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Abstract

The present paper is devoted to a proof of the existence and uniqueness of a third-order non-local problem with
boundary integral condition for a parabolic equation. The proof is based in two sided a priori estimates and the
fact that the range of operator generalized by the considered problem is dense.
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1. Introduction

In this paper we are concerned with the existence and uniqueness of a third-order non-local problem with boundary
integral condition for a parabolic equation. We first consider the problem
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(x, t) in (0, T )× (0, 1) with the initial datum

lu = u(x, 0) = ϕ(x) x ∈ (0, 1) (4)

and the nonlocal boundary condition∫ 1

0

u(x, t)dx = 0. (5)
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Throughout this paper we use the following abbreviation: ϕ(x) ∈ L2(0, 1) is known function which satisfy the two
compatibility conditions given in (1.2) and (1.4).
In recent years, boundary value problems for parabolic and hyperbolic equations with nonlocal conditions have
been the subject of extensive study, see (Bouziani and Benouar[3], Denche [8], Yurchuk [13] and Al-kadhi [11]) and
references therein.
Our method is as follows.First we establish two-sided a priori estimates. Then, we prove that the operator L is a
linear homeomorphism between the spaces E and F .
We associate to problem (1.1), (1.2), (1.3) and (1.4) the operator L = (L, l), defined from E into F, where E is the
Banach space of functions u ∈ L2(Ω), satisfying (1.2) and (1.4), with the finite norm
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And F is the Hilbert space of vector-valued functions F = (f, ϕ) obtained by completion of the space L2(Ω) ×
W 4

2 (0, 1) with respect to the norm
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Moreover,when solving this equation with nonlocal or classical boundary conditions by the energy integral method.
This method is essentially based on the construction of suitable multiplicators for each specific given problem, which
provides the a priori estimate from which it is possible to establish the solvability of the posed problem.

2. Two-sided a priori estimates

For any function u ∈ E, there is the a priori estimate

‖Lu‖F ≤ c ‖u‖E (8)

where c is a constant which may depend on T but does not depend on u.
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Combining the inequalities (2.2), (2.3), and (2.4) we obtain (2.1) for u ∈ E.
For any function u ∈ E, there is the a priori estimate

‖u‖E ≤ C‖Lu‖F (12)

with the constant

C =
64 exp(−cT )

min(48; (3c− 51))
(13)

and c is such that

c ≥ 17. (14)

To see this, the following lemmas are essential.
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Then integrating by parts and using elementary inequalities, we obtain (2.8)

Lemma 2.2 For u ∈ E satsfying the first condition in (1.2)
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With c ≥ 19.

Proof Integrating by parts the expression∫ τ
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Proof Theorem 2.2
Let
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(18)
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Similarly we can handle other terms to obtain

−Re
∫ τ

0

∫ 1

0

exp(−ct) 1

x3
(
∂3

∂x3
(x(

∂2u

∂x∂t
))x3J ∂u

∂t
dxdt =∫ τ

0

∫ 1

0

exp(−ct)| ∂
2u

∂x∂t
|2dxdt

(25)
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By using the proprieties of the modules and of the ε-inequality, we obtain
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Now, combining inequalities (2.9), (2.21), and (2.23), and lemmas, we get
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As the left-hand side of (2.24) is independent of τ , by replacing the right-hand side by its upper bound with respect
to in the interval [0,T], we obtain the desired inequality.

3. Solvability of the problem.

From estimates (2.1) and (2.5) it follows that the operator L : E −→ F is continuous and its range is closed in
F . Therefore, the inverse operator L−1 exists and is continuous from the closed subspace R(L) onto E, which
means that L is a homomorphism from E onto R(L). To obtain the uniqueness of solution, it remains to show that
R(L) = F . The proof is based on the following lemma.
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which implies that∫ 1
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In addition v∗ satisfies the integral condition (1.4). Putting u =
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therefore ϕ = 0, and the present proof is completed.
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