�̃��̃�((𝑦𝑛 , 𝛽𝑛),(𝑧𝑛 , 𝜎𝑛)) – 휀 < �̃� ((𝑦𝑘 , 𝛽𝑘), (𝑧𝑘 , 𝜎𝑘)). 

Then ( 𝛼 – 2휀 ) ∗ ( 𝛽 – 2휀 ) ≤  [ �̃��̃� (( 𝑥𝑛 , 𝛼𝑛 ), ( 𝑦𝑛 , 𝛽𝑛 ))– 휀 ] ∗ 

[�̃��̃�((𝑦𝑛, 𝛽𝑛 )), (𝑧𝑛, 𝜎𝑛)) – 휀] ≤ �̃�((𝑥𝑘 , 𝛼𝑘 ), (𝑦𝑘 , 𝛽𝑘 ))∗ �̃�((𝑦𝑘 , 𝛽𝑘 ), 

(𝑧𝑘 , 𝜎𝑘))≤ �̃�((𝑥𝑘 , 𝛼𝑘),(𝑧𝑘 , 𝜎𝑘)) for all k ≥ 𝑁𝜀 

Therefore (𝛼 –2휀 ) ∗  (𝛽 –2휀 ) ≤ 𝑖𝑛𝑓𝑘 ≥𝑁𝜀
 D̃ ((𝑥𝑘 , 𝛼𝑘 ), (𝑧𝑘 , 𝜎𝑘))≤

𝑙𝑖𝑚 �̃�((𝑥𝑛 , 𝛼𝑛 ),(𝑧𝑛, 𝜎𝑛)) = 𝛾 By continuity of ∗, it follows that 

𝛼 ∗ 𝛽 ≤ 𝛾 

3) D̃s̃ is continuous because D̃ is continuous ∎ 

Notation 3.10: We denote the quotient �̃� ~⁄  by �̃� and [(𝑥𝑛, 𝛼𝑛)] the 

class of the element (𝑥𝑛 , 𝛼𝑛) of �̃�. 

 

Lemma 3.11: If (𝑥𝑛 , 𝛼𝑛)~ (𝑎𝑛, 𝛾𝑛) and (𝑦𝑛 , 𝛽𝑛))~ (𝑏𝑛, 𝜎𝑛)  

Then �̃��̃�((𝑥𝑛, 𝛼𝑛), (𝑦𝑛, 𝛽𝑛)) = �̃��̃�((𝑎𝑛, 𝛾𝑛), (𝑏𝑛, 𝜎𝑛)). 

 

Proof: �̃��̃�((𝑥𝑛 , 𝛼𝑛),(𝑦𝑛 , 𝛽𝑛))≥ �̃��̃�((𝑥𝑛, 𝛼𝑛),(𝑎𝑛, 𝛾𝑛)) 

∗ �̃��̃�( ( 𝑎𝑛, 𝛾𝑛 ),( 𝑏𝑛, 𝜎𝑛 )) ∗ �̃��̃� (( 𝑏𝑛, 𝜎𝑛 ),(( 𝑦𝑛, 𝛽𝑛 )) = �̃��̃�( ( 𝑎𝑛, 𝛾𝑛) , 

(𝑏𝑛, 𝜎𝑛)) 

 

Thus �̃��̃�((𝑥𝑛, 𝛼𝑛)), (𝑦𝑛 , 𝛽𝑛))≥ �̃��̃�((𝑎𝑛, 𝛾𝑛), (𝑏𝑛, 𝜎𝑛)). 

Now  

 

�̃��̃�((𝑎𝑛, 𝛾𝑛), (𝑏𝑛, 𝜎𝑛)) ≥ �̃��̃�((𝑎𝑛, 𝛾𝑛), ((𝑥𝑛, 𝛼𝑛)) ∗ �̃��̃�((𝑥𝑛, 𝛼𝑛), 

(𝑦𝑛 , 𝛽𝑛)) ∗ �̃��̃�((𝑦𝑛, 𝛽𝑛), (𝑏𝑛, 𝜎𝑛)) = �̃��̃�((𝑥𝑛 , 𝛼𝑛)),((𝑦𝑛, 𝛽𝑛)) 

So, �̃��̃�((𝑎𝑛, 𝛾𝑛), (𝑏𝑛 , 𝜎𝑛))≥ �̃��̃�((𝑥𝑛 , 𝛼𝑛)),((𝑦𝑛, 𝛽𝑛)) 

 

Therefore �̃��̃�((𝑥𝑛 , 𝛼𝑛)), (𝑦𝑛 , 𝛽𝑛)) = �̃��̃�((𝑎𝑛, 𝛾𝑛), (𝑏𝑛 , 𝜎𝑛))∎ 

 

Definition 3.12: For each [( 𝑥𝑛 , 𝛼𝑛 )], [( 𝑦𝑛, 𝛽𝑛 )] �̃�  define 

�̃�([(𝑥𝑛, 𝛼𝑛)], [(𝑦𝑛 , 𝛽𝑛)]) = �̃��̃�((𝑥𝑛, 𝛼𝑛)), ((𝑦𝑛, 𝛽𝑛 )). Then �̃� is a 

function from �̃� × �̃� to [0, 1] and it is well defined by Lemma 2.11. 

 

Also we define T: �̃�→�̃� such that for each 𝑥𝛼�̃�, T(𝑥𝛼) is the 

class of constant sequence of fuzzy points 𝑥𝛼, 𝑥𝛼, ……………. 

Now, from the above construction we obtain the main result in this 

section. 

 

Theorem 3.13: Suppose that (�̃�, �̃� ,∗) is a fuzzy quasi- fuzzy dis-

tance space. 

 

Then 

a) (�̃�,�̃�,∗) is a fuzzy quasi- fuzzy distance space 

b) T(�̃�) is fuzzy dense in (�̃�,�̃�,∗) 

c) (�̃�, �̃� ,∗) is fuzzy isodistance to (T(�̃�),�̃�,∗)  

d) (�̃�,�̃�,∗) is fuzzy bicomplete 

 

Proof (a): �̃� satisfies conditions 1, 3 and 4 of Definition 3.1 as an 

immediate consequence of Lemma 3.9. Now, let {( 𝑥𝑛 , 𝛼𝑛 )}, 

{( 𝑦𝑛 , 𝛽𝑛 )} �̃�  such that �̃� ([(( 𝑥𝑛, 𝛼𝑛 )], [( 𝑦𝑛, 𝛽𝑛 )]) = 1. If 

( 𝑧𝑛 , 𝜎𝑛 )[( 𝑦𝑛, 𝛽𝑛 )] it follows that from Lemma 3.11 that 

�̃��̃� (( 𝑧𝑛, 𝜎𝑛 ), ( 𝑦𝑛, 𝛽𝑛 )) = 1. The same argument shows that 

(𝑧𝑛 , 𝜎𝑛)[(𝑥𝑛, 𝛼𝑛)] implies that �̃��̃�((𝑧𝑛 , 𝜎𝑛), (𝑥𝑛 , 𝛼𝑛)) = 1. 

We conclude that �̃� ([(𝑥𝑛 , 𝛼𝑛 )], [(𝑦𝑛 , 𝛽𝑛 )]) = 1 if and only if 

[(𝑥𝑛, 𝛼𝑛)] = [(𝑦𝑛 , 𝛽𝑛)]. Hence (�̃�,�̃�,∗) is a quasi- fuzzy distance 

space∎ 

Proof (b): Let {(𝑥𝑛 , 𝛼𝑛)}�̃� and 0 < 휀 < 1. Since {(𝑥𝑛, 𝛼𝑛)} is 

fuzzy Cauchy sequence of fuzzy points in (�̃�, �̃�,∗) then there is 𝑁𝜀 

such that �̃�((𝑥𝑘 , 𝛼𝑘),(𝑥𝑁𝜀
, 𝛼𝑁𝜀

)) > (1- 
𝜀

2
 )  for all k 𝑁𝜀 

Thus �̃�([(𝑥𝑛 , 𝛼𝑛)], T(𝑥𝑁𝜀
, 𝛼𝑁𝜀

)) = �̃�𝑠((𝑥𝑛, 𝛼𝑛),T(𝑥𝑁𝜀
, 𝛼𝑁𝜀

)) 

 = 𝑠𝑢𝑝𝑛𝑖𝑛𝑓𝑘 > 𝑛�̃�((𝑥𝑘 , 𝛼𝑘),(𝑥𝑁𝜀
, 𝛼𝑁𝜀

)) 

 ≥ 𝑖𝑛𝑓𝑘 𝑁𝜀
�̃�((𝑥𝑘 , 𝛼𝑘),(𝑥𝑁𝜀

, 𝛼𝑁𝜀
)) 

 ≥ (1- 
𝜀

2
) > (1- 휀) 

We have shown that T (�̃�) is fuzzy dense in (�̃�,�̃�,∗)∎ 

Proof (c): This is almost obvious because for each 𝑥𝛼,𝑦𝛽�̃�, we 

have �̃�(T𝑥𝛼,T𝑦𝛽) = �̃� (𝑥𝛼,𝑦𝛽) ∎ 

Proof (d): Let �̃� ([( 𝑥𝑛, 𝛼𝑛 )], [( 𝑥𝑛, 𝛼𝑛 )]) = min 

{ �̃�([(𝑥𝑛 , 𝛼𝑛) ,[(𝑥𝑛 , 𝛼𝑛)]), �̃�−1([(𝑥𝑛, 𝛼𝑛),[(𝑥𝑛 , 𝛼𝑛)]) }. 

Let {(�̃�𝑛, �̃�𝑛)} be a fuzzy Cauchy sequence in (�̃�,�̃�,∗), then there 

is an increasing sequence (𝑛𝑘) in N such that �̃�((�̃�𝑛, �̃�𝑛),(�̃�𝑚, �̃�𝑚)) 

> (1-2−𝑘) for all n, m ≥ 𝑛𝑘. Since T (�̃�) is fuzzy dense in (�̃�,�̃�,∗) 

then for each kN there is ( 𝑦𝑘 , 𝛽𝑘 ) �̃�  such that 

�̃�((�̃�𝑛𝑘
, �̃�𝑛𝑘

),𝑇(𝑦𝑘 , 𝛽𝑘))> (1-2−𝑘) for all kN. 

We show that {(𝑦𝑘 , 𝛽𝑘 )} is a fuzzy Cauchy sequence of fuzzy 

points in (�̃�,�̃�,∗). To this end, choose 0 < 휀 < 1. Take jN such 

that (1- 2−𝑗) ∗ (1- 2−𝑗) ∗(1- 2−𝑗) > (1- 휀).Then for each k, m ≥ j, 

we have  

 

�̃�((𝑦𝑘 , 𝛽𝑘),(𝑦𝑚, 𝛽𝑚))= �̃�(𝑇(𝑦𝑘 , 𝛽𝑘), T (𝑦𝑚, 𝛽𝑚)) (𝑇(𝑦𝑘 , 𝛽𝑘), 

(�̃�𝑛𝑘
, �̃�𝑛𝑘

))∗ �̃�((�̃�𝑛𝑘
, �̃�𝑛𝑘

), (�̃�𝑛𝑚
, �̃�𝑛𝑚

)) ∗ �̃�((�̃�𝑛𝑚
, �̃�𝑛𝑚

),T(𝑦𝑚, 𝛽𝑚)) 

≥ (1- 2−𝑘) ∗ (1- 2−(𝑘˄𝑚)) ∗(1- 2−𝑚) ≥ (1- 2−𝑗) ∗ (1- 2−𝑗) ∗(1- 

2−𝑗) > (1- 휀)  

 

And consequently {(𝑦𝑘 , 𝛽𝑘)} is a fuzzy Cauchy sequence of fuzzy 

points in (�̃�,�̃�,∗). Therefore �̃�𝛽�̃�, where �̃�𝛽 = [(𝑦𝑘 , 𝛽𝑘)]. Finally, 

we prove that (�̃�𝑛, �̃�𝑛) fuzzy converges to �̃�𝛽 in (�̃�,�̃�,∗). 

Indeed, as in part (c) choose 0 < 휀 < 1. Take jN such that  

(1- 2−𝑗 )  ∗ (1- 2−𝑗 )  ∗(1- 2−𝑗 ) > (1- 휀 ) Since (𝑦𝑘 , 𝛽𝑘 ) is a 

fuzzy Cauchy sequence of fuzzy points in (�̃�,�̃�,∗), the proof of 

part (b) shows that there is k ≥ j such that �̃�(�̃�𝛽,𝑇(𝑦𝑘 , 𝛽𝑘)) >( 1-

2−𝑗 ) Then for n ≥ 𝑛𝑘 , we obtain �̃�(�̃�𝛽 ,�̃�𝑛) ≥ �̃�(�̃�𝛽 ,𝑇(𝑦𝑘 , 𝛽𝑘 ))∗
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�̃�(𝑇(𝑦𝑘 , 𝛽𝑘),(�̃�𝑛𝑘

, �̃�𝑛𝑘
)) ∗ �̃�( (�̃�𝑛𝑘

, �̃�𝑛𝑘
),(�̃�𝑛, �̃�𝑛)) ≥ (1- 2−𝑗) ∗ (1- 

2−𝑘) ∗(1- 2−𝑘) ≥ (1- 2−𝑗) ∗ (1- 2−𝑗) ∗(1- 2−𝑗)>(1- 휀) 

We conclude that (�̃�,�̃�,∗) is fuzzy bicomplete∎ 

 

Definition 3.14: A quasi- fuzzy metric space (�̃�,�̃�,∗) is called 

fuzzy bicompletable if it admits a fuzzy bicompletion. 

 

Theorem 3.15: Suppose that (Ã, �̃�Ã,∗) is a quasi-fuzzy distance 

space and let (�̃�,�̃��̃�,⋆) be a fuzzy bicomplete quasi- fuzzy distance 

space. If there is a fuzzy isodistance mapping f from a fuzzy dense 

fuzzy subset �̃� of Ã to �̃� then f has a unique extension 𝑓∗: Ã →�̃�. 

 

Proof:  We consider any 𝑥𝛼 Ã but Ã = �̃� so 𝑥𝛼�̃� then there is a 

sequence {(𝑥𝑛, 𝛼𝑛)}  of fuzzy points in �̃�  such that {(x𝑛 , 𝛼𝑛)} 

fuzzy converges to 𝑥𝛼 by Lemma 2.28. 

Then {(𝑥𝑛, 𝛼𝑛)} is fuzzy Cauchy. Since f is fuzzy isodistance {f 

((𝑥𝑛 , 𝛼𝑛))} is fuzzy Cauchy in �̃� but �̃� is fuzzy complete hence 

there is 𝑦𝛼�̃� such that {f(𝑥𝑛 , 𝛼𝑛)} fuzzy converges to𝑦𝛼 . Now 

we define 𝑓∗(𝑥𝛼) = 𝑦𝛼. 

We now show that this definition is independent of the particular 

choice of the sequence in �̃�  converging to  𝑥𝛼 . Suppose that 

{(𝑥𝑛 , 𝛼𝑛)} in �̃�  fuzzy converges to 𝑥𝛼  and {(𝑧𝑛, 𝜎𝑛)} in �̃�  fuzzy 

converges to 𝑥𝛼 . Then {(𝑣𝑚, 𝛾𝑚 )} fuzzy converges to 𝑥𝛼  where 

{(𝑣𝑚, 𝛾𝑚)} = ((𝑥1, 𝛼1),(𝑧1, 𝜎1),(𝑥2, 𝛼2),(𝑧2, 𝜎2),…). 

Hence {(f(𝑣𝑚, 𝛾𝑚 ))} fuzzy converges and the two subsequence 

{(f(𝑥𝑛, 𝛼𝑛))} and {(f(𝑧𝑛, 𝜎𝑛))} of {(f(𝑣𝑚, 𝛾𝑚 ))} must have the 

same fuzzy limit. This prove 𝑓∗ is uniquely defined at every𝑥𝛼 Ã. 

Clearly 𝑓∗(𝑥𝛼) = f (𝑥𝛼) for every 𝑥𝛼�̃� so that 𝑓∗ is an extension 

of f ∎. 

 

Theorem 3.16: Suppose that (Ã, �̃�Ã,∗) is a fuzzy distance space 

and let (�̃�,�̃��̃�,⋆) be a fuzzy bicomplete quasi- fuzzy distance space. 

If f is an fuzzy isodistance mapping from a fuzzy dense fuzzy subset 

�̃� of Ã to �̃� then the unique extension 𝑓∗:Ã→�̃� is a fuzzy isodis-

tance. 

 

Proof: Let 𝑥𝛼 , 𝑦𝛽Ã then there exists two sequences {(𝑥𝑛 , 𝛼𝑛)} 

and {(𝑦𝑛 , 𝛽𝑛)} of fuzzy points in �̃�  such that (𝑥𝑛, 𝛼𝑛)→ 𝑥𝛼  and 

(𝑦𝑛 , 𝛽𝑛)→ 𝑦𝛽. Choose an arbitrary 0 휀 1. Now:  

휀  + �̃�Ã ( 𝑥𝛼 ,  𝑦𝛽 ) >  �̃�Ã ( 𝑥𝛼 ,  𝑦𝛽 ). Furthermore, it follows that 

{(𝑥𝑛 , 𝛼𝑛)}  and {(𝑦𝑛, 𝛽𝑛)}  are fuzzy Cauchy sequences in �̃�  so 

{𝑓∗((𝑥𝑛 , 𝛼𝑛))} and {𝑓∗((𝑦𝑛, 𝛽𝑛))} are fuzzy Cauchy sequences in 

�̃�. But �̃� is fuzzy complete hence {𝑓∗((𝑦𝑛 , 𝛽𝑛))} fuzzy converges 

to 𝑓∗( 𝑦𝛽) and {𝑓∗((𝑥𝑛, 𝛼𝑛))} fuzzy converges to 𝑓∗(𝑥𝛼). 

Then we can find K with �̃�Ã ( 𝑥𝛼 , (𝑥𝑛, 𝛼𝑛) ) >  (1- 휀 ), 

�̃�Ã((𝑦𝑛 , 𝛽𝑛), 𝑦𝛽 ) > (1- 휀) �̃��̃� (𝑓∗ ((𝑥𝑛, 𝛼𝑛)),𝑓∗(𝑥𝛼 )) > (1- 휀) and 

�̃��̃�(𝑓∗((𝑦𝑛 , 𝛽𝑛)),𝑓∗( 𝑦𝛽)) > (1- 휀) for all n ≥ K. Thus we have 휀 + 

�̃�Ã ( 𝑥𝛼 ,  𝑦𝛽 ) >  �̃�Ã ( 𝑥𝛼 ,  𝑦𝛽 ) ≥ �̃�Ã ( 𝑥𝛼 , (𝑥𝑛, 𝛼𝑛) ) 

∗ �̃�Ã ( (𝑥𝑛, 𝛼𝑛) , (𝑦𝑛 , 𝛽𝑛) ) ∗  �̃�Ã((𝑦𝑛, 𝛽𝑛) ,  𝑦𝛽 ) ≥  (1- 휀 ) ∗

�̃��̃� ( 𝑓∗ ( (𝑥𝑛, 𝛼𝑛) ), 𝑓∗ ( (𝑦𝑛 , 𝛽𝑛) )) ∗ (1- 휀 ) But 

�̃��̃� ( 𝑓∗ ( (𝑥𝑛, 𝛼𝑛) ), 𝑓∗ ( (𝑦𝑛 , 𝛽𝑛) )) ≥  �̃��̃� ( 𝑓∗ ( (𝑥𝑛, 𝛼𝑛) ), 𝑓∗ (x)) ⋆
�̃��̃� ( 𝑓∗ ( 𝑥𝛼 ), 𝑓∗ (  𝑦𝛽 )) ⋆  �̃��̃� ( 𝑓∗ ( (𝑦𝑛 , 𝛽𝑛) ), 𝑓∗ (  𝑦𝛽 )) ≥ (1- 휀 ) ⋆

�̃��̃�(𝑓∗(𝑥𝛼),𝑓∗( 𝑦𝛽)) ⋆ (1- 휀) for all n ≥K. Therefore 휀 + �̃�Ã(𝑥𝛼, 𝑦𝛽) 

> (1- 휀) ∗[(1- 휀) ⋆ �̃��̃�(𝑓∗(𝑥𝛼),𝑓∗( 𝑦𝛽)) ⋆ (1- 휀)] ∗(1- 휀) 

By fuzzy continuity of ∗  and ⋆  it follows that �̃�Ã ( 𝑥𝛼 ,  𝑦𝛽 ) ≥ 

�̃��̃�(𝑓∗(xα),f ∗( yβ)). 

A similar argument shows that D̃Ẽ(f ∗(xα),f ∗( yβ)) ≥ D̃Ã(xα ,  yβ) 

For all xα, yβÃ We conclude that f ∗ is an fuzzy isodistance from 

(Ã, D̃Ã ,∗) to (Ẽ,D̃Ẽ,⋆) ∎ 

 

Theorem 3.17: Every fuzzy bicompletable quasi- fuzzy distance 

space admits a unique [up to fuzzy isodistance] fuzzy bicompletion. 

 

Proof: Let (Ẽ,D̃1,⋆) and (Z̃,D̃2,∘) be two fuzzy bicompletions of 

(Ã,D̃,∗) then we will prove that (Ẽ,D̃1,⋆) and (Z̃,D̃2,∘) are fuzzy 

isodistance. Since (Ẽ,D̃1,⋆) is a fuzzy bicompletion of (Ã,D̃,∗) then 

there is an fuzzy isodistance f from (Ã,D̃,∗) to a fuzzy dense fuzzy 

subset of (Ẽ,D̃1,⋆). 

By Theorem 3.15 and Theorem 3.16 f admits a unique extension 

f ∗ onto (Ẽ,D̃1,⋆)which is also a fuzzy isodistance. 

Similarly f́  is a fuzzy isodistance extension ( Ã , D̃ , ∗ ) onto 

(Z̃,D̃2,∘).To prove that f ∗ and f́ are fuzzy isodistance it remains to 

see that f ∗and f́ are onto we will show that f ∗ is onto. Indeed given 

yαẼ there is a sequence {(xn, αn)} of fuzzy points in Ã such that 

 f ∗(xn, αn) → yα. Since f ∗ is an fuzzy isodistance  {(xn, αn)} is a 

fuzzy Cauchy sequence, so it fuzzy converges to some fuzzy point 

xαÃ. Consequently f ∗(xα) =yα. Similarly we can prove that f́ is 

onto. 

Hence f ∗ and f́ are fuzzy isodistance. 

Now (Ẽ,D̃1,⋆) is fuzzy isodistance to (Ã,D̃,∗) and (Ã,D̃,∗) is fuzzy 

isodistance to (Z̃,D̃2 ,∘). Hence (Ẽ,D̃1 ,⋆) is fuzzy isodistance to 

(Z̃,D̃2,∘) ∎ 

4. Conclusion 

In this paper we represented the definition of fuzzy quasi-fuzzy  

Distance space and we show that all properties of quasi-metric 

Space can be proved in fuzzy quasi fuzzy distance space. 
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