
 
Copyright © 2016 Eric A. Kincanon. This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Applied Mathematical Research, 5 (2) (2016) 89-90 
 

International Journal of Applied Mathematical Research 
 

Website: www.sciencepubco.com/index.php/IJAMR  

doi: 10.14419/ijamr.v5i2.5801 

Research paper  

 

 

 

Problems in inverse scattering of approximate  

reflection coefficient measurements 
 

Eric A. Kincanon * 

 
Gonzaga University, Spokane, WA USA 

*Corresponding author E-mail:kincanon@gonzaga.edu 

 

 

Abstract 
 

Because of the nonlinear nature of the Gelfand-Levitan equation, it may be a concern that a small difference in the reflection coefficient 

could lead to large changes in the corresponding potential. This paper considers this and shows that this need not be a concern. Though 

assumptions are made about the associated spectral measure function, these are not restrictive. 
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1. Introduction 

Inverse scattering on the line is a well-known method to determine 

the potential V(r) given the reflection coefficient R(k). This is 

done by using the Gelfand-Levitan equation [1-3]: 

 

K(r, s) + G(r, s) + ∫ K(r, t)G(t, s)dt = 0
r

−∞
                                (1) 

 

Where G(r,s), the spectral measure function, is the Fourier trans-

form of the reflection coefficient R(k): 

 

G(r, s) =
1

2π
∫ R(k)e−ik(r+s)dk

+∞

−∞
                                                (2) 

 

And K(r,s) is related to the potential by: 

 

V(r) = −2
dK(r,r)

dr
.                                                                         (3) 

 

The typical procedure is to find V(r) by taking the Fourier trans-

form of R(k) to get G(r,s) and then solve (1) for K(r,s). Then (3) 

can be used to find the potential. The challenge arises in solving 

(1). This is typically done by successive iteration [4]. 

A potential concern in using this in practice is that R(k) cannot be 

measured perfectly. This paper considers how slightly different 

spectral measure functions, associated with slightly different R (k) 

affect the resulting calculated potential. This is done by looking at 

the expansion of two general G(r,s) functions and assuming that 

the first N terms agree well. The corresponding K(r,s) for each of 

these is found and the difference in the corresponding potentials is 

approximated. 

2. Calculations 

Solving (1) for K(r,s) gives: 

 

K(r, s) = −G(r, s) − ∫ K(r, t)G(t, s)dt
r

−∞
                                    (4) 

 

Iterating this equation yields: 

 

K(r, s) =
−G(r, s) +

∫ G(r, t)G(t, s)dt −
r

−∞ ∫ G(r, t) ∫ G(t, u)G(u, s)du +
r

−∞

r

−∞

continued terms of iteration                                                      (5) 

 

Now consider two spectral measure functions that would be gen-

erated by (2) from slightly different R(k). (Expanding these func-

tions in terms of exponentials is justified based in the usefulness 

of the exponential as the related to complete sets [5] and on known 

method for solving the Gelfand-Levitan equation. [6]) 

 

G1(r, s) = ∑ anen(r+s)∞
n=0                                                             (6) 

 

And 

 

G2(r, s) = ∑ bnen(r+s)∞
n=0                                                             (7) 

 

Since it assumed that these spectral measure functions have been 

generated by similar R(k) and that the series (6) and (7) converge, 

it is reasonable that the series agree up to some term of the sum N. 

This means that to a good approximation it can be assumed that: 

 

G1(r, s) = G2(r, s) + ϵeN(r+s)                                                      (8) 

 

Here is taken as small. This allows for the K(r,s) associated with 

(6) and (7) to be written in terms of each other. To do this consider 

the form of (5) associated with (6): 

 

K1(r, s) =
−G1(r, s) +

∫ G1(r, t)G1(t, s)dt −
r

−∞ ∫ G1(r, t) ∫ G1(t, u)G1(u, s)du +
r

−∞

r

−∞

continued terms of iteration                                                      (9) 

 

Now applying (8) to this equation yields: 
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K(r, s) =

−G2(r, s) + ϵeN(r+s) + ∫ [G2(r, t) + ϵeN(r+t)][G2(t, s) +
r

−∞

ϵeN(t+s)]dt −

∫ [G2(r, t) + ϵeN(r+t)] ∫ [
G2(t + u) +

ϵeN(t+u)
] [G2(u, s) +

r

−∞

r

−∞

ϵeN(u+s)]dudt + cont terms of iteration                                                              

(10) 

 

Getting rid of the brackets, keeping only terms that are linear in 

and grouping terms so that correspond to K2(r, s), leaves: 

 

K1(r, s) = K2(r, s) + ϵeN(r+s) + ϵeNr ∫ G2(t, s)dt +
r

−∞

ϵeNs ∫ G2(r, t)dt
r

−∞
                                                                     (11) 

 

What is of concern here is whether the different spectral measure 

functions correspond to significantly different potentials as given 

by (3). The size of this difference can be seen by examining the 

difference in the two K(r,s) terms. So, rewriting (11) yields: 

 

K1(r, s) − K2(r, s) = ϵeN(r+s)[1 + ∫ G2(t, s)dt
r

−∞
]                   (12) 

 

So the right hand side will be small if the integral in the brackets 

can be shown to be not very large. This can be seen by using (7) 

for G(r,s) in the integral and evaluating the integral. This yields: 

 

∫ G2(t, s)dt = ∑
bn

n
en(r+s)∞

n=1
r

−∞
                                                (13) 

 

The left hand side clearly converges faster than the series in (7) so 

it does not represent a large addition to G(r,s) and so the left hand 

side of (12) can be taken as small.  

3. Conclusion 

In inverse scattering a real-world concern could be that small dif-

ference in the measured reflection coefficient could lead to very 

different predictions as to the potential. This brief paper has 

shown that this is not a concern. Despite the nonlinear nature of 

the equations, a small difference in reflection coefficients does 

correspond to a small difference in potentials. 

An objection raised here may be that (6) and (7) are too restrictive 

in terms of possible spectral measure functions. It has been shown 

[6] that assuming this form of G(r,s) can be a useful and effective 

way of calculation potentials for general cases. 
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